Меню

Способ измерения сопротивления постоянному току



Измерение сопротивления постоянному току

Измерение сопротивления постоянному току широко применяется при всех пусконаладочных работах с целью выявления целостности токоведущих цепей машин и трансформаторов, обнаружения обрывов в параллельных цепях и металлических витковых замыканий в катушках, проверки качества паек и правильности положения переключателей трансформаторов и других случаях.

По данным замеров величины сопротивления постоянному току определяется средняя температура обмоток трансформаторов и роторов электрических машин при тепловых испытаниях, а также подсчитываются активные потери в опытах короткого замыкания мощных трансформаторов. Измерение величины сопротивления обмоток постоянному току производится одним из следующих методов:

  • методом электрического моста;
  • методом амперметра и вольтметра;
  • методом микрометра.

Выбор того или иного метода определяется требуемой точностью измерения, величиной измеряемого сопротивления, классом точности имеющихся измерительных приборов.

Измерения сопротивления постоянному току методом электрического моста

Мостовые методы применяются главным образом при лабораторных испытаниях, где требуется высокая точность, и обладают большим преимуществом перед всеми остальными методами измерения сопротивлений постоянному току. Мосты могут быть составлены из отдельных магазинов сопротивлений, точность подгонки которых обычно значительно выше точности очень хороших стрелочных приборов.

При замерах сопротивлений мостовыми методами может быть достигнута высокая точность порядка 0,001%. Кроме того, точность мостовых схем хорошо и надолго сохраняется, тогда как точность стрелочных приборов легко может быть понижена, например при перегрузке, неправильной транспортировке, неправильном включении или отключении. По этим причинам мостовые схемы нашли свое широкое применение там, где требуется более точное определение абсолютной величины сопротивления. Например, при определении сопротивлений обмоток крупных машин, генераторов, трансформаторов и другого электрооборудования, с целью выявления нарушения контактов, целостности обмотки, наличия в ней витковых замыканий и т.д. В настоящее время цифровые приборы лишены описанных выше недостатков стрелочных приборов, поэтому мостовые методы по распространенности уступают цифровым методам измерений.

Измерения сопротивления постоянному току методом амперметра и вольтметра.

Этот способ применяется в современных цифровых приборах. При использовании стрелочных приборов он является менее точным по сравнению с методом электрического моста.

Особенно удобно использовать эту методику для измерения сопротивлений, находящихся под напряжением, а также тогда, когда требуется измерить в рабочем режиме сопротивление, значительно меняющее свою величину от нагревания вследствие нагрузки.

Точность измерений при этом способе определяется суммой погрешностей вольтметра и амперметра. Если оба прибора применяются класса 0,5, то общая погрешность измерения может доходить до 1% измеренной величины, а при классе точности 1 ‒ 2% и т.д.

Измерение методом амперметра-вольтметра основано на законе Ома:

где R ‒ измеренное сопротивление проводника в холодном состоянии, Ом;

U ‒ напряжение вольтметра, В;

I ‒ ток, измеренный амперметром, а.

При измерении сопротивлений по методу амперметра и вольтметра возможны две основные схемы включения приборов (рисунок 1, а, б). При рассмотрении обеих схем можно легко установить, что при вычислении измеренного сопротивления по закону Ома без применения поправок метод даст лишь приближенное значение сопротивления. Более точные измерения можно произвести с введением поправок, учитывающих собственное сопротивление приборов:

где Rв и Rа ‒ внутренние сопротивления вольтметра и амперметра, Ом.

В случае применения схемы по рисунку 1, а амперметр учтет ток, проходящий по вольтметру, а по рис 1,б вольтметр учтет падение напряжения не только в измеряемом сопротивлении, но и в обмотке амперметра. Если вам необходимо провести измерения, воспользуйтесь услугами электролаборатории нашей фирмы

Источник

Измерение сопротивлений по постоянному току методом двух приборов

Страницы работы

Содержание работы

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ПО ПОСТОЯННОМУ

ТОКУ МЕТОДОМ ДВУХ ПРИБОРОВ

1. Измерение сопротивлений постоянному току может осуществляться различными способами:

— сопротивления в диапазоне от единиц Ом до единиц и десятков мегаОм измеряют мостами (одинарными) постоянного тока, цифровыми, электронными и магнитоэлектрическими омметрами;

— сопротивления в диапазоне от единиц Ом до 10 8 Ом измеряют двойными мостами постоянного тока, одинарными мостами по специальным схемам включения измеряемого сопротивления и электронными миллиомметрами;

— сопротивления, больше чем 10 6 ¸10 8 Ом, измеряются одинарными мостами постоянного тока, электронными тераомметрами, цифровыми омметрами и магнитоэлектрическими мегомметрами. Все эти способы относятся к прямым измерениям;

— способом амперметра и вольтметра (может применяться при измерении различных по величине сопротивлений, включая очень большие сопротивления, например сопротивле­ние изоляционных материалов);

— схемами, основанными на методе сравнения (для точных измерений);

— используя заряд конденсатора через объект с неизвестным сопротивлением с последующим измерением баллистическим гальванометром накопленного количества электричества за время измерения (обычно для измерений больших сопротивлений).

Эти способы относятся к косвенным измерениям.

2. Среди косвенных видов измерений сопротивлений наиболее распространенным является способ амперметра и вольтметра. Этот способ может применяться для измерения различных по величине сопротивлений и его достоинство заключается в том, что исследуемое сопротивление можно поставить в рабочие условия по току и напряжению, т.е. пропустить через него такой же ток, как и в; рабочих условиях, что важно при измерении нелинейных сопротивлений, значение которых зависит от протекающего тока. Этот способ следует применять и в тех случаях, когда применение других средств измерений (мосты, омметры, и т.д.) могут привести к недопустимой перегрузке резистора по току или напряжению (например, микроплёночные резисторы).

3. Измерение сопротивлений амперметром и вольтметром можно осуществлять по двум схемам (рис.1 и 2), при этом ни одна из них не позволяет правильно (без систематической погрешности) измерить одновременно ток, текущий по измеряемому сопротивлению , и падение напряжения на нем. Значение сопротивления можно приближенно определить по закону Ома:

где — показание вольтметра; — показание амперметра.

Однако при этом возникает погрешность за счет шунтирующего влияния вольтметра (см. рис.1) и внутреннего сопротивления амперметра (см. рис.2).

Читайте также:  Мгновенное значение синусоидального тока напряжения это

4. Правильное значение сопротивления определится:

Источник

Лекция. Измерения параметров цепей постоянного тока

Содержание лекции:

измерения относительно малых и относительно больших сопротивлений постоянному току; способ амперметра и вольтметра; метод сравнения.

Цель лекции:

— изучить основные методы и способы измерения сопротивления постоянному току.

Измерение сопротивления постоянному току. Диапазон изме­ряемых в настоящее время сопротивлений достаточно широк (от 10 до 10 Ом) и имеет тенденцию к дальнейшему расширению. Для измерений в столь широком диапазоне применяют самые разнообразные средства измерений, позволяющие прямо или косвенно находить значения неизвестных сопротивлений. Выбор средств и способов измерений в значительной мере зависит как от значений сопротивлений, так и от требуемой точности, условий измерений и других факторов. Особенности измерений сопротив­лений в различных диапазонах обусловили существенное разли­чие в достигнутой точности измерений. Так, если в диапазоне 1 — 10 Ом относительная погрешность измерения может составлять тысячные доли процента, то при измерении малых и больших сопротивлений она увеличивается до единиц процентов и более.

Прямые измерения. Сопротивления в диапазоне от единиц ом до единиц и десятков мегом измеряют мостами (одинарными) постоянного тока, цифровыми, электронными и магнитоэлектри­ческими омметрами. Промышленность выпускает различные ти­пы этих приборов, различающиеся точностью, удобством эксплуатации, габаритами, массой и другими Ихарактеристиками. В приложении И (таблица И1) приведены классы точности или допускаемые основные погрешности (в процентах) на верхних пределах измерений средств измерений сопротивления постоянному току.

Для измерения с высокой точностью применяют мосты постоянного тока. Так, мосты Р369 и Р4056 в диапазоне 1 —10 6 Ом позволяют измерять сопротивления с относительной погрешно­стью ±0,005. Такие мосты имеют ручное уравновешивание и требуют внешних источников питания и высокочувствительных нуль-индикаторов, в качестве которых наиболее часто используют гальванометры. Выпускают переносные мосты с встроенными гальванометрами и источником питания. Однако они имеют меньшую точность измерений. Имеются также автоматические мосты, которые используются в основном для измерений сопротивлений терморезисторов.

Высокую точность измерений можно получить, применяя циф­ровые приборы (см. таблицу И1). Например, универсальный вольт­метр типа Щ31 в режиме измерений сопротивления на поддиапа­зонах 1; 10 и 100 кОм имеет пределы допускаемой основной по­грешности = ±0,005 + 0,001 ( — 1) %, где RK — верхний предел поддиапазона; R — измеряемое сопротивление. В отличие от мостов постоянного тока с ручным уравновешиванием в цифровых приборах измерение производится автоматически, что является их существенным достоинством. Кроме того, они имеют специальные выходы, позволяющие подключать цифровые печа­тающие устройства для регистрации или ЭВМ для обработки результатов измерения.

При измерениях, когда не требуется высокой точности, применяют электронные и магнитоэлектрические омметры, выпускаемые в виде отдельных приборов или в составе комбинированных универсальных приборов, предназначенных также для измерений токов и напряжений. Наиболее точные из этих приборов имеют класс точности 1,0— 1,5. Измерение малых сопротивлений. Сопротивления в диапазоне от единиц ом до 10 Ом измеряют двойными мостами постоянного тока, одинарными мостами и электронными миллиомметрами. При измерении таких сопротивлений существенное влияние оказывают сопротивления контактов и подводящих проводов, а также контактная термо-ЭДС. Наиболее точными в данном диапазоне являются двойные мосты (см. таблицу И1). При измерении очень малых сопротивлений для обеспечения необходимой чувствительности моста требуется через исследуе­мый объект пропускать большие токи. Так, при измерении мостом Р3009 в диапазоне 10 — 10 Ом питание моста осуществляется током 200 А, при измерении сопротивлений 10 —10 Ом — 15 А. Это ограничивает область его применения.

Измерение малых сопротивлений одинарными мостами про­изводят в более узком диапазоне — начиная с 10 Ом. Точность измерения такими мостами малых сопротивлений ниже точности измерения двойными мостами.

В электронных миллиомметрах измерения производятся на переменном токе, что позволяет значительно снизить мощность, выделяемую на объекте измерений. Обычно напряже­ние на исследуемом объекте составляет десятки милливольт.

Измерение больших сопротивлений. При измерении сопротив­лений, больших 10 —10 Ом, применяют одинарные мосты посто­янного тока, электронные тераомметры (мегомметры), цифровые омметры и магнитоэлектрические мегомметры. Сложность измерения больших сопротивлений определяется прежде всего шунти­рующим влиянием сопротивления изоляции между входными зажимами приборов, которое при изготовлении и дестабилизиру­ющем влиянии внешних факторов (температуры, влажности, за­грязнения и др.) не может быть обеспечено постоянным. Кроме того, токи, протекающие через объекты с большим сопротивлением, становятся весьма малыми, что предъявляет высокие требования к чувствительности средств измерений. В связи с этим приходится повышать напряжение на исследуемом объекте до сотен и даже тысяч вольт. Это предъявляет соответствующие требования к измеряемым объектам. Для измерения таких сопротивлений с наибольшей точностью применяют одинарные мосты постоянного тока (см. таблицу И1).

Косвенные измерения. Наиболее распространенным является способ амперметра и вольтметра (рисунок 11.1). Этот способ может применяться для измерения различных по значению сопро­тивлений. Достоинство этого способа заключается в том, что через резистор можно пропускать такой же ток, как и ток, проте­кающий через объект в рабочих условиях, что важно при измере­нии нелинейных сопротивлений, т. е. таких сопротивлений, значе­ния которых зависят от тока. Значение сопротивления можно определить по закону Ома: U/I. Однако при этом возникает погрешность за счет шунтирующего влияния вольтметра (рисунок 11.1, а) и внутреннего сопротивления амперметра (рисунок 11.1,б). Действительные значения сопротивления для схемы рис. 11-1, а

для схемы рис. 11-1, б

Поэтому погрешности при определении значений сопротивлений по формуле U/I равны, соответственно, ; .

Рисунок 11.1 – Схемы измерений сопротивлений способом

Отсюда следует, что схема (рисунок 11.1,а) предпочтительна для измерения относительно малых сопротивлений, а схема (рисунок 11.1,б ) – относительно больших сопротивлений. В тех случаях, когда требуется точное определение сопротивления, следует пользоваться формулами (11-1), (11-2).

Читайте также:  Как можно определить энергию магнитного поля тока

Способ амперметра и вольтметра может быть использован и для измерения очень больших сопротивлений, например сопротивления изоляционных материалов. Технические условия и стандарты на различные электроизоляционные материалы предъявляют определенные требования к допустимым значениям удельного объемного и поверхностного сопротивлений. На рисунке 11.1, в приведена схема для измерения объемного сопротивления образца О листового материала. Образец помещают между двумя металлическими электродами А и Б. Электрод А находится внутри так называемого охранного кольца В. Поверхностные токи на образце отводятся охранным кольцом непосредственно к источ­нику питания, минуя гальванометр. Через гальванометр протека­ет только «объемный» ток, и, следовательно, подсчитанное сопро­тивление будет объемным. Если проводники, идущие от гальвано­метра к точкам c и d поменять местами, то можно определить поверхностное сопротивление.

Для точных измерений сопротивлений и для измерений нелинейных сопротивлений могут быть использованы схемы, основанные на методе сравнения.

В схеме на рисунке 11.2,а, последовательно изменяя положение переключателя В, измеряют токи и , протекающие через объект Rx и образцовый резистор Ro. При постоянном напряжении U справедливо равенство , т.е. .

При точных измерениях может быть использована схема на рисунке 11.2, б, где последовательно измеряют напряжения U и U на Rx и Ro компенсатором постоянного тока КПТ. Очевидно, что . Достоинствами таких схем являются относительно невысокие требования, предъявляемые к стабильности источника питания (требуется неизменность U только на время измерений U и U ), и возможность точных измерений при использовании высокоточных резисторов Ro.

Рисунок 11.2 — Схемы измерений сопротивлений методом сравнения

Погрешности измерения сопротивлений определяют по методике оценки погрешностей косвенных измерений [14].

Дополнительную информацию по теме можно получить в [4,8,9,12].

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ПОСТОЯННОМУ ТОКУ

Продолжительность лабораторной работы – 4 часа, самостоятельной работы – 2 часа.

Цель работы

— усвоить методы измерения сопротивлений постоянному току;

— приобрести навыки работы с аналоговыми и цифровыми омметрами, мегомметрами, мостами постоянного тока;

— научиться определять погрешности измерений сопротивлений различными методами.

Программа работы

1 Ознакомиться с особенностями и принципами работы аналогового и цифрового омметров, измерить этими приборами сопротивления нескольких резисторов по заданию преподавателя.

2 Произвести измерение сопротивлений резисторов методом замещения.

3 Измерить сопротивление мегомметром.

4 Выполнить измерение сопротивлений мостом постоянного тока.

5 Измерить сопротивления методом амперметра и вольтметра по двум возможным схемам подключения приборов.

6 Сравнить погрешности, полученные при измерении сопротивлений одних и тех же резисторов различными методами, сравнить результаты измерений с паспортными данными используемых приборов.

Приборы, используемые при выполнении лабораторной работы

1 Набор испытуемых резисторов с сопротивлением от 100 Ом до 100 кОм с допустимой мощностью рассеивания не более 10 Вт.

2 Встроенный в стенд № 3 стабилизированный источник напряжения, регулируемого в диапазоне от 10 до 50 вольт.

3 Аналоговый многофункциональный прибор типа 4310.

4 Цифровой универсальный вольтметр В7-58/2.

5 Магазин сопротивлений Р3026.

6 Мост постоянного тока Р333, или МО-62.

7 Мегометр М4100/4.

Пояснения к работе

1 Измерение сопротивлений омметрами.

Аналоговый омметр с последовательной схемой (рисунок 3.1) применяется для измерения средних (10–10 5 Ом) и больших (10 5 Ом и более) сопротивлений и представляет собой измерительный магнитоэлектрический механизм с добавочным сопротивлением Rд, последовательно с которым включается измеряемое сопротивление Rx. Ток в цепи омметра протекает за счет встроенного источника питания с напряжением U:

, (3.1)

где – внутреннее сопротивление магнитоэлектрического механизма.

Как видно из (3.1), ток, а следовательно, и отклонение измерительного механизма зависят только от сопротивления при стабильном напряжении питания и при неизменных и .

Со временем у источника меняется напряжение на зажимах, поэтому
с целью сохранения градуировки шкалы омметры имеют приспособление для регулировки чувствительности (калибровки), выполняемой перед измерениями. При калибровке необходимо замкнуть накоротко зажимы омметра «Rх»
и установить указатель прибора с помощью рукоятки «Уст 0» на отметку «0» (нулевая отметка у такого прибора занимает на шкале крайнее правое положение).

В схеме омметра с параллельным включением (рисунок 3.2) измеряемое сопротивление подключается параллельно измерительному механизму, ток в рамке которого равен /1/:

.

Параллельная схема применяется для измерения малых (10 Ом и менее) и средних сопротивлений. Регулировка чувствительности в этом случае производится при разомкнутых зажимах (указатель устанавливается на отметку «¥»).

Рисунок 3.1 Рисунок 3.2

Наивысшая точность аналоговых омметров имеет место на середине шкалы, а по краям диапазона погрешность измерения сопротивления стремится к бесконечности /3/. По этой причине весь диапазон разбивается на ряд поддиапазонов, которые устанавливаются так, чтобы отклонение указателя при измерении Rx находилось в средней части шкалы.

2 Метод замещения заключается в разновременном сравнении измеряемого сопротивления Rx и регулируемого образцового сопротивления R (рисунок 3.3). Измерение выполняется в два этапа. На первом этапе ключ ставится в положение 1 и по миллиамперметру устанавливается определенный ток через Rx. На втором этапе ключ ставится в положение 2 и регулированием R добиваются такого же значения тока. Очевидно, что при этом Rx = R.

Лабораторная работа выполняется на стенде № 3, схема электрических соединений которого представлена на рисунке 3.4. Для реализации метода замещения необходимо подключить образцовое сопротивление к зажимам , а испытуемый резистор подключить в схему с помощью перемычки,
например, резистор можно подключить, соединив перемычкой зажимы 1 и 9, затем установить регулятором источника напряжения такое значение тока, при котором мощность рассеивания на резисторе не превысит допустимого значения. В данной схеме ток измеряется с помощью шунта (I= Uш/Rш). При постоянном значении сопротивления шунта (Rш= 20 Ом) падение напряжения на шунте Uш , которое измеряется цифровым вольтметром В7-58/2, прямо пропорционально току I.

Читайте также:  Lm317 регулируемый стабилизатор тока схема

Рисунок 3.4

Далее, не изменяя напряжения источника , необходимо предварительно установить максимальное значение сопротивления образцового резистора , подключить его вместо измеряемого сопротивления (пересоединив перемычку с зажима 1 на зажим 5) и, уменьшая , добиться точно такого же значения тока, что и через . Определить значение сопротивления = и записать его. Повторить указанную процедуру для остальных резисторов.

3 Для измерения больших сопротивлений приме­няют логометрические схемы. Питание двух парал­лельных ветвей логометрического омметра (рисунок 3.5) производится или от батареи сухих элементов, или от встроенного генератора постоянного тока, приводимого во вращение c помощью рукоятки. Неравномерность вращения, вызывающая непостоянство напряжения на зажимах, не влияет на отношение токов в параллельных ветвях I1и I2, так как угол поворота подвижной части прибора является функцией отношения токов и зависит только от измеряемого сопротивления Rx:

,

где R01 и R02– сопротивления обмоток логометра.

При измерении сопротивления мегомметром необходимо ознакомиться со схемой и правилами включения, которые указаны на крышке прибора.

4 Мост постоянного тока, используе­мый в работе (рисунок 3.6), позволяет измерять сопротивления в диапазоне от 10 -3 до 10 6 Ом. Мост работает в уравновешенном режиме и реализует метод сравнения. Для измерения сопротивлений от 10 до 10 6 Ом применяется двухзажимная схема подключения измеряемого сопротивления (зажимы Т1 и П1, Т2 и П2 соединяются перемычками, а резистор Rx подключается к зажимам Т1 и Т2). Для уменьшения погрешности, вносимой соединительными проводниками и контактами, измерение сопротивлений, меньших 10 Ом, производят при четырехзажимном подключении резистора Rx (перемычки между зажимами П1 и Т1, П2 и Т2снимают, а измеряемое сопротивление Rx подключают к зажимам П1, Т1, П2, Т2 как показано штриховыми линиями).

После подключения измеряемого резистора в схему мост уравновешивают путем регулирования образцовых резисторов R1, R2, R3. Момент равновесия определяют по отсутствию тока в измерительной диагонали моста (указатель магнито-электрического гальванометра Г устанавливается на нулевую отметку (мост МО-62), или на электронном нуль-индикаторе имеет место одновременное свечение двух светодиодов (мост Р333)). При равновесии моста произведения сопротивлений его противоположных плеч равны:

.

Процесс уравновешивания моста состоит из двух операций: выбора поддиапазона измерений (установки отношения плеч ) и точного уравновешивания путем изменения сопротивления R3. Наибольшая чувствительность моста имеет место при .

Внимание!

При уравновешивании не допускать токовых перегрузок магнито-электрического гальванометра! Переключать гальванометр на повышенную чувствительность только при состоянии моста, близком к равновесию.

Если мост уравновешен, то измеряемое сопротивление

5 Метод амперметра и вольтметра позволяет косвенно определить сопротивление резистора рабочему току в условиях эксплуатации. Значение измеряемого сопротивления определяется по закону Ома:

,

где U и I – показания вольтметра и амперметра, соответственно.

В качестве амперметра в схеме на рисунке 3.4 используется шунт
= 20 Ом и цифровой вольтметр В7-58/2, измеряющий падение напряжения на шунте. Ток I (мА) определяется по показаниям вольтметра (мВ):

.

Так как вольтметр В7-58/2 имеет большое входное сопротивление
(RV= 750 кОм), то его подключение между точками 7 и 8 (параллельно сопротивлению ) практически не изменяет падение напряжения на шунте,
т.е. можно считать, что является сопротивлением амперметра ( ).

При измерении падения напряжения U на сопротивлении Rx возможны два варианта подключения вольтметра (см. рисунок 3.4). При первом варианте вольтметр подключается перед шунтом, между точками 6 и 7; при втором – после шунта, между точками 6 и 8. В первом случае на результаты измерений влияет падение напряжения на амперметре (шунте) и действительное значение сопротивления Rx меньше вычисленного по закону Ома на значение сопротивления амперметра ( ):

.

При этом относительная погрешность уменьшается с возрастанием Rx:

,

следовательно, данный вариант следует применять при измерении сопротивлений, значительно превышающих сопротивление амперметра.

При подключении по второму варианту сопротивление Rx шунтируется сопротивлением вольтметра RV и действительное значение сопротивления Rx будет больше вычисленного по закону Ома:

.

Так как методическая погрешность измерения сопротивления в данном случае возрастает с увеличением Rx ,

,

то второй вариант следует применять при измерении сопротивлений, гораздо меньших сопротивления вольтметра RV.

Результаты измерений, полученные различными методами, необходимо внести в таблицу 3.1. Относительная погрешность метода определяется по формуле

,

где – результат измерения с помощью одинарного моста (нулевой метод).

Таблица 3.1 – Обработка результатов измерений

№ резистора Результаты измерений
Аналоговым омметром Цифровым омметром Амперметром и вольтметром Мег­омметром Методом замещения Нулевым методом
Вариант 1 Вариант 2
Rx, Ом , % Rx, Ом , % U, B I, A R’x, Ом , % U, B I, A R’x, Ом , % Rx, Ом , % Rx, Ом , % Rx, Ом , %

Контрольные вопросы

1 Какой из методов измерения сопротивлений обеспечивает наименьшую погрешность и почему?

2 В чем заключаются достоинства и недостатки метода амперметра и вольтметра?

3 Каковы особенности измерения малых и больших сопротивлений?

4 Поясните принцип действия и устройство аналоговых и цифровых омметров.

5 В чем сущность метода замещения и какова область его применения?

6 В каком случае применяется четырехзажимная схема подключения измеряемого сопротивления к мосту постоянного тока и почему?

Литература

[1, С. 120-121, 191-193, 420-425; 2, С. 96-106; 3, С. 168-171; 4, С. 100-101].

Лабораторная работа №4

Измерение параметров катушки индуктивности

Продолжительность лабораторной работы – 4 часа, самостоятельной работы – 2 часа.

Цель работы

— усвоить методы измерения активного сопротивления, индуктивности и добротности катушек индуктивности;

— приобрести навыки работы с амперметром, вольтметром, ваттметром и мостом переменного тока.

Программа работы

1 Измерить параметры катушки индуктивности методом амперметра и вольтметра на постоянном и переменном токе.

2 Измерить активное сопротивление R, индуктивность L и добротность Q катушки методом трех вольтметров.

3 Определить индуктивность L через постоянную времени t.

4 Измерить полное, активное и реактивное сопротивления катушки методом амперметра, вольтметра и ваттметра. Вычислить добротность катушки.

5 Измерить активное сопротивление, индуктивность и добротность катушки с помощью моста переменного тока.

6 Сравнить полученные результаты и сделать выводы.

Источник