Меню

Сопротивление обмотки возбуждения двигателя постоянного тока независимого возбуждения



Электродвигатели постоянного тока

Электродвигатели постоянного тока применяют в тех электроприводах, где требуется большой диапазон регулирования скорости, большая точность поддержания скорости вращения привода, регулирования скорости вверх от номинальной.

Как устроены электродвигатели постоянного тока

Работа электрического двигателя постоянного тока основана на явлении электромагнитной индукции. Из основ электротехники известно, что на проводник с током, помещенный в магнитное поле, действует сила, определяемая по правилу левой руки :

где I — ток, протекающий по проводнику, В — индукция магнитного поля; L — длина проводника.

Правило левой руки

При пересечении проводником магнитных силовых линий машины в нем наводится электродвижущая сила, которая по отношению к току в проводнике направлена против него, поэтому он а называется обратной или противодействующей (противо-э. д. с). Электрическая мощность в двигателе преобразуется в механическую и частично тратится на нагревание проводника.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря , разделенных воздушным зазором.

Индуктор электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов , рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянного тока .

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях , которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусом электродвигателя .

Коммутация в электродвигателях постоянного тока

В процессе работы электродвигателя постоянного тока щетки, скользя по поверхности вращающегося коллектора, последовательно переходят с одной коллекторной пластины на другую. При этом происходит переключение параллельных секций обмотки якоря и изменение тока в них. Изменение тока происходит в то время, когда виток обмотки замкнут щеткой накоротко. Этот процесс переключения и явления, связанные с ним, называются коммутацией .

В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения.

Способы возбуждения электродвигателей постоянного тока

Способы возбуждения электродвигателей постоянного тока

Под возбуждением электрических машин понимают создание в них магнитного поля, необходимого для работы электродвигателя . Схемы возбуждения электродвигателей постоянного тока показаны на рисунке .

Схемы возбуждения электродвигателей постоянного тока: а — независимое, б — параллельное, в — последовательное, г — смешанное

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы :

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Типы двигателей постоянного тока

Двигатели постоянного тока прежде всего различаются по характеру возбуждения. Двигатели могут быть независимого, последовательного и смешанного возбуждения. Параллельное возбуждение можно не рассматривать. Даже если обмотка возбуждения подключается к той же сети, от которой питается цепь якоря, то и в этом случае ток возбуждения не зависит от тока якоря, так как питающую сеть можно рассматривать как сеть бесконечной мощности, а ее напряжение постоянным.

Обмотку возбуждения всегда подключают непосредственно к сети, и поэтому введение добавочного сопротивления в цепь якоря не оказывает влияния на режим возбуждения. Той специфики, которая существует при параллельном возбуждении в генераторах, здесь быть не может.

В двигателях постоянного тока малой мощности часто используют магнитоэлектрическое возбуждение от постоянных магнитов. При этом существенно упрощается схема включения двигателя, уменьшается расход меди. Следует однако иметь в виду, что, хотя обмотка возбуждения исключается, габариты и масса магнитной системы не ниже, чем при электромагнитном возбуждении машины.

Свойства двигателей в значительной мере определяются их системой возбуждения.

Чем больше габариты двигателя, тем, естественно, больше развиваемый им момент и соответственно мощность. Поэтому при большей скорости вращения и тех же габаритах можно получить большую мощность двигателя. В связи с этим, как правило, двигатели постоянного тока, особенно малой мощности, проектируются на большую частоту вращения — 1000-6000 об/мин.

Следует, однако, иметь в виду, что скорость вращения рабочих органов производственных машин существенно ниже. Поэтому между двигателем и рабочей маши­ной приходится устанавливать редуктор. Чем больше скорость двигателя, тем более сложным и дорогим получается редуктор. В установках большой мощности, где редуктор представляет собой дорогостоящий узел, двигатели проектируются на существенно меньшие скорости.

Следует еще иметь в виду, что механический редуктор всегда вносит значительную погрешность. Поэтому в прецизионных установках желательно использовать тихоходные двигатели, которые можно было бы сочленить с рабочими органами либо напрямую, либо посредством простейшей передачи. В связи с этим появились так называемые высокомоментные двигатели на низкие скорости вращения. Эти двигатели нашли широкое применение в металлорежущих станках, где сочленяются с органами перемещения без каких-либо промежуточных звеньев посредством шарико-винтовых передач.

Электрические двигатели отличаются также по конструктивным при­ знакам, связанным с условиями их работы. Для нормальных условий используются так называемые открытые и защищенные двигатели, охлаждаемые воздухом помещения, в котором они устанавливаются.

Воздух продувается через каналы машины посредством вентилятора, размещенного на валу двигателя. В агрессивных средах используются закрытые двигатели, охлаждение которых осуществляется за счет внешней ребристой поверхности или наружного обдува. Наконец, выпускаются специальные двигатели для взрывоопасной среды.

Специфические требования к конструктивным формам двигателя предъявляются при необходимости обеспечения высокого быстродействия — быстрого протекания процессов разгона, торможения. В этом случае двигатель должен иметь специальную геометрию — малый диаметр якоря при большой его длине.

Для уменьшения индуктивности обмотки ее укладывают не в пазы, а на поверхность гладкого якоря. Крепится обмотка клеющими составами типа эпоксидной смолы. При малой индуктивности обмотки существенно улучшаются условия коммутации на коллекторе, отпадает необходимость в дополнительных полюсах, может быть использован коллектор меньших размеров. Последнее дополнительно уменьшает момент инерции якоря двигателя.

Еще большие возможности для снижения механической инерции дает использование полого якоря, представляющего собой цилиндр из изоляционного материала. На поверхности этого цилиндра располагается обмотка, изготовляемая печатным способом, штамповкой или из про­ волоки по шаблону на специальном станке. Крепление обмотки осуществляется клеющими материалами.

Читайте также:  От чего зависит тяжесть поражения электрическим током ржд

Внутри вращающегося цилиндра располагается стальной сердечник, необходимый для создания путей прохождения магнитного потока. В двигателях с гладким и полым якорями вследствие увеличения зазоров в магнитной цепи, обусловленного внесением в них обмотки и изоляционных материалов, требуемая намагничивающая сила для проведения необходимого магнитного потока существенно возрастает. Соответственно магнитная система полу­чается более развитой.

К числу малоинерционных двигателей относятся также двигатели с дисковыми якорями. Диски, на которые наносятся или наклеиваются обмотки, изготовляются из тонкого изоляционного материала, не подверженного короблению, например из стекла. Магнитная система при двухполюсном исполнении представляет собой две скобы, на одной из которых размещены обмотки возбуждения. В связи с малой индуктивностью обмотки якоря машина, как правило, не имеет коллектора и съем тока осуществляется щетками непосредственно с обмотки.

Следует еще упомянуть о линейном двигателе, обеспечивающем не вращательное движение, а поступательное. Он представляет собой двигатель, магнитная система которого как бы развернута и полюсы устанавливаются на линии движения якоря и соответствующего рабочего органа машины. Якорь обычно выполняется как малоинерционный. Габариты и стоимость двигателя велики, так как необходимо значительное число полюсов для обеспечения перемещения на заданном отрезке пути.

Пуск двигателей постоянного тока

В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. и напряжение в якоре равна нулю, поэтому Iп = U / Rя.

Сопротивление цепи якоря невелико, поэтому пусковой ток превышает в 10 — 20 раз и более номинальный. Это может вызвать значительные электродинамические усилия в обмотке якоря и чрезмерный ее перегрев, поэтому пуск двигателя производят с помощью пусковых реостатов — активных сопротивлений, включаемых в цепь якоря.

Двигатели мощностью до 1 кВт допускают прямой пуск.

Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя.

В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение.

Регулирование частоты вращения электродвигателя постоянного тока

Частота вращения двигателя постоянного тока:

где U — напряжение питающей сети; Iя — ток якоря; R я — сопротивление цепн якоря; kc — коэффициент, характеризующий магнитную систему; Ф — магнитный поток электродвигателя.

Из формулы видно, что частоту вращения электродвигателя постоянного тока можно регулировать тремя путями: изменением потока возбуждения электродвигателя, изменением подводимого к электродвигателю напряжения и изменением сопротивления в цепи якоря.

Наиболее широкое применение получили первые два способа регулирования, третий способ применяют редко: он неэкономичен, скорость двигателя при этом значительно зависит от колебаний нагрузки. Механические характеристики, которые при этом получаются, показаны на рисунке .

Механические характеристики электродвигателя постоянного тока при различных способах регулирования частоты вращения

Жирная прямая — это естественная зависимость скорости от момента на валу, или , что то же, от тока якоря. Прямая естественной механической характеристики несколько отклоняется от горизонтальном штриховой линии. Это отклонение называют нестабильностью, нежесткостью, иногда статизмом. Группа непаралельных прямых I соответствует регулированию скорости возбуждением, параллельные прямые II получаются в результате изменения напряжения якоря, наконец, веер III — это результат введения в цепь якоря активного сопротивления.

Величину тока возбуждения двигателя постоянного тока можно регулировать с помощью реостата или любого устройства, активное сопротивление которого можно изменять по величине, например транзистора. При увеличении сопротивления в цепи ток возбуждения уменьшается, частота вращения двигателя увеличивается. При ослаблении магнитного потока механические характеристики располагаются выше естественной (т. е. выше характеристики при отсутствии реостата). Повышение частоты вращения двигателя вызывает усиление искрения под щетками. Кроме того, при работе электродвигателя с ослабленным потоком уменьшается устойчивость его работы, особенно при переменных нагрузках на валу. Поэтому пределы регулирования скорости таким способом не превышают 1,25 — 1,3 от номинальной.

Регулирование изменением напряжения требует источника постоянного тока, например генератора или преобразователя. Такое регулирование используют во всех промышленных системах электропривода: генератор — д вигатель постоянного тока (Г — ДПТ), электромашинный усилитель — двигатель постоянного тока (ЭМУ — ДПТ), магнитный усилитель — двигатель постоянного тока (МУ — ДПТ), тиристорный преобразователь — двигатель постоянного тока (Т — ДПТ).

Торможение электродвигателей постоянного тока

Торможение электродвигателей постоянного тока

В электроприводах с электродвигателями постоянного тока применяют три способа торможения: динамическое, рекуперативное и торможение противовключением.

Динамическое торможение электродвигателя постоянного тока осуществляется путем замыкания обмотки якоря двигателя накоротко или через резистор. При этом электродвигатель постоянного тока начинает работать как генератор , преобразуя запасенную им механическую энергию в электрическую. Эта энергия выделяется в виде тепла в сопротивлении, на которое замкнута обмотка якоря. Динамическое торможение обеспечивает точный останов электродвигателя.

двигатель постоянного токаРекуперативное торможение электродвигателя постоянного тока осуществляется в том случае, когда включенный в сеть электродвигатель вращается исполнительным механизмом со скоростью, превышающей скорость идеального холостого хода. Тогда э. д. с, наведенная в обмотке двигателя, превысит значение напряжения сети, ток в обмотке двигателя изменяет направление на противоположное. Электродвигатель переходит на работу в генераторном режиме, отдавая энергию в сеть. Одновременно на его валу возникает тормозной момент. Такой режим может быть получен в приводах подъемных механизмов при опускании груза, а также при регулировании скорости двигателя и во время тормозных процессов в электроприводах постоянного тока.

Рекуперативное торможение двигателя постоянного тока является наиболее экономичным способом, так как в этом случае происходит возврат в сеть электроэнергии. В электроприводе металлорежущих станков этот способ применяют при регулировании скорости в системах Г — ДПТ и ЭМУ — ДПТ.

Торможение противовключением электродвигателя постоянного тока осуществляется путем изменения полярности напряжения и тока в обмотке якоря. При взаимодействии тока якоря с магнитным полем обмотки возбуждения создается тормозной момент, который уменьшается по мере уменьшения частоты вращения электродвигателя. При уменьшении частоты вращения электродвигателя до нуля электродвигатель должен быть отключен от сети, иначе он начнет разворачиваться в обратную сторону.

Источник

Механические характеристики двигателей постоянного тока независимого возбуждения. Двигательный режим

Лекция 5.

Электрический двигатель, в отличие от двигателей других типов, способен сам автоматически разгоняться до скорости установившегося режима работы, снижать скорость при увеличении момента сопротивления и из установившегося режима с большей скоростью переходить в установившийся режим с меньшей скоростью, увеличивать скорость при уменьшении момента сопротивления и переходить из установившегося режима с меньшей скоростью к установившемуся режиму с большей скоростью. Эта особенность электрического двигателя объясняется тем, что между скоростью вращения и вращающим моментом двигателя существует зависимость ω=f(М), в соответствии с которой с увеличением момента скорость уменьшается и наоборот. Называют эту зависимость механической характеристикой двигателя.

С помощью механической характеристики можно определить основные свойства электрического двигателя и проверить их соответствие требованиям технологической машины.

Читайте также:  Как изобрести электрический ток

Оси абсцисс и ординат, по которым откладываются соответственно величины М и ω, разделяют плоскость на четыре квадрата. Первый номер принято присваивать верхнему правому квадрату, а остальные нумеровать против часовой стрелки.

В первом квадранте знаки М и ω, а значит и направление величин, совпадает. Поэтому в нём располагаются механические характеристики для двигательного режима работы электрической машины. Аналогичные характеристики для противоположного направления вращения располагаются и в третьем квадранте, так как знаки М и ω отрицательны.

Во втором квадранте скорость ω положительна, а момент М имеет отрицательный знак. Поэтому в нём располагаются механические характеристики, соответствующие режиму электрического торможения, когда под действием инерционных сил направление вращения сохраняется, а направление момента за счёт изменения схемы включения двигателя изменяется на противоположное. Аналогичные характеристики для противоположного направления вращения располагаются и в четвёртом квадранте, так как в нём ω имеет отрицательный знак, а М – положительный.

Схема включения двигателя постоянного тока (ДПТ) с независимым возбуждением приведена на рис. 2.1.

Якорь двигателя и обмотка возбуждения LM получает питание от независимых источников напряжения U и Uв. Поэтому ток в обмотке возбуждения Ів не зависит от тока якоря Ія. Мощность источника Uв не превышает 15% от мощности источника U.

При вращающемся якоре в его обмотке наводится э.д.с. вращения Е. На схеме включения двигателя направление Е встречно по отношению к направлению U, что соответствует двигательному режиму работы. Величина Е равна:

где ω – угловая скорость двигателя;

Рис. 2.1 – Схема включения двигателя постоянного тока с независимым возбуждением

Ф –поток двигателя;

– конструктивный коэффициент двигателя, данные, для расчёта которого приводятся в справочниках.

Здесь р – число пар полюсов двигателя; N – число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря.

Направление якорного тока Iя, как и направление Е, на схеме включения показано для двигательного режима работы.

Допустимое значение якорного тока двигателя Iя.доп. ограничивается условиями коммутации и механической прочностью якоря и не должно превышать номинальный ток Iя.н. более чем в 2,5 раза — Iя.доп. ≤ 2,5∙ Iя.н..

В соответствии с уравнением равновесия напряжений при установившемся режиме работы двигателя напряжение U, приложенное к якорной цепи двигателя, уравновешивается падением напряжения в якорной цепи IЯRЯЦ и наведённой в обмотке якоря э.д.с. вращения Е:

где – суммарное сопротивление якорной цепи.

Здесь RЯ – сопротивление обмотки якоря; RДП – сопротивление обмотки дополнительных полюсов; RКО – сопротивление компенсационной обмотки; RП – сопротивление пускового реостата.

Величина IЯ в установившемся режиме будет равна:

В режиме пуска Е=0, поэтому из–за небольшого сопротивления обмоток пусковой ток Iяп может превышать допустимое значение. Для ограничения пускового тока служит пусковой реостат, сопротивление которого Rп выбирается таким образом, чтобы IЯП ≤ Iя.доп..

В цепи питания LM включён реостат с сопротивлением RВ. С его помощью уменьшается ток в обмотке возбуждения. В результате поток двигателя Ф ослабляется, становясь меньше номинального значения Ф≤Фн.

Из уравнения равновесия напряжений для якорной цепи можно получить аналитическое выражение для механической характеристики двигателя.

Подставив в него вместо э.д.с. вращения Е, её значение и решив полученное уравнение относительно скорости, получим зависимость скорости двигателя ω от тока якоря IЯ ω=f(IЯ), которая называется электромеханической характеристикой:

Вращающий момент двигателя М связан с током якоря и магнитным потоком зависимостью М=кФIЯ. Подставив в уравнение электромеханической характеристики значения для тока IЯ=М/кФ, получим выражение для механической характеристики ω=f(М):

где с=кФ – коэффициент, принимаемый постоянным и не зависящим от тока якоря, если у двигателя имеется компенсационная обмотка или если реакцию якоря не учитывать.

При неизменных параметрах U, Ф, RЯЦ уравнение механической характеристики есть уравнение прямой линии.

В режиме идеального холостого хода Мс=0 и М=0, поскольку в установившемся режиме двигатель работает с М=Мс. Тогда

где ω –скорость идеального холостого хода.

При увеличении момента сопротивления скорость установившегося режима уменьшается на величину статического падения скорости Δωс, которое равно:

Таким образом, уравнение для механической характеристики двигателя можно записать в следующем виде:

Механическая характеристика двигателя, которая получается при отсутствии внешних сопротивлений в якорной цепи (RП=0) и номинальных значениях потока двигателя (Ф=Фн) и напряжения на якоре (U=Uн) называется естественной характеристикой. Следует отметить, что выполнение двух первых условий не вызывает трудностей. Третье условие (U=Uн) выполняется в том случае, если якорная цепь двигателя питается от источника бесконечной мощности или в замкнутой системе преобразователь-двигатель с обратной связью по напряжению преобразователя и астатическим регулятором напряжения.

Построить естественную характеристику, учитывая её линейность, можно по двум точкам – точке идеального холостого хода с координатами (М=0; ω=ω) и точке, соответствующей номинальному режиму работы (М=Мн; ω=ωн). На основании паспортных данных двигателя н, Uн, Ін, nн) можно найти:

Естественная характеристика приведена на рис. 2.2.

Рис. 2.2 — Механические характеристики двигателя постоянного тока независимого возбуждения.

При скорости двигателя ток ω=ω ІЯ=0, так как э.д.с. вращения Е=U и направлена по отношению к нему встречно. Работать в двигательном режиме со скоростью ω=ω двигатель не может, так как даже при отсутствии нагрузки со стороны технологической машины трение в подшипниках и крыльчатка вентилятора создают момент сопротивления холостого хода Мсхх. Двигатель в установившемся режиме будет работать с М= Мсхх и ω=ωхх 0.

Найти величину ωхх можно, изобразив в одном квадрате с механической характеристикой двигателя механическую характеристику технологической машины. Если предположить, что Мс не зависит от скорости, то через точку с координатами (ω=0; М=Мсхх) необходимо провести вертикальную прямую до её пересечения с механической характеристикой двигателя (точка А). В точке А М=Мс, а её проекция на ось ординат равна ωхх.

При увеличении момента сопротивления от Мсхх до Мсн появится отрицательный динамический момент МД 0, то Δωс при одном и том же моменте двигателя будет больше, чем на естественной характеристике:

Поскольку величина ω не зависит от величины RП, то получаемая в этом случае характеристика, которая называется искусственной или реостатной, будет начинаться в той же точке, что и естественная, но проходить с большим наклоном к оси абсцисс.

Якорный ток Iя и момент двигателя М связаны прямой пропорциональной зависимостью. Поэтому ограничение с помощью Rп пускового тока значением Iя.доп.≤2,5 Iян автоматически ограничивает и допустимое значение пускового момента Мдоп≤2,5Мн. Механическая характеристика на рис. 2.2 в этом случае пересекает ось абсцисс в точке с координатами (ω=0; М=Мдоп=2,5Мн) и называется предельной пусковой. Реостатные характеристики, расположенные выше получаются при меньших величинах RП. Запускаясь при Мсн по предельной пусковой характеристике, двигатель разгонится до скорости ω1 и перейдёт в установившийся режим работы. Для увеличения скорости двигателя необходимо уменьшить величину RП.

Читайте также:  Формула определяющая мощность электрического тока

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Двигатель постоянного тока независимого возбуждения (ДПТ НВ)

ads

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

Уравнение механической характе­ристики двигателя постоянного тока независимого (параллельного) воз­буждения

где: n — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механическая характеристика двигателя постоянного тока независимого возбуждения ДПТ

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

Снимок 5

где U — напряжение питания цепи якоря двигателя, В; Iя — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n — частота вращения холостого хода, об/мин.

Частота вращения холостого хода n представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.

Снимок 7

Снимок 8

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Источник

Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник

Adblock
detector