Меню

Стабилизатор тока разряда li ion аккумулятора



10 схем индикаторов разряда Li-ion аккумуляторов

10 схем индикаторов разряда Li-ion аккумуляторов

Статья обновлена: 2020-12-08

Индикатор разряда Li-ion аккумулятора отражает уровень оставшегося заряда и помогает избегать разочарований из-за внезапно разрядившихся элементов питания. Зная, что аккумулятор скоро сядет, можно заблаговременно поставить его на зарядку и избежать простоя в работе приборов. Разработкой схем индикаторов разряда Li-ion аккумуляторов занимались многие радиолюбители. Результатом их труда стало множество схемотехнических решений разной степени сложности.

В этой статье приведены 10 популярных схем, которые относительно просты в реализации. Собранные по ним индикаторы информируют о малом напряжении на ячейке, но не защищают ее от глубокого разряда. Для этой цели используются присоединенные к элементам питания платы защиты или самостоятельное отключение нагрузки пользователем.

Схема 1 – на стабилитроне и транзисторе

При величине напряжения выше 3,25 В стабилитрон пребывает в пробое, транзистор – в закрытом состоянии, и ток полностью идет через зеленый светодиод. При падении напряжения до его значений в диапазоне 3+1,2 В происходит открытие транзистора, и ток распределяется между светодиодами. Между цветами происходит плавный переход. Чем ярче горит красный индикатор, тем сильнее разрядился элемент. При 3 В цветового перехода нет – светится красная лампочка.

При реализации этой схемы могут возникнуть трудности с поиском стабилитронов, обеспечивающих нужный порог срабатывания. Еще один ее недостаток – постоянное энергопотребление около 1 мА.

Схема 2 – на микросхеме TL431 в роли стабилизатора напряжения

Порог срабатывания зависит от делителя R2-R3 и здесь равен 3,2 В. Когда вольтаж достигает этой величины, микросхема прекращает шунтировать светодиод, и он загорается. Это сигнал пользователю о скорой разрядке элемента питания.

Схема 3 – на паре транзисторов

Здесь границы срабатывания определяют транзисторы R2, R3. Вместо старых моделей уместно использовать BC237, BC238 или BC317 взамен КТ3102 и BC556 или BC557 вместо КТ3107.

Схема 4 – на паре полевых транзисторов

В режиме ожидания она потребляет минимальные токи. Транзисторы нужны n-канальные с минимальным напряжением отсечки. При питании нагрузки на затворе транзистора VT1 при участии делителя R1-R2 создается положительное напряжение. Если оно превышает напряжение отсечки транзистора, происходит его открытие, затвор VT2 притягивается на землю и закрывается. По мере снижения напряжения VT1 закрывается, а VT2 – открывается, обеспечивая сияние светодиода. Это знак о необходимости подзарядить элемент питания.

Схема 5 – на 3-х транзисторах

Схема обеспечивает высокую точность – между светящимся и несветящимся светодиодом хватает отличия в 0,01 В. При включенном индикаторе потребляется ток 3 мА, при отключенном – 0,3 мА. Вместо транзисторов BC848 и BC856 подходят ВС546 и ВС556.

Схема 6 – с отключением нагрузки

Она обеспечивает индикацию и отключение нагрузки при критическом падении напряжения, но сама продолжает потреблять ток около 15–20 мА.

Схема 7 – с мониторами напряжения

Мониторы, супервизоры или детекторы напряжения представляют собой микросхемы, созданные для отслеживания напряжения. По этой схеме светодиод начинает светиться при падении напряжения до 3,1 В. BD47xx с открытым выходным коллектором ограничивает выходной ток на границе 12 мА, поэтому светодиод можно подключать напрямую. Главные преимущества этого варианта – простота реализации и малое энергопотребление.

Схема 8 – на инверторе 74HC04

Используются стабилитроны с рабочим вольтажом менее напряжения срабатывания – на 2–2,7 В. Граница срабатывания подстраивается посредством резистора R2. Энергопотребление – порядка 2 мА.

Схема 9 – на контроллере ATMega328

Предусматривает использование микроконтроллера ATMega328 с интегрированным источником опорного напряжения и входом АЦП. Светодиод используется 3-цветный, но синий цвет не задействуется. Контроллер управляет светодиодами через ШИМ и выдает индикацию путем смешения цветов:

  1. мигающий зеленый – соответствует напряжению 4,2 В;
  2. зеленый – 4,1 В;
  3. оба цвета – в промежутке от 3,5 до 4,1 В;
  4. мигающий красный – ниже 3,5 В.

Схема 10 – на микросхеме LM3914

Линия из 10 светодиодов информирует пользователя о степени разряда элемента питания. Пороговые напряжения (минимальное DIV_LO и максимальное DIV_HI) определяет делитель R3-R4-R5. Для экономии энергии рекомендуется подключить 9-й вывод на землю. В результате будет светиться не линия светодиодов, а один, который соответствует текущему напряжению. Энергопотребление этой схемы – порядка 2,5 мА и еще по 5 мА на каждый светящийся светодиод.

Источник

Блок разрядки Li-ion аккумуляторов для длительного хранения

Вот привалит иногда маленькое счастье в виде нескольких полуживых аккумуляторных батарей от ноутбуков. После ревизии их содержимого остаётся некоторое количество условно годных для использования банок типа «18650» . И, как обычно, прямо сейчас некуда их применить.

Однако и хранить их полностью заряженными или полностью разряженными (как обычно получается после проверки их ёмкости) нерационально — параметры аккумуляторов, особенно бэушных, в процессе хранения быстро «уплывают» безвозвратно.

В статье я хочу поделиться своим опытом работы с литий-ионными аккумуляторами. Расскажу об их хранении и правильной подготовке к хранению.

Содержание / Contents

  • 1 Коротко о проблеме
  • 2 Схема и работа разрядника для хранения лития
  • 3 Разрядник на макетке
  • 4 Печатные платы
  • 5 Детали разрядника
  • 6 Настройка порога отключения
  • 7 Магнитные клеммы
  • 8 Моя итоговая конструкция разрядника
  • 9 Заметки о литии
  • 10 Файлы

↑ Коротко о проблеме

Как говорят многочисленные источники в Сети, хранить литиевые аккумуляторы рекомендуется при остаточном заряде около 40%, что для Li-Io составляет напряжение 3,6-3,7 вольта. Вручную подгонять такое напряжение затруднительно.

Обычные зарядники (например, мой OPUS BT-C3100 ), не имеют функции формирования напряжения хранения аккумуляторов.

У зарядного iMAX-B6 есть такой пункт в меню, но работать он может только с одним аккумулятором одновременно, т. к. это одноканальный прибор.

↑ Схема и работа разрядника для хранения лития

Для правильной автоматической разрядки нам нужен параллельный стабилизатор напряжения около 3,65±0,05 Вольта, с ограничением тока и индикацией окончания разряда аккумулятора. И желательно многоканальный.

Режим балансировки для нескольких последовательно соединённых бэушных аккумуляторов даже не рассматривал, т. к. они имеют очень большой разброс ёмкостей и внутренних сопротивлений.

У меня скопилось солидное количество деталей от разного электронного «железа». Не зря же разбирал и собирал! Их можно приложить к данной задаче.

После некоторых раздумий родилась такая простая схема.

Блок разрядки Li-ion аккумуляторов для длительного хранения

Основа схемы — U1 регулируемый стабилитрон TL431 . С помощью делителя на R6 и R7 устанавливается пороговое напряжение открытия этого стабилитрона. При открытии U1 и протекании тока через R4 и R5 открывается транзистор Т2 и подаёт плюс батареи на затвор Т3. Открывшись, Т3 подключает к батарее нагрузку — лампочку.

Лампа (6,3 В × 0,3 А) выбрана для «мягкой» разрядки аккумулятора. Лампочка является своего рода бареттером, и стабилизирует ток разрядки. В начале разряда — около 300 мА при напряжении на аккумуляторе 4,25 В и 60-80 мА при 3,65 В в конце разряда. Второе назначение лампы — «наглядность» процесса разрядки: лампа постепенно гаснет.

При приближении напряжения аккумулятора к нижнему установленному пределу ток через лампу понижается до величины около 60-80 мА, и лампочка уже не светится, но разряд ещё идёт. Падение напряжения на лампе составляет около 1-1,5 Вольт.

Для индикации окончания разряда служит каскад на Т1 и светодиоде HL. Пока идёт разряд и напряжение на лампочке превышает 0,6 В, транзистор Т1 остаётся открытым, светодиод HL светится.

При достижении аккумулятором напряжения нижнего установленного предела регулируемый стабилитрон TL431 закрывается, соответственно — последовательно закрываются Т2, Т3 и Т1. Светодиод HL гаснет.
В этом состоянии разрядник, потребляя менее 1 мА, и может находиться продолжительное время. Про аккумулятор в разряднике можно забыть на пару недель, и ничего неприятного с ним не случится.

↑ Разрядник на макетке


↑ Печатные платы


Плата под выводные детали — удобна для повторения в домашних условиях.

Плата под smd. Я заказывал у китайцев.

↑ Детали разрядника

Я предлагаю два варианта платы: для выводного и smd монтажа, поэтому далее упоминаю детали для обоих типов.

Т1 и Т2 — любые маломощные кремниевые PNP транзисторы. В выводном корпусе TO-92 подойдут: BC556B, 2SA733, 2SA1206, КТ203, КТ208, КТ209, КТ3107, КТ502 и масса других. Перед установкой следует верно определить выводы Э-Б-К и правильно запаять.

Читайте также:  Все формулы по физике по теме переменный ток 1

Рекомендую «обуть» ноги транзисторов. Легко запастись разноцветными ПВХ-трубками, сняв их с кроссовки или кабеля UTP.

Например, на вывод базы оденьте изолятор белого цвета, на коллектор — красного, на эмиттер NPN — синего, на эмиттер PNP — чёрного или коричневого, или какого у вас больше. Цветовая схема на ваш вкус. И вы уже никогда не ошибётесь с распайкой выводов.

PNP транзисторы в планарном корпусе SOT23: BC807, а также другие, с обозначениями W06, 5Ap, 3Ep, K3N, 2A, 2D, 2L, t06, DKs.

Т3 — полевой n-канальный MOSFET транзистор, у меня планарный APM3054N в корпусе TO-252, с негодной материнской платы. Важное условие — напряжение открытия MOSFETa должно быть не более 2,5 Вольт, желательно даже около 2,0. Подходят большинство низковольтных полевиков со старых материнок.

Высоковольтные, силовые полевики не подходят — у них напряжение открытия (sourse-gate) превышает 3,5 вольта, и они просто не откроются.

Полевики в больших планарных корпусах (ТО-263, DD-PAK) — CEB6030, K3570, K3296, K3572, 15N03, 14N03, FDB6670, FDB6035.
В корпусе TO252 — T40N03, APM2510, 70T03, P75N02.

У всех этих полевичков напряжение открытия 1,8 — 2,2 Вольта. Практически все они с напряжением «сток-исток» около 25-30 Вольт, не более. Вымерял сам, из того, что у меня есть в наличии.
У меня нет низковольтных полевиков в корпусе ТО-220, поэтому ничего о них сказать не могу.

Нагрузка — лампочка 6,3 В × 0,3 А, применялись повсеместно для освещения шкал ламповых радиоприёмников. Более позднее их применение — новогодние гирлянды и т. п. При отсутствии таких лампочек можно установить резистор 10-15 Ом на мощность не менее 1 Вт.

Светодиод HL — любой, видимого цвета, у меня он жёлтый.

Резистор R7 — желательно многооборотный — точнее настройка, и напряжение не прыгает со временем.
Остальные резисторы — какие есть в 50-летних запасах Родины, т. е. любые, по наличию, ±50% от номинала.

Если планируется более серьёзная нагрузка — в качестве Т3 необходимо применить более мощный транзистор и радиатор.

↑ Настройка порога отключения

Перед первым включением желательно проверить монтаж. Это быстрее и проще, чем искать и менять умершие детали на уже смонтированной плате с плотным расположением.

На вход разрядника подайте напряжение 3,65 Вольта от регулируемого источника и с помощью R7 установите порог зажигания светодиода. Потом проверьте поведение схемы при несколько запредельных значениях нужных параметров (4,5 — 3,0) В. Но можно ограничиться и только установкой порогового напряжения.

Если вы считаете, что порог должен быть другим — устанавливайте свой. В принципе, на основе этой схемы можно рассчитать разрядник с любым разумным напряжением и мощностью. Изменяются только параметры делителя R6-R7 и мощность транзистора Т3 (полевики можно параллелить).

↑ Магнитные клеммы

Припаивать провод желательно, предварительно пропустив его через одно из отверстий железного основания. Так провод переломится намного позднее.

↑ Моя итоговая конструкция разрядника

Я насдувал феном деталей со старой материнки и собрал многоканальный разрядник на SMD. Очень удачно применил держатель на 4 банки «18650» , рекомендую.
Отличие схемы только в том, что при настройке вместо R7 подпаивался переменный резистор, устанавливался нужный порог напряжения. После замерялась полученная величина переменного резистора, и впаивался постоянный, ближайшего номинала. Мне так показалось проще, т. к. ±0,05-0,1 вольта не принципиально.

Лампочка впаивается в плату между точкой U4 и точками 1—1 (шина +5 Вольт). На фото ниже это хорошо видно.

↑ Заметки о литии

1. В разрядник нужно вставлять предварительно заряженный (!) аккумулятор.

2. Всё описанное выше можно, и даже желательно, применять и к новым Li-Io аккумуляторам для их хранения более 1-2-х месяцев. Например, на зимнее межсезонье.

3. Естественно, эта методика применима ко всем другим Li-Io аккумуляторам, например — от сотовых телефонов. У них иногда барахлит контроллер, а сам аккумулятор — в рабочем состоянии.

4. Аккумуляторы, разряженные до «хранительного» напряжения, желательно сохранять при температуре +2… +4 °С. Лучшее место хранения — верхняя полка холодильника, у задней стенки, в герметичном пакете, и в непрозрачной светлой коробочке, чтоб жена не сразу поняла

↑ Файлы

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Плату под SMD при печати зеркалить не нужно. Монтаж идёт со стороны фольги.

Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Защита литий-ионных аккумуляторов (контроллер защиты Li-ion)

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 (даташит тут):

На фото мы видим: 1 — контроллер защиты (сердце всей схемы), 2 — сборка из двух полевых транзисторов (о них напишу ниже), 3 — резистор задающий ток срабатывания защиты (например при КЗ), 4 — конденсатор по питанию, 5 — резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A (даташит тут):

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора (даташит тут).

И тут, откуда не возьмись, явилось чудо — сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Делаем цифровой TLIA-тестер Li-Ion аккумуляторов (измеритель емкости) на Atmega8 и дисплее WH1602.

Самодельный активный предварительный усилитель с НЧ-ВЧ регулировками на ОУ TL072, для УМЗЧ.

Информация по самостоятельному ремонту и прошивке транзистор-тестера LCR-T4(T3) NoStripGrid.

Источник

Стабилизатор тока разряда li ion аккумулятора

Тестер Li-ion,Li-Pol,Ni-MH,Ni-Cd аккумуляторов

Автор: Быканов Андрей aka Shodan
Опубликовано 20.07.2011
Создано при помощи КотоРед.

Выражаю благодарность Nusik1975 за помощь в написании статьи и морально-техническую поддержку.

Предислвие:
У меня, как и у многих, скопилась немалая кучка старых АКБ от всяких ноутов, сотиков, фотоаппаратов и т.п. Но при сборке нового устройства очень не хочется покупать новый АКБ, и есть желание применить старый. Однако узнать его емкость — не всегда простая задача.

Тут знакомый подал идею сделать тестер всего этого добра, на основе давно известного стабилизатора тока на полевике и операционнике.

Читайте также:  Какую работу за 5 мин совершает электрический ток в лампочке карманного фонарика

Хотя в интернете есть подобные конструкции, однако я не нашел ни одной на нормальном стабилизаторе тока. А от стабильности разрядного тока сильно зависит результат. К тому же, большинство на PICах, и очень мало на АВРках.

В результате родилась схема зарядно/тестового устройства.

Возможные его применения:
Зарядка Li-Ion/Li-Pol аккумуляторов.
Тестирование Li-Ion/Li-Pol аккумуляторов токами разряда 40, 166 и 500 мА
Тестирование Ni-MH/Ni-Cd аккумуляторов токами разряда 40 и 166 мА

Отображение результата теста в mA/h.

Девайс проектировался как максимально простой и с применением широко распространенной элементной базы, а также с возможностью легко заменить его компоненты аналогами.

Постараюсь разжевать схему как можно более подробно, чтобы даже котята смогли ее понять:

На элементах OP1,R18,R20,VT5,R23 собран стабилизатор тока.
Он работает по следующему принципу: Операционник OP1 управляет полевиком VT5, прилагая все усилия, чтобы сравнять значение падения напряжения на резисторе R23 с напряжением на входе «+». А падению напряжения на нем прямо пропорционален ток разряда АКБ. Причем при изменении напряжения АКБ, ток стабилизируется очень точно. Для этого операционник управляет напряжением затвора VT5, открывая его ровно настолько, чтобы выровнять падение напряжения на R23.
R18 выполняет функцию ограничения тока на выходе операционника в момент переключения транзистора.
R23 — это сборка из двух резисторов МЛТ-2 10R 2W.

Теоретически есть небольшая вероятность того, что при перегреве резисторов R23 возможно их замыкание или изменение сопротивления в меньшую сторону, либо деформация платы с тем же результатом.
В этом случае операционник будет пытаться получить заданный ток и создаст в цепи ток сопоставимый с КЗ.
Хоть это и маловероятно, но всеже в схему был добавлен предохранитель F1.
Оговорюсь сразу: все проведенные тесты по перегреву этих резисторов, в конце концов, увеличивали их сопротивление, но всеже я решил подстраховаться.

Напряжение питания ОУ должно быть как можно более стабильным, для этого собран фильтр L1,C2,C4.
Задающее напряжение на входе «+» OP1 должно быть тоже как можно более стабильным.
Для этого было решено собрать «управляемый резистивный делитель» на элементах R5,R6,R7,R15. МК коммутирует эти резисторы на +5В, в результате задается нужное напряжение.
К примеру, при коммутации резистора R5 на +5В мы получаем делитель с плечами 20K+20K, в средней точке которого будет напряжение 2.5В. Операционник, в свою очередь, отрегулирует падение на резисторе R23 до значения 2.5В, по закону Ома получим ток разряда Iразряда=Uпадения/Rшунта, т.е. 2.5В/5Ом=0.5А разрядный ток.

Конденсатор С8 играет роль небольшого «фильтра помех» чтобы шум по «порту» МК не сказывался на токовой цепи.
Посадочные площадки сделаны таким образом, чтобы номинал резисторов можно было корректировать с помощью параллельного или последовательного включения резисторов.

В результате получился стабилизатор тока с очень малыми отклонениями от заданного тока разряда.

Блок индикации собран, можно сказать, «по классической схеме включения семисегментника».
Индикатор выбирался из максимально дешевых и легко доставаемых.

Я предположил, что перед тестированием Li-Ion/Pol АКБ было бы не плохо его предварительно зарядить, и собрал зарядку на MCP73812.
Также после окончания тестирования разряженный АКБ повторно ставится на зарядку. Переменным резистором R19 выбирается ток заряда АКБ, по формуле I=1000/(R17+R19), где сопротивление в килоОмах, а результат в миллиамперах. Если АКБ ставится с напряжением отличным от напряжения Li-Ion/Pol, то зарядная цепь не включается.

В процессе разрядки АКБ может возникнуть перегрев токовой цепи. Чтобы этого избежать, был добавлен вентилятор, который включается при тепловыделении на ней более 0.5W. Также он всегда включен в процессе заряда АКБ, чтобы избежать перегрева контроллера зарядки.

Замена деталей:
VT5 — можно применить любой N-канальный полевик с Rds(on) менее 0.1 Ом при напряжении затвора +5В. Корпус транзистора D-PAK или D2-PAK. Хорошо подходят полевики, устанавливаемые по питанию процессора на материнских платах. (начиная с P-I)

OP1 — допустимо применить любой операционник, который нормально работает при однополярном питании +5В. Но скорее всего при этом потребуется незначительное изменение егоразводки на ПП.

MCP73812 — Можно не запаивать его, но тогда зарядка АКБ работать не будет. Можно применить LTC4054, но тогда управление зарядом надо сделать так — между +5 и питанием LTC надо поставить любой N-канальный «логический» полевик, затвор которого подключить к R13.

VT1 — любой P-канальный «логический» полевик. В принципе, можно и биполярник туда поставить, добавив резистор по базе.

L1,L2 — желательны, но допустима замена на резисторы 10R. Однако, при замене L1 на резистор, надо обратить внимание на ток потребления операционника. Если он больше 10 мА, то лучше просто заменить L1 перемычкой 0R.

MK — ATMEGA8-AU или ATMEGA8А-AU.

Дисплей — любой подходящий по габаритам, распиновке и с общим анодом.

VR1 — 7805 в корпусах D-PAK, D2-PAK. Желательно импортного производства. (У 7805С с логотипом «Завод «Транзистор» слишком сильно гуляет выходное напряжение).

Радиатор(HEATSINK) — Самодельная конструкция «малогабаритный сверх бюджетный теплоотвод имени кота Шодана 🙂 «. Берется медная жила диаметром 2-5мм, гнется змейкой, одно ребро змейки припаивается изгибами к плате, другое ребро смотрит вверх(в воздух).

R23 — Желательно применить 2 резистора МЛТ-2 10R 2W, но допустима и китайщина 10R 2W.

FAN1 — Подбирается под корпус.

Настройка:
Давным-давно слышал поговорку: «Если в журнале «Радио» написано, что настройка схемы не требуется, то схема точно не будет работать и ее лучше не собирать».
Поэтому настройка девайса требуется 🙂 Хотя и не обязательно.
Дело в том, что от выходного напряжения 7805 и точности номиналов резисторов зависит ток разряда.Даже сегодня на периферии непросто найти 1%-е резисторы, я уже не говорю о «почти прецизионных» 0.5%-х стабилизаторах.
Поэтому делаем проще — как истинные коты-оборванцы берем то, что есть, можно даже б/у, паяем в устройство, и запускаем режим калибровки!

Перед включением зажимаем кнопку, включаем девайс и ждем надписи CAL на дисплее.( Для тех, кто сейчас ехидно хихикает, поясняю: CAL- это сокращение от слова калибровка).

Отпускаем кнопку и подключаем к разъему BAT источник +5В и амперметр.
Полученное значение в миллиамперах выставляем на индикаторе, нажимая кнопку.
После этого производим выключение-включение девайса без каких либо зажатых кнопок.
Снова замеряем ток и выставляем его, и еще раз дергаем питание, снова замеряем и выставляем.

В результате мы сконфигурировали 3 разрядных тока.
Выключаем устройство.

Подключаем к входу BAT источник со стабилизированным и максимально точным напряжением +5В (желательно выставить это напряжение с точностью до 10 мВ) Включаем устройство, после этого однократно нажимаем кнопку и выключаем устройство.
Все, калибровка завершена.

Алгоритм работы устройства:

Пояснения к схеме: Если написано (на дисплее Chg «напряжение АКБ»), значит, «перемигиваются» надписи «Сhg» и «3.80» с частотой 1 секунда.

По сути, работа с устройством сводится к следующим этапам:
1.Включить питание.
2.Выбрать разрядный ток. (Если ток выставлен 000, то только зарядка без тестирования емкости).
3.Подключить АКБ.
4.Если началась зарядка АКБ, которая не требуется, то отменить ее.
5.Подождать энное количество часов, до завершения теста.

По умолчанию все значения отображаются в единицах миллиампер/часов, милливольтах.
Пример «diS» «725» — разрядка АКБ, в ходе которой мы уже высосали 725 миллиампер/часов из АКБ.
Если показывается дробная часть, то это уже ампер/часы, вольты. Пример «CPL» «2.21» — тест завершен, в ходе теста из АКБ высосали 2.21 Ампер/часа.

Замечания:
Если будите тестировать Li-Ion АКБ с напряжением полного заряда 4.1В, то отменяйте зарядку, т.к. применяемая в схеме МС зарядки спроектированна под АКБ 4.2 вольта.

Обратите внимание, что тестировать Ni-MH и Ni-Cd током свыше 170мА нельзя — будет выдаваться сообщение об ошибке.

Подключать к цепи разряда АКБ с напряжением более 5 вольт нельзя, т.к. выйдет из строя МС зарядки.

Планы:
Возможно, в будущем, будет добавлена возможность отображения Ватт/часов и измерения внутреннего сопротивления АКБ.
Следите за выходом новых прошивок.

Реализация:
Печатная плата проектировалась под корпус G436.
К сожалению, изготовление красивых корпусов и красивая пайка, это не про меня, поэтому сделал девайс как смог(см. фотки ниже).
Весь девайс обошелся мне примерно в 500р.
Рисованию печатной платы, я уделил особое внимание, дорожки разведены красиво, все номиналы подписаны (для простоты сборки).

Читайте также:  Зачем бьют током по голове

Источник

Контроллер заряда и балансир li-ion аккумулятора 18650

Контроллер заряда – встроенная схема защиты в аккумуляторе, которая предотвращает его сильную разрядку или перезарядку, контролирует силу тока и температуру, задает время окончания заряда. Как работает контроллер заряда в li-ion аккумуляторе, для чего он нужен?

Устройство li-ion аккумулятора 18650

Контроллер зарядки литий-ионного аккумулятора производят корпорации: Sony, LG, Sanyo, Panasonic, Samsung, ATL, HYB. Остальные производители перекупают элементы и выдают за собственный продукт.

Максимальная емкость ионных аккумуляторов 18650 – 3600 мА-ч.; они, в отличие от батарей, могут многократно перезаряжаться. Цифра 18650 – форм-фактор, указывающий на длину аккумулятора (65 мм) и его диаметр (18 мм).

литий ионный аккумулятор

Основные характеристики литий-ионного аккумулятора 18650:

  • максимально допустимое напряжение – 4,2 В (небольшие перезарядки губительно сказываются на сроке службы);
  • минимально допустимое напряжение – 2,75 В (при понижении до 2 В заряд не подлежит восстановлению);
  • минимально допустимая температура –20 °C 0 С (зарядить на морозе невозможно);
  • максимально допустимая температура +60 °C 0 С (при превышении показателей возможны взрыв и возгорание);
  • измерение емкости в ампер-часах – полная зарядка выдает 1 А тока в течение 60 минут, 2 А тока – 30 минут, 15 А тока – 4 минуты.

Литий-ионный АКБ преобразовывает химическую энергию в электрическую, поэтому возникает ток, приводящий в действие то или иное устройство. Такие батарейки оснащаются специальной защитной схемой, которая контролирует уровень ее нагрева и циклы работы. При перегреве и спаде напряжения до 2,7 В – контроллер автоматически прекращает работу АКБ.

Предназначение контроллера зарядки

Контроллер регулирует процесс заряда и разрядки аккумулятора. Если напряжение падает ниже 3 В, защита отключает банку от потребителя тока: устройство выключается. Также защитная схема предотвращает короткие замыкания. Некоторые виды защитных плат имеют терморезистор, который защищает элементы АКБ от перегрева.

контроллер зарядки литий─ионного аккумулятора

Все платы осуществляют контроль за:

  • переразрядом батарейки;
  • перезарядом;
  • током нагрузки;
  • температурой.

Имея под рукой защитную плату, можно переделать старые АКБ шуруповерта, дрели на литиевые батареи, отличающиеся долгим сроком службы.

Особенности контроллера для зарядки li-ion аккумулятора 18650

Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.

предназначение контролера зарядки

Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.

Виды контроллеров

Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.

  1. HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
  2. FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
  3. HX-2S-01 (цена – 70 рублей). Производство – Китай, чип HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
  4. HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
  5. HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
  6. HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.

Схемы контроллеров

Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.

Схема контроллера литий-ионного аккумулятора

Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:

  1. DW01-Plus. Самая популярная и простая микросхема, находится под самоклейкой с надписями, которой обернут аккумулятор. Плата шестиногая, полевые транзисторы соединены в один корпус восьминогой сборкой. Сопротивление транзисторов создает измерительный шунт: возникает большой порог срабатывания от одного устройства к другому. В полевики встроены паразитные светодиоды, благодаря которым АКБ заряжается даже при срабатывании защиты от глубокой разрядки.
  2. S-8241 Series. Разработчик микросхемы – фирма SEIKO, специализирующаяся на литий-ионных и литий-полимерных аккумуляторах. Защитные ключи срабатывают при 2,3 и 4,35 вольтах и при спаде напряжения на FET1-FET2 до 200 мВ.
  3. LV5114OT. Защитная плата срабатывает при 2,5 и 4,25 вольтах, что предотвращает переразряд/перезаряд.
  4. R5421N Series. Среднее потребление энергии в рабочем состоянии – 3 мкА, в состоянии покоя – 0,3 мкА. Данная микросхема имеет ряд модификаций, которые разнятся величиной напряжения срабатывания при перезаряде.

Причины блокировки контроллером li-ion аккумулятора 18650

Главная причина – возникновение короткого замыкания из-за превышения предельно допустимого напряжения тока внутри АКБ. Микросхема разрывает электрическую цепь. Для разблокировки батареи достаточно зарядить ее.

Вторая причина – глубокий разряд аккумулятора. При глубоком некритичном разряде батарейку можно разблокировать с помощью зарядного устройства.

При разряжении до критичного состояния устройство не включится: внутренние химические процессы приводят к образованию металлических литиевых кристаллов, которые создают опасный контакт между положительным и отрицательным полюсами, приводящий к взрыву.

Балансировочная плата для li-ion аккумулятора 18650

Какую функцию выполняет балансир в литийных аккумуляторах? Если последовательно соединять несколько банок, их напряжение складывается в общую сумму, а емкость батареи равняется самой низкой из всех элементов.

Балансировочная плата для li-ion аккумулятора

Чтобы предотвратить перезаряд самой «ленивой» части, ее отключают от питания, что позволяет оставшимся частям продолжать заряжаться. Балансир контролирует равномерно распределяющийся заряд, поэтому его включают в цепи с последовательным соединением элементов. При параллельном соединении в балансировке нет необходимости: здесь равномерное распределение заряда. Балансировочная плата обычно входит в общий защитный корпус MBS и носит название «балансировочный шлейф».

Лучшие аккумуляторы 18650 на «Алиэкспресс»

На ресурсе «Алиэкспресс» можно купить разные li-ion АКБ, отличающиеся ценой и производителем. Из-за большого спроса на товар велико число подделок. Качественная модель отличается от подделки рядом признаков. Так, продукция высокого качества имеет емкость в 3600 А/ч и стоит гораздо дороже, среднего качества – 3000–3200 А/ч и стоит в несколько раз дешевле.

Как восстановить Li-ion АКБ

При полном выходе из строя батареи лучшее решение – утилизация, в ситуации крайней необходимости ее можно реанимировать различными способами:

  1. Помещение АКБ в морозильник: резкая смена температуры в ряде случаев приводит к его временному запуску. В морозильной камере необходимо держать ее в течение 40–50 минут, после чего извлечь и незамедлительно подключить к зарядному устройству на 5 минут. Подождать разогрева батарейки до комнатной температуры и полностью зарядить.
  2. Вскрытие АКБ и отсоединение защитной микросхемы. Процедура проводится крайне осторожно. Для начала необходимо измерить тестером напряжение на контактах (дальнейшие действия возможны только при нулевом показателе), отсоединить защитную плату, замерить показатели напряжения. Дальше подключить зарядное устройство к аккумулятору на 10–15 минут, установив такие показатели: 100 мА, 4,2 В. При перегреве батареи зарядку следует отсоединить. Как только она полностью зарядится, защитная схема возвращается на место.

Итак, контроллер для литий-ионных батарей выполняет важную функцию – не позволяет напряжению вырасти до 4,2 В и понизиться до 2,75 В (оптимальное напряжение для АКБ на литии – 3,7 вольта). Сильная разрядка и повышенная зарядка приводят к выходу устройства из строя.

Источник