Меню

Стабилитрон вах при переменном токе



Стабилитрон вах при переменном токе

Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света

Общие сведения

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).

Одним из свойств p–n-перехода является способность изменять свое сопротивление в зависимости от полярности напряжения внешнего источника. Причем разница сопротивлений при прямом и обратном направлениях тока через p–n-переход может быть настолько велика, что в ряде случаев, например для силовых диодов, можно считать, что ток протекает через диод только в одном направлении – прямом, а в обратном направлении ток настолько мал, что им можно пренебречь. Прямое направление – это когда электрическое поле внешнего источника направлено навстречу электрическому полю p–n- перехода, а обратное – когда направления этих электрических полей совпадают. Полупроводниковые диоды, использующие вентильное свойство p–n-перехода, называются выпрямительными диодами и широко используются в различных устройствах для выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) – заряд электрона \(q=1,6\cdot 10^<-19>\ Кл\); \(k\) – постоянная Больцмана \(k = 1,38⋅10^ <-23>Дж\cdot град\); \(T\) – температура в градусах Кельвина.

Графическое изображение этой зависимости представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.

Различают сопротивление статическое \(R_<ст>\) и динамическое \(R_<дин>\). Статическое сопротивление \(R_<ст>\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_ <ст>= \frac = tg<\alpha>\)

Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): \(R_ <дин>= \frac<\Delta U><\Delta I>\);

Рис. 1.1Рис. 1.1

При малых значениях отклонений \(∆U\) и \(ΔI\) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда \(R_ <дин>= tgβ\).

Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку \(U_0\) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление \(R_<дин>\) сравнительно велико от круто изменяющегося участка, где \(R_<дин>\) мало.

При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением \(I_<пр.max>\) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине \(U_<проб>\) начнется его быстрое увеличение (рис. 1.2), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:

  • обратимый (электрический пробой);
  • необратимые (тепловой и поверхностный пробои).

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Рис. 1.2Рис. 1.2

Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение \(U_<проб>\) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно \(0,5\ U_<проб>\) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют для получения круто нарастающего участка ВАХ, когда малому приращению напряжения \(∆U\) соответствует большое изменение тока \(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме, называются стабилитронами, т. к. в рабочем диапазоне при изменении обратного тока от \(i_<обр. min>\) до \(i_<обр. max>\) напряжение на диоде остается почти неизменным, стабильным. Поэтому для стабилитронов рабочим является участок пробоя на обратной ветви ВАХ, а напряжение пробоя (напряжение стабилизации) является одним из основных параметров.

Стабилитроны находят широкое применение в качестве источников опорного напряжения, в стабилизаторах напряжения, в качестве ограничителей напряжения и др.

Эксперимент

Оборудование

Оборудование, используемое в лабораторной работе: вритуальный лабораторный стенд, блок No 1 (схемы А1–А4); комбинированный прибор «Сура», мультиметры; соединительные провода.

Порядок выполнения работы

Изучить схемы включения полупроводниковых приборов А1–А4 (рис. 1.3–1.6) для снятия вольт-амперных характеристик ВАХ диода и стабилитрона.

Ознакомиться с устройством лабораторного стенда, найти на стенде блок №1 и схемы А1–А4.

Порядок выполнения задания №1 «Исследование полупроводникового диода»

Экспериментальное получение прямой ветви ВАХ диода \(I_ <пр>= f(U_<пр>)\) с использованием схемы A1, представленной на рис. 1.3.
  1. Установить напряжение источника питания на 5 В
  2. Выставить значение потенциометра \(R1\) на максимум.
  3. Включить установку
  4. Внимательно изучить схему

Рис. 1.3Рис. 1.3

  • После проверки схемы преподавателем включить сетевой тумблер.
  • Уменьшая значение потенциометра \(R1\), изменять прямое напряжение диода в пределах, указанных в табл. 1.1, фиксируя значения тока через каж- дые 0,1–0,05 В. Результаты измерений занести в табл. 1.1.
    Таблица 1.1

    \(U_<пр>\), В 0.1 0.2 0.3 0.35 0.4 0.45 0.5
    \(I_<пр>\), A
  • Выключить установку.
  • Экспериментальное получение обратной ветви ВАХ диода \(I_ <обр>= f(U_<обр>)\) с использованием схемы А2, представленной на рис. 1.4.
    1. Установить напряжение блока питания 30 В.
    2. Выставить значение потенциометра \(R2\) на максимум
    3. Внимательно изучить схему установки

    Рис. 1.4Рис. 1.4

  • Включить установку
  • Уменьшая значение потенциометра \(R2\), изменять обратное напряжение на диоде в пределах, указанных в табл. 1.2. Значения тока фиксировать через каждые 5 В. Результаты измерений занести в табл. 1.2.
    Таблица 1.2

    \(U_<обр>\), В 5 10 15 20 25 30
    \(I_<обр>\), A
  • Выключить установку.
  • По данным табл. 1.1 и 1.2 построить ВАХ диода.

    По ВАХ или таблицам определить:
    1. Статическое сопротивление диода в прямом включении \(R_<ст.пр>=\frac>>\) при U пр = 0,4 В и U пр = 0,1 В.
    2. Динамическое сопротивление диода в прямом включении \(R_<дин.пр>=\frac<\Delta I_<пр>><\Delta U_<пр>>\) на начальном участке ВАХ ( U пр =0 В и U пр = 0,1 В ) и на участке насыщения ВАХ ( U пр = 0,4 В и U пр = 0,45 В ).
    3. Статическое сопротивление диода в обратном включении \(R_<ст.обр>=\frac>>\) при U обр = 5 В и U обр = 25 В.
    4. Динамическое сопротивление диода в обратном включении \(R_<дин.обр>=\frac<\Delta I_<обр>><\Delta U_<обр>>\) на начальном участке ВАХ ( U пр =0 В и U пр = 5 В ) и на участке насыщения ВАХ ( U пр = 20 В и U пр = 25 В ).

    Порядок выполнения задания No2 «Исследование полупроводникового стабилитрона»

    Экспериментальное получение прямой ветви ВАХ стабилитрона \(I_ <пр>= f(U_<пр>)\) с использованием схемы A3, представленной на рис. 1.5.
    1. Установить напряжение источника питания на 5 В
    2. Выставить значение потенциометра \(R5\) на максимум.
    3. Включить установку
    4. Внимательно изучить схему

    Рис. 1.5Рис. 1.5

  • После проверки схемы преподавателем включить сетевой тумблер.
  • Уменьшая значение потенциометра \(R5\), изменять прямое напряжение стабилитрона в пределах, указанных в табл. 1.3, фиксируя значения тока через каж- дые 0,1 В. Результаты измерений занести в табл. 1.3.
    Таблица 1.3

    \(U_<пр>\), В 0.1 0.2 0.3 0.3 0.4 0.5 0.6 0.7
    \(I_<пр>\), A
  • Выключить установку.
  • Экспериментальное получение обратной ветви ВАХ стабилитрона \(I_ <обр>= f(U_<обр>)\) с использованием схемы А4, представленной на рис. 1.6.
    1. Установить напряжение блока питания 30 В.
    2. Выставить значение потенциометра \(R7\) на максимум
    3. Внимательно изучить схему установки

    Рис. 1.6Рис. 1.6

  • Включить установку
  • Уменьшая значение потенциометра \(R7\), изменять обратное напряжение на стабилитроне в пределах, указанных в табл. 1.4. Увеличить число фикси- руемых точек характеристики, начиная с 3 В. Для каждого значения напряжения изме- рить ток. Результаты измерений занести в табл. 1.4.
    Таблица 1.4

    \(U_<обр>\), В 1 2 3 3,5 4 4,5 5 5,2 5,4 5,6
    \(I_<обр>\), A
  • Выключить установку.
  • По данным табл. 1.3 и 1.4 построить ВАХ стабилитрона.

    Источник

    Стабилитрон. Принцип работы, вольт-амперная характеристика.

    После изучения диодов, их принципа работы и устройства самым логичным шагом будет рассмотреть и еще один полезнейший элемент многих электрических схем – стабилитрон! Также его называют диодом Зенера, в честь физика Кларенса Зенера, которому и принадлежит гордое звание изобретателя стабилитрона. В 1930-х годах Зенер изучал явления электрического пробоя в диэлектриках, результаты его исследований и легли в основу работы диодов Зенера.

    Стабилитрон – это диод, который предназначен для работы на обратной ветви вольт-амперной характеристики, в режиме пробоя. Как вы помните, рабочая область обычного диода находится наоборот на прямой ветви. Я уже упомянул термин “пробой”, так что давайте разберемся подробнее с этим явлением…

    Итак, различают три типа или механизма пробоя:

    • туннельный
    • лавинный
    • тепловой

    Именно первый тип пробоя и открыл К. Зенер в своих работах. Туннельный пробой связан, в свою очередь, с туннельным эффектом, то есть явлением проникновения электронов через узкий потенциальный барьер на границе p-n перехода. Это приводит к тому, что электроны начинают проходить из p-области в область n-типа, что, в свою очередь, вызывает резкое возрастание обратного тока через p-n переход.

    Лавинный пробой связан с тем, что движущиеся в сильном электрическом поле частицы могут приобретать кинетическую энергию, величины которой достаточно для ударной ионизации молекул или атомов материала. То есть электрон или дырка, разогнавшись, сталкиваются с атомом вещества, в результате чего образуется пара противоположно заряженных частиц. Все это становится возможным, если кинетическая энергия этих частиц до столкновения имела достаточную величину. Так вот, в итоге, образовавшиеся частицы (либо одна из них) также начинают разгоняться под действием сильного поля и также врезаются в атом материала 🙂 В итоге весь процесс повторяется снова и снова, как лавина, собственно, из-за этого пробой и получил свое название.

    Механизм лавинного пробоя.

    Тепловой же пробой куда более прозаичен. Из-за увеличения обратного напряжения p-n переход нагревается и затем разрушается. В отличие от туннельного и лавинного пробоя, которые являются обратимыми, тепловой пробой – необратим.

    На обратимости механизмов пробоя, в общем-то, и строится принцип работы стабилитрона. Именно ситуация, при которой он находится в состоянии лавинного или туннельного пробоя, и является для диода Зенера рабочей! Из этого же вытекает и основное отличие стабилитрона от обычного диода. Стабилитрон проектируется таким образом, чтобы туннельный, либо лавинный, либо оба этих типа пробоя возникали гарантированно и задолго до того, как в устройстве возникнет тепловой пробой (ведь тепловой пробой просто выведет элемент из строя – окончательно и бесповоротно).

    Принято считать, что разным механизмам пробоя соответствуют величины обратных напряжений:

    • U_ <пробоя>– преобладает туннельный пробой
    • 4.5 В \leqslant U_ <пробоя>\leqslant 6.7 В – оба типа пробоя возникают одновременно
    • U_ <пробоя>> 6.7В – лавинный пробой

    Все эти характеристики стабилитрона можно изобразить следующим образом:

    Характеристика стабилитрона.

    Тут стоит отметить два важных нюанса. Во-первых, эти значения не являются строго точными. Для разных диодов, разных способов изготовления, величины могут быть другими. Но, в целом, идея неизменна – существует некая область, в пределах которой оба механизма пробоя сосуществуют вместе. Второй интересный момент заключается в том, что температурный коэффициент лавинного и туннельного пробоя имеют разные знаки:

    • при туннельном пробое температурный коэффициент напряжения (ТКН) отрицательный, поскольку с увеличением температуры напряжения пробоя уменьшается.
    • при лавинном же пробое ТКН положительный, то есть все наоборот – увеличение температуры ведет к увеличению напряжения пробоя.

    Итак, мы разобрались с принципом работы стабилитрона, протекающими процессами и с тем, что рабочий режим диода Зенера лежит в области обратной ветви вольт-амперной характеристики стабилитрона:

    Вольт-амперная характеристика стабилитрона.

    При увеличении обратного напряжения в определенный момент наступает пробой и ток через стабилитрон резко возрастает. При этом напряжение напротив остается практически неизменным, то есть стабилизированным. В этом и заключается идея использования стабилитронов в электрических цепях 🙂

    На схеме я отдельно выделил несколько точек, давайте по ним пробежимся:

    • I_ <ст \medspace мин>– минимальное значение обратного тока. Если ток имеет меньшее значение, то стабилитрон закрыт.
    • I_ <ст>– номинальное значение обратного тока. Обычно указывается производителем в документации и может составлять около 30% от максимального тока стабилизации.
    • I_ <ст \medspace макс>– вот и он, уже упомянутый максимальный ток стабилизации. Эта величина ограничена максимальной рассеиваемой мощностью прибора. При превышении этого значение как раз-таки и произойдет пресловутый тепловой пробой, который выведет стабилитрон из строя.

    Каждому из этих значений тока соответствует определенное значение напряжения, которое также указывается в справочнике/документации на конкретный элемент.

    Теперь для наглядной демонстрации рассмотрим практический пример схемы со стабилитроном. Кстати на принципиальных электрических схемах он обозначается следующим образом:

    Обозначение диода Зенера на схеме.

    А так выглядит базовая схема, в отличие от диода полярность включения стабилитрона обратная:

    Схема включения стабилитрона.

    Выберем какой-нибудь конкретный экземпляр, например, 1N4733A. Его характеристики приведены ниже:

    Минимальное напряжение стабилизации, В 4.8
    Номинальное напряжение стабилизации, В 5.1
    Максимальное напряжение стабилизации, В 5.3
    Минимальный ток стабилизации, мА 49
    Максимальный ток стабилизации, мА 178

    Итак, начинаем подавать на вход напряжение:

    Пример схемы со стабилитроном.

    U_ <вых>= 3 В

    Как видите, подаваемое напряжение не превышает напряжение стабилизации, поэтому на выходе наблюдаем то же значение, что и на входе. Увеличиваем напряжение:

    Стабилизация напряжения.

    U_ <вых>= 5 В

    И здесь уже ситуация меняется, стабилитрон начинает выполнять свою работу! Поднимаем напряжение еще выше:

    Принцип работы стабилитрона.

    U_ <вых>= 5.05 В

    Пример использования диода Зенера.

    U_ <вых>= 5.11 В

    Стабилизация напряжения налицо! Вот, в общем-то, мы наглядно проверили принцип работы стабилитрона, теоретические аспекты которого изучили ранее 🙂

    На этом заканчиваем сегодняшнюю статью, большое спасибо за внимание!

    Источник

    Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

    05 Июн 2013г | Раздел: Радио для дома

    Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

    Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

    По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

    Полупроводниковые диоды

    Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

    Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

    Диод в виде кристалла полупроводника

    На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

    Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

    Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

    На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

    1. Открытое – когда он хорошо проводит ток;
    2. Закрытое – когда он плохо проводит ток.

    Прямое включение диода. Прямой ток.

    Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

    Прямое включение диода

    При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

    Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

    Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

    Обратное включение диода. Обратный ток.

    Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

    Обратное включение диода

    В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

    Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

    Прямое и обратное напряжение диода.

    Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

    При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

    Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

    Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

    Вольт-амперная характеристика полупроводникового диода.

    Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

    На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
    По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

    Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

    Вольт-амперная характеристика диода

    Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
    Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

    При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

    Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

    Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

    У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
    для германиевых — 1В;
    для кремниевых — 1,5В.

    При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
    Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

    Uобр max – максимальное постоянное обратное напряжение, В;
    Iобр max – максимальный обратный ток, мкА.

    При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

    Пробои p-n перехода.

    Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

    Пробои p-n переходов диода

    Электрический пробой.

    Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

    Туннельный пробой.

    Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

    В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

    Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

    Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

    Лавинный пробой.

    Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

    Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

    Тепловой пробой.

    Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

    При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

    На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
    Удачи!

    1. Борисов В.Г — Юный радиолюбитель. 1985г.
    2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

    Источник

    Принцип работы и основные характеристики стабилитрона

    У полупроводникового диода множество «профессий». Он может выпрямлять напряжение, развязывать электрические цепи, предохранять оборудование от неправильной подачи питания. Но есть не совсем обычный вид «работы» диода, когда его свойство односторонней проводимости используется очень косвенно. Полупроводниковый прибор, для которого нормальным режимом является обратное смещение, называется стабилитроном.

    Внешний вид стабилитрона.

    Что такое стабилитрон, где используется и какие бывают

    Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.

    Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.

    Изображение на электрической схеме стабилитрона и двуханодного стабилитрона.

    Вольт-амперная характеристика стабилитрона и его принцип работы

    Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).

    Вольт-амперная характеристика стабилитрона.

    Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.

    Интересен участок работы полупроводникового прибора в режиме лавинного пробоя. Его форма близка к линейной, и он имеет высокую крутизну. Это означает, что при большом изменении тока (ΔI) изменение падения напряжения на стабилитроне относительно невелико (ΔU). А это и есть стабилизация.

    Такое поведение при подаче обратного напряжения характерно для любого диода. Но особенность стабилитрона в том, что его параметры на этом участке ВАХ нормированы. Его напряжение стабилизации и крутизна характеристики заданы (с определенным разбросом) и являются важными параметрами, определяющими пригодность использования прибора в схеме. Найти их можно в справочниках. Обычные диоды также можно использовать в качестве стабилитронов – если снять их ВАХ и среди них найдется с подходящей характеристикой. Но это долгий, трудоёмкий процесс с негарантированным результатом.

    Основные характеристики стабилитрона

    Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.

    Номинальное напряжение стабилизации

    Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:

    • балластный резистор в 1…3 кОм;
    • регулируемый источник напряжения;
    • вольтметр (можно использовать тестер).

    Определение номинального напряжения стабилитрона.

    Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.

    Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.

    Диапазон рабочих токов

    Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.

    Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.

    Дифференциальное сопротивление

    Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.

    Маркировка стабилитронов

    Отечественные и импортные стабилитроны в металлическом корпусе маркируются просто и наглядно. На них наносится наименование прибора и расположение анода и катода в виде схематического обозначения.

    Внешний вид стабилитрона в металлическом корпусе.

    Приборы в пластиковом корпусе маркируются кольцами и точками различных цветов со стороны катода и анода. По цвету и сочетанию знаков можно определить тип прибора, но для этого придётся заглянуть в справочники или использовать программы-калькуляторы. И то, и другое можно найти в интернете.

    Маркировка стабилитрона в пластиковом корпусе.

    Иногда на маломощных стабилитронах наносят напряжение стабилизации.

    Обозначение напряжения стабилизации на стабилитроне.

    Схемы включения стабилитрона

    Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.

    Основная схема включения стабилитрона.

    Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.

    Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».

    Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.

    Схема включения двуханодного стабилитрона.

    Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.

    Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.

    Схема последовательного подключения двух стабилитронов.

    Важно! Нельзя включать стабилитроны параллельно для увеличения рабочего тока! Разброс вольтамперных характеристик приведет к выводу в зону теплового пробоя один стабилитрон, далее выйдет из строя второй из-за превышения тока нагрузки.

    Хотя в технической документации времен СССР разрешается параллельное включение зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.

    Нельзя включать стабилитроны параллельно друг другу.

    Для повышения допустимого тока нагрузки используется другая схема. Параметрический стабилизатор дополняется транзистором, и получается эмиттерный повторитель с нагрузкой в цепи эмиттера и стабильным напряжением на базе транзистора .

    Схема включения стабилитрона с транзистором.

    В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.

    Схема включения стабилитрона с транзистором и диодом.

    Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.

    Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.

    Принцип работы и основные характеристики стабилитрона

    Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

    Принцип работы и основные характеристики стабилитрона

    Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

    Принцип работы и основные характеристики стабилитрона

    Что такое диодный мост, принцип его работы и схема подключения

    Принцип работы и основные характеристики стабилитрона

    Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

    Принцип работы и основные характеристики стабилитрона

    Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

    Принцип работы и основные характеристики стабилитрона

    Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

    Источник

    Читайте также:  Ток двигателя 160 квт 380в
    Adblock
    detector