Меню

Сушка электрических машин электрическим током



Сушка электродвигателей

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Чтобы электродвигатель не вышел из строя раньше положенного срока, необходимо проверять сопротивление обмоток статора после транспортировки электрической машины и перед ее установкой на фундамент, после длительного хранения или эксплуатации в условиях повышенной влажности после, выполнения ремонтных работ, в том числе перемотки, а также в соответствии с графиком проведения регламентных работ. Минимальное сопротивление изоляции обмоток электродвигателей относительно корпуса нормируется соответствующими стандартами на конкретные типы двигателей. Сушка обмоток электродвигателя проводится для удаления из них избыточной влаги и приведения сопротивления обмоток к допустимому значению.

Согласно ГОСТ Р 51689-2000 для общепромышленных асинхронных двигателей мощностью до 400 кВт эта величина составляет не менее 10 МОм, если замеры проводились при температуре окружающего воздуха, определенного для испытаний двигателей соответствующего климатического исполнения. Если же испытательные измерения были выполнены при рабочей температуре, то величина сопротивления изоляции обмоток не должна быть менее 3 Мом или не менее 0,5 МОм при максимальном значении влажности воздуха.

Способы сушки обмоток электродвигателей

Наиболее распространенными методами, позволяющими избавиться от лишней влаги в обмотках, являются:

  • внешний нагрев;
  • нагрев индукционными потерями;
  • нагрев пониженным напряжением.

Сушка внешним нагревом

Этот метод сушки подходит как для двигателей постоянного, так и двигателей переменного тока, а в некоторых случаях является единственным эффективным способом, например для электрических машин длительное время работавших в помещениях с высоким уровнем влажности.

Сушка электродвигателей производится в специальной камере, в которую через входной патрубок подается горячий воздух.

«Генератор горячего воздуха» изготавливается из нагревательных элементов из нихрома или фехраля, закрепленных на фарфоровых изоляторах, и вентилятора. Перед установкой в камеру у двигателей закрытого исполнения снимаются подшипниковые щиты, и вынимается ротор. Двигатели открытого исполнения сушатся без разборки. Поток воздуха направляется на корпус двигателя или на железо статора, так как непосредственный нагрев обмоток выполнять не рекомендуется из-за возможного локального перегрева. Температура воздуха, используемого для сушки обмоток не должна превышать 900С. Для контроля температуры используются термометры.

Если нет возможности изготовить специальную камеру, то сушка изоляции электродвигателей производится с помощью ламп накаливания. Перед сушкой двигатель частично разбирается (снимаются подшипниковые щиты, извлекается ротор). После этого внутрь статора помещают стальной лист, на котором закрепляют керамические патроны под лампы накаливания. Мощность лам зависит от мощности двигателя и варьируется от 300 Вт до 1 кВт

Сушка методом индукционных потерь

Современные способы сушки изоляции обмоток электродвигателей включают в себя нагрев, происходящий в результате возникновения вихревых токов и индукционных потерь на перемагничивание сердечника статора или корпуса электрической машины.

Для этого способа сушки поверх корпуса электродвигателя наматывается обмотка изолированным проводом с заводом его под станину (а), с захватом подшипниковых щитов (б), с оплеткой корпуса двигателя и сердечника статора (в)

Количество витков и сечение намоточного провода рассчитывается исходя из величины питающего напряжения и геометрических размеров активного железа статора.

Сушка электродвигателя за счет индукционных потерь, возникающих в его корпусе и подшипниковых щитах, может выполняться без предварительной разборки. Если сушка производится за счет потерь в активном железе статора, то с двигателя предварительно снимаются подшипниковые щиты и извлекается ротор.

Преимуществом этого способа является возможность использования для сушки однофазного напряжения величиной 220 В.

Сушка пониженным напряжением

Сушка электродвигателя пониженным напряжением производится, если значение сопротивление изоляции обмоток не сильно отличается от нормативных значений, а значит, уровень влажности внутри двигателя не достиг критических значений.

Перед сушкой таким способом разборка двигателя не производится. В двигателях с короткозамкнутым ротором предварительно выполняется его фиксация от проворачивания, а в электрических машинах с фазным ротором – токосъемные кольца закорачиваются между собой. После этого на обмотку статора подается трехфазное переменное напряжение, величиной от 0,08 до 0,17 номинального. Ток, проходящий по обмоткам, вызовет их нагрев. Локальный перегрев не возникнет, так как величина тока в обмотках будет колебаться в пределах 50-70% от номинального значения. Кроме того, необходимо через определенные промежутки времени растормаживать ротор двигателя. Вентиляция, возникшая благодаря вращению ротора, способствует удалению лишней влаги и приводит к снижению продолжительности сушки. В качестве источника питания используются два или три сварочных аппарата.

Чтобы избежать неравномерности нагрева обмоток в цепь каждой фазы включается амперметр, с помощью которого осуществляется контроль над величиной тока.

Важно

Следует помнить, что вне зависимости от того, какие способы сушки электродвигателей использовались, необходимо строго соблюдать все технологические режимы. В противном случае возможен перегрев обмотки, что может привести к возникновению межвитковых замыканий или пробою на корпус.

Источник

Сушка изоляции обмоток электрических машин

Сушка обмоток электрических машинСушке подвергаются электрические машины при увлажнении изоляции обмоток и других токоведущих частей , например, при транспортировке, хранении, монтаже и ремонте, а также при длительном останове агрегата.

Сушка изоляции обмоток электрических машин без особой необходимости вызывает дополнительные неоправданные расходы, а при неправильном ведении режима сушки, кроме того, происходит порча обмотки.

Назначение сушки — удаление влаги из изоляции обмоток и повышение сопротивления до значения, при котором электрическую машину можно поставить под напряжение. Абсолютное сопротивление, МОм, изоляции для электрических машин, прошедших капитальный ремонт, должно быть не менее 0,5 МОм при температуре 10 — 30° С.

Читайте также:  Число колебаний переменного тока в единицу времени есть

Сушка обмоток электрических машинДля вновь установленных электрических машин это значение должно быть не ниже значений, приведенных в табл. 2, а у электродвигателей напряжением выше 2 кВ или более 1000 кВт, кроме того, необходимо определить мегаомметром коэффициент абсорбции ka6c или отношение R60/ R15.

Если полученные данные указывают на неудовлетворительное состояние изоляции, электрические машины подвергаются сушке.

Удаление влаги из изоляции обмотки электрической машины происходит за счет диффузии, вызывающей перемещение влаги в направлении потока тепла от более нагретой части обмотки к более холодной.

Перемещение влаги происходит вследствие перепада влажности в разных слоях изоляции, из слоев с большей влажностью влага перемещается в слои с меньшей влажностью. Перепад влажности в свою очередь создается перепадом температуры. Чем больше температурный перепад, тем интенсивнее происходит сушка изоляции. Например, нагревая внутренние части обмотки током, можно создать перепад температуры между внутренними и внешними слоями изоляции и тем ускорить процесс сушки.

Для ускорения сушки обмотки, нагретые до предельной температуры, целесообразно периодически охлаждать до температуры окружающей среды. Пои этом эффективность термической диффузии получается тем большей, чем быстрее охлаждаются поверхностные слои изоляции.

Табл. 1. Ориентировочная продолжительность сушки электрических машин

В процессе сушки нагревать обмотки и сталь нужно постепенно, так как при быстром нагревании температура внутренних частей машины может достигнуть опасного значения, в то время как нагревание наружных частей будет еще незначительным.

Сушка обмоток электрических машинСкорость подъема температуры обмотки во время сушки не должна превышать 4 — 5°С в час. Согласно ПТЭ электроустановок потребителей измерение сопротивления изоляции относительно корпуса машины и между обмотками производят для обмоток электрических машин напряжением до 660 В включительно мегаомметром на 1000 В, а у электрических машин напряжение выше 660 В — мегаомметром на 2500 В.

Однако согласно ГОСТ 11828 — 75 сопротивление обмоток электрических машин на номинальное напряжение до 500 В включительно измеряют мегаомметром, рассчитанным на 500 В, обмоток электрических машин на номинальное напряжение выше 500 В — мегаомметром на 1000 В. Следовательно, ПТЭ в некоторой степени ужесточают требования по испытанию изоляции мегаомметром.

Измерение сопротивления изоляции производится при температуре обмоток 75°С. Если сопротивление изоляции обмоток было измерено при другой температуре, но не ниже 10 °С, оно может быть пересчитано на температуру 75 °С.

Перед сушкой изоляции обмоток электрических машин помещение должно быть очищено от мусора, пыли и грязи. Электрические машины должны быть тщательно осмотрены и продуты сжатым воздухом. Во время сушки измеряют сопротивление изоляции каждой обмотки электрической машины по отношению к заземленному корпусу машины и между обмотками (рис. 1).

Каждый раз перед измерением необходимо устранять остаточные заряды в изоляции, для этого обмотку заземляют на корпус на 3 — 4 мин. Кроме того, при сушке обмоток электрических машин необходимо измерять температуру обмоток, окружающего воздуха, ток сушки. Практически в результате сушки обмоток электрических машин сопротивление изоляции при температуре 750°С должно быть не ниже данных табл. 2.

Табл. 2. Наименьшие допустимые сопротивления изоляции обмоток электрических машин после сушки

Машины или их части Наименьшее допустимое сопротивление изоляции
Статоры машин переменного тока с рабочим напряжением: выше 1000 В 1 МОм на 1 кВ рабочего напряжения
до 1000 В 0,5 МОм на 1 кВ
Якори машин достоянного тока на пряжением до 750 В включительно 1МОм на 1 кВ
Роторы асинхронных и синхронных электродвигателей (включая всю цепь возбуждения) 1 МОм на 1 кВ, но не менее 0,2 — 0,5 МОм
Электродвигатели напряжением 3000 В и более: статоры 1 МОм на 1 кВ
роторы 0,2 МОм на 1 кВ

Сушка обмоток электрических машин

Сушка обмоток электрических машин способом индукционных потерь в стали

В последние годы внедрены рациональные способы сушки электродвигателей индукционными потерями в стали статора при неподвижных машинах, не связанные с прохождением тока непосредственно в обмотках. При этом способе сушки имеются две разновидности: потерями в активной стали статора и потерями в корпусе статора.

Нагрев электродвигателей осуществляется потерями на перемагничивание и вихревые токи в активной стали статора электродвигателя переменного тока или индуктора машины постоянного тока от создаваемого в машинах переменного магнитного потока в сердечнике статора и корпусе машины.

Переменный магнитный поток создается специальной намагничивающей обмоткой, наматываемой на корпус машины по наружной поверхности его с протягиванием проводников под станину (рис. 1, а) или на корпус и подшипниковые щиты (рис. 1, б), переменный магнитный поток может быть также создан индукционными потерями в активной стали статора и корпусе электрической машины (рис. 1, в).

Ротор асинхронной или синхронной машины должен быть вынут для возможности намотки на статор намагничивающих витков.

Рис. 1. Сушка электрических машин за счет индукционных потерь в стали: о-в корпусе машины, б — в корпусе и подшипниковых щитах, в — в корпусе и активной стали статора

Намагничивающая обмотка выполняется изолированным проводом, сечение и количество витков определяется соответствующим расчетом.

В процессе сушки сопротивление изоляции обмоток электрических машин в первый период сушки снижается, в дальнейшем возрастает и, достигнув некоторого значения, становится постоянным. В начале сушки сопротивление изоляции измеряют через каждые 30 мин, а при достижении установившейся температуры — через каждый час.

Результаты заносят в журнал сушки и одновременно вычерчивают кривые (рис. 2) зависимости сопротивления изоляции и температуры обмоток от продолжительности сушки. Измерения сопротивления изоляции, температуры обмоток и окружающей среды продолжают до полного охлаждения электрической машины.

Читайте также:  Чем опасен ток в воде

Сушку обмоток электрической машины прекращают после того, как сопротивление изоляции будет при постоянной температуре практически неизменным в течение 3 — 5 ч и ka6c будет не ниже 1,3.

Кривые зависимости сопротивления изоляции 2, коэффициента абсорбции 3 и температуры обмотки 1 электрической машины от продолжительности сушки

Рис. 2. Кривые зависимости сопротивления изоляции 2, коэффициента абсорбции 3 и температуры обмотки 1 электрической машины от продолжительности сушки

Сушка обмоток электрического двигателя

Сушка изоляции обмоток электрического двигателя в сушильной печи

Источник

VIII Международная студенческая научная конференция Студенческий научный форум — 2016

СУШКА ЭЛЕКТРИЧЕСКИХ МАШИН

Наиболее частыми причинами снижения сопротивления изоляции обмоток электрических машин, аппаратов, распределительных и прочих устройств являются загрязнение токопроводящей пылью и увлажнение [1,2,7,9]. Однако, на практике бывает трудно отделить одну причину от другой, что приводит к непроизводительным затратам времени при выборе способов повышения сопротивления изоляции. Для выявления причины снижения сопротивления изоляции (увлажнение или загрязнение) удобно использовать мост постоянного тока или безиндукторный мегаомметр. При этом необходимо измерить сопротивление изоляции при двух направлениях тока в контролируемой цепи путем изменения полярности подключаемого к обмоткам напряжения.

Если низкое сопротивление изоляции вызвано токопроводящей пылью, то при обоих измерениях будут одинаковые показания. При разных результатах наиболее вероятными причинами являются проникновение в обмотку влаги и образование гальванической ЭДС, которая и создает разные показания при измерении.

Увлажненность изоляции обмоток электрических машин можно определить с помощью измерения так называемого коэффициента абсорбции. Физический смысл коэффициента абсорбции поясняется ниже.

Для анализа поведения изоляции под воздействием приложенного напряжения ее представляют некоторой эквивалентной схемой замещения, которая состоит из трех параллельно включенных цепей (рис. 1 ).

Первая цепь состоит их конденсатора, емкость С1 которого определяется геометрическими размерами изоляции и ее расположением относительно земли (корпуса) и называется геометрической емкостью или емкость мгновенной поляризации. Через эту емкость проходит ток Iг.

Вторая цепь состоит из конденсатора С2 включенного последовательно с резистором, имеющим активное сопротивление R2. Величина R2 в основном зависит от строения изоляции, ее однородности и диэлектрических качеств (наличия расслоений, посторонних включений, капилляров и т.п.). Емкость С2называется абсорбционной емкостью или емкостью медленной поляризации. Появление токов абсорбции Iабсобусловлено перераспределением напряжений между разнородными слоями изоляции в процессе ее заряда. В первый момент после приложения напряжения распределение напряжений по слоям изоляции определяется емкостями слоев (напряжения обратно пропорциональны емкостям).

Рис. 1 . Эквивалентная электрическая схема замещения изоляции

В установившемся режиме распределение напряжений по слоям определяется проводимостями слоев (напряжения обратно пропорциональны проводимостям). В промежутке между этими двумя состояниями происходит перераспределение напряжений между слоями, сопровождающееся перераспределением заряда слоев и, следовательно, протекание токов как между слоями изоляции, так и во внешней цепи, т.е. в измерительной цепи мегаомметра. Эти токи и являются токами абсорбции [3,4,5].

Третья цепь состоит из резистора с активным сопротивлением R1 , определяющим сопротивление изоляции и соответственно ток сквозной проводимости Iск(ток утечки изоляции). Ток сквозной проводимости пропорционален площади изоляции и обратно пропорционален ее толщине. Зависимость токов переходного режима (Iги Iабс) и сопротивления изоляции от времени приложения напряжения мегаомметра представлена на рис.2.

Время затухания Т емкостного тока лежит в пределах от долей, до нескольких секунд в зависимости от мощности машины. Ток абсорбции, напротив, затухает относительно медленно.

Установлено, что абсорбционный ток не зависит от влажности изоляции, в то время, как ток сквозной проводимости с увеличением влажности возрастает. При этом оба тока в одинаковой степени зависят от размеров, структуры и температуры изоляции. Поэтому отношение этих токов является хорошим показателем влажности изоляции.

Рис. 2 . Зависимость токов переходного режима I , Iги сопротивления изоляции Кизот времени t приложения напряжения

На практике дважды измеряют сопротивление изоляции: через 15 секунд (когда завершен заряд геометрической емкости) и через 60 секунд (когда завершен заряд абсорбционной емкости) с момента приложения напряжения мегаомметра.

Отношение R60/ R15 называется коэффициентом абсорбции, т.е.

Синхронные машины, крупные асинхронные двигатели, трансформаторы можно эксплуатировать без сушки если KA > 1,3 при температуре от +10 до +30°С.

Для изоляции с допустимой увлажненностью характерно значение KA >2. В случае большого увлажнения изоляции значение коэффициента KA приближается к единице. Это объясняется тем, что из-за значительного уменьшения постоянной времени t, т.е. через 15 с, достигается значение R(t) близкое к установившемуся. Предельным при температуре 20 °С следует считать значение KA = 1,3. При K Код для цитирования: Скопировать

Студенческий научный форум — 2016
VIII Международная студенческая научная конференция

В рамках реализации «Государственной молодежной политики Российской Федерации на период до 2025 года» и направления «Вовлечение молодежи в инновационную деятельность и научно-техническое творчество» коллективами преподавателей различных вузов России в 2009 году было предложено совместное проведение электронной научной конференции «Международный студенческий научный форум».

Источник

Сушка электрических машин — Сушка током от посторонних источников

Содержание материала

  • Сушка электрических машин
  • Сушка внешним нагреванием
  • Сушка током от посторонних источников
  • Сушка током короткого замыкания
  • Сушка вентиляционными потерями
  • Сушка на ползучей частоте вращения
  • Сушка потерями в активной стали статора
  • Сушка потерями в корпусе статора

В. СУШКА ТОКОМ ОТ ПОСТОРОННИХ ИСТОЧНИКОВ
Этим методом можно сушить электрические машины всех типов. Он применяется главным образом тогда, когда не представляется возможным вращать машину и имеется источник низкого напряжения достаточной силы тока. Так как при этом методе сушки машина неподвижна, то это ухудшает условия охлаждения по сравнению с вращающейся машиной; поэтому необходимый для сушки ток обычно значительно меньше номинального и, например, для машин открытого типа составляет не более 50—70 % его.
При сушке отключать ток рубильником или автоматом не следует во избежание пробоя изоляции, выключение нужно производить, постепенно снижая подводимое напряжение.
1. Сушка машин постоянного тока. При сушке этим методом через последовательную цепь машины, состоящую из обмоток якоря, добавочных полюсов, последовательной и компенсационной обмоток, пропускают постоянный ток от источника низкого напряжения. Необходимое значение напряжения определяют по омическому сопротивлению всей цепи и требуемой силе тока. Якорь во время сушки периодически медленно поворачивают, чтобы все коллекторные пластины и катушки поочередно включались в цепь.
Параллельную обмотку возбуждения можно сушить отдельно, если она не высохнет в процессе сушки последовательных обмоток. При незначительном сдвиге щеток с нейтрали машина может пойти в ход и достичь опасной частоты вращения; поэтому необходимо постоянно наблюдать за ней и в случае надобности выключить ток постепенным снижением подводимого напряжения. Недостатком этого метода сушки является подгорание коллекторных пластин, связанное с неподвижностью якоря.

Читайте также:  Измеритель силы тока 9 букв

2. Сушка асинхронных двигателей. Для сушки асинхронного двигателя трехфазным током нужно надежно затормозить ротор, а к статору подвести от источника трехфазного тока напряжение не более 15—20 % номинального; обмотку ротора замыкают накоротко. При этом сила тока как в статоре, так и в замкнутом накоротко роторе достигает примерно номинальных значений. Если отсутствует необходимое напряжение для литания статора, то можно ток подводить к ротору, а статор замкнуть накоротко. При этом к ротору подводят напряжение не более 15—21 % номинального напряжения на кольцах. При слишком быстром повышении температуры следует снизить подводимое напряжение. Если же напряжение нельзя регулировать, то нужно периодически выключать ток.
Можно сушить током отдельно ротор и статор. Для этого ротор должен быть вынут из статора. Для получения номинального тока нужно подводить примерно такое же напряжение, как при питании статора с замкнутым накоротко ротором.
При сушке асинхронных двигателей методом короткого замыкания необходимо следить за нагреванием бандажей ротора.
Схемы для сушки асинхронного двигателя постоянным током
Рис. 4. Схемы для сушки асинхронного двигателя постоянным током: а и б — при наличии шести выводов обмотки; в и г — при наличии трех выводов обмотки
В. случае нагревания бандажей выше 95 °С нужно уменьшить силу тока либо периодически выключать ток.
При сушке постоянным током машина должна быть неподвижна. Если выведены шесть концов обмотки статора, то все фазы включают последовательно (рис. 4, а и б) и через них пропускают переменный ток. Если разъединить обмотки фаз не представляется возможным, то сушку производят по схемам на рис. 4, в или г, приведенным для случаев соединения обмоток звездой и треугольником. При этом необходимо периодически переключать фазы для равномерного нагревания обмоток. Переключение производится каждые 2—4 ч в зависимости от размеров машины и скорости повышения температуры в начале сушки. Измерение температуры обмотки при таком способе сушки следует производить во всех фазах.
Значение необходимого напряжения определяется по омическому сопротивлению обмотки и по требуемой силе тока. Схема питания должна предусматривать возможность регулирования тока и длительную работу машины.
При сушке обмотки статора током обмотка ротора обычно -высыхает и в отдельной сушке не нуждается. В противном случае ротор можно сушить отдельно, так же как и статор. Схемы на рис. 4 можно применять и для сушки однофазным током при замыкании фазного ротора накоротко. При применении однофазного тока следует учесть, что при сушке короткозамкнутых двигателей с двойной клеткой по схемам на рис. 4, а, в и г ротор должен быть вынут по причинам, указанным выше. Лишь при сушке по схеме на рис. 4, б (открытый треугольник) ротор может быть оставлен внутри статора.
3. Сушка синхронных машин. Синхронные машины можно сушить постоянным и переменным током. Сушка постоянным током производится во всем так же, как сушка асинхронных электродвигателей.
При сушке трехфазным током ротор должен быть вынут, так как от вращающегося поля статора в успокоительных обмотках и на поверхности бочки ротора, если машина является турбогенератором, возникает недопустимый перегрев от потерь в роторных контурах. Значение необходимого напряжения зависит от индуктивного сопротивления рассеяния при вынутом роторе и при токе сушки 0,5—0,7 номинального обычно находится в пределах 0,08—0,20 номинального напряжения.
Для того чтобы избежать чрезмерного нагревания роторных контуров, сушку можно производить однофазным током, причем обмотки должны быть включены по схеме разомкнутого треугольника (рис. 4, б). Только при таком соединении обмоток (в них будет лишь ток нулевой последовательности) отсутствует трансформаторная связь с роторными контурами. Необходимое напряжение для сушки однофазным током находится примерно в тех же пределах, что и при сушке трехфазным током. Сушка током (потерями в обмотке) крупных машин очень затруднительна, так как для нее требуется значительный ток при нестандартных напряжениях; поэтому этот метод сушки для крупных машин практически не применяется.

Источник