Виды сопротивлений
Существуют следующие сопротивления:
1. Омическое сопротивление
2. Активное сопротивление
3. Индуктивное сопротивление
4. Емкостное сопротивление
Индуктивное и емкостное сопротивления являются реактивными, что значит не вызывающими безвозвратных потерь энергии переменного тока.
Омическое сопротивление — это сопротивление цепи постоянному току вызывающее безвозвратные потери энергии постоянного тока.
Единственной причиной вызывающей потери постоянного тока является противодействие материала проводника. На преодоление этого противодействия затрачивается часть энергии постоянного тока, которая превращается в тепловую энергию нагревающую проводник. Эта часть энергии обратно в проводник в виде энергии постоянного тока не возвращается.
На резисторах написана величина их омического сопротивления, т. е. сопротивления постоянному току.
Величина омического сопротивления не зависит от величины тока.
Активное сопротивление — это сопротивление цепи переменному току вызывающее безвозвратные потери энергии переменного тока.
Причины вызывающие безвозвратные потери переменного тока:
-противодействие материала проводника
-вихревые токи (они образуются в сердечниках катушек и нагревают их)
-потери энергии электрического тока за счет перемагничивания сердечника, т. е. на ликвидацию остаточного магнетизма при перемагничивании сердечника
-потери за счет излучения электромагнитной энергии ( любой проводник по которому идет переменный ток излучает электромагнитные волны которые уходят в пространство)
-в радиоаппаратуре провода идут вблизи друг от друга, переменный ток проходя по одному проводу индуктирует токи в близлежащих проводах
Индуктивное сопротивление — это противодействие тока самоиндукции катушки нарастающему току генератора.
На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки тоже будет убывать пересекая витки катушки и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора. Таким образом вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, что значит не вызывающим безвозвратных потерь энергии. Слово реакция обозначает обратное действие.
Емкостное сопротивление — это противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора.
Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом емкостное сопротивление является реактивным.
Комментарии могут оставлять только зарегистрированные пользователи
Источник
Активное и реактивное сопротивление, треугольник сопротивлений
Активное и реактивное сопротивления
Сопротивление, оказываемое проходами и потребителями в цепях постоянного тока, называется о мическим сопротивлением .
Если какой-либо проводник включить в цепь переменного тока, то окажется, что его сопротивление будет несколько больше, чем в цепи постоянного тока. Это объясняется явлением, получившим название скин-эффекта (поверхностный эффект).
Сущность его заключается в следующем. При прохождении переменного тока по проводнику внутри него существует переменное магнитное поле, пересекающее проводник. Магнитные силовые линии этого поля индуктируют в проводнике ЭДС , однако она будет не одинаковой в различных точках сечения проводника: к центру сечения на больше, а к периферии — меньше.
Это объясняется тем, что точки, лежащие ближе к центру, пересекаются большим числом силовых линий. Под действием этой ЭДС переменный ток будет распределяться не по всему сечению проводника равномерно, а ближе к его поверхности.
Это равносильно уменьшению полезного сечения проводника, а следовательно, увеличению его сопротивления переменному току. Например, медный провод длиной 1 км и диаметром 4 мм оказывает сопротивление: постоянному току — 1,86 ом, переменному частотой 800 гц — 1,87 ом, переменному току частотой 10000 гц — 2,90 ом .
Сопротивление, оказываемое проводником проходящему на нему переменному току, называется активным сопротивлением .
Если какой-либо потребитель не содержит в себе индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.
Активное сопротивление — физическая величина, характеризующая сопротивление электрической цепи (или её участка) электрическому току, обусловленное необратимыми превращениями электрической энергии в другие формы (преимущественно в тепловую). Выражается в омах.
Активное сопротивление зависит от частоты переменного тока, возрастая с ее увеличением.
Однако многие потребители обладают индуктивными и емкостными свойствами при прохождении через них переменного тока. К таким потребителям относятся трансформаторы, дроссели, электромагниты, конденсаторы, различного рода провода и многие другие.
При прохождении через них переменного тока необходимо учитывать не только активное, но и реактивное сопротивление , обусловленное наличием, в потребителе индуктивных и емкостных свойств его.
Известно, что если постоянный ток, проходящий по какой-либо обмотке, прерывать и замыкать, то одновременно с изменением тока будет изменяться и магнитный поток внутри обмотки, в результате чего в ней возникнет ЭДС самоиндукции.
То же самое будет наблюдаться и в обмотке, включенной в цепь переменного тока, с той лишь разницей, что здесь ток непрерывно изменяется как по величине, так и по направлению. Следовательно, непрерывно будет изменяться величина магнитного потока, пронизывающего обмотку, и в ней будет индуктироваться ЭДС самоиндукции.
Но направление ЭДС самоиндукции всегда таково, что противодействует изменению тока. Так, при возрастании тока в обмотке ЭДС самоиндукции будет стремиться задержать нарастание тока, а при убывании тока, наоборот, будет стремиться поддержать исчезающий ток.
Отсюда следует, что ЭДС самоиндукции, возникающая в обмотке (проводнике), включенной в цепь переменного тока, будет всегда действовать против тока, задерживая его изменения. Иначе говоря, ЭДС самоиндукции можно рассматривать как дополнительное сопротивление, оказывающее вместе с активным сопротивлением обмотки противодействие проходящему через обмотку переменному току.
Сопротивление, оказываемое переменному току ЭДС самоиндукции, носит название индуктивного сопротивления .
Индуктивное сопротивление будет тем больше, чем больше индуктивность потребителя (цепи) и выше частота переменного тока. Это сопротивление выражается формулой xl = ωL, где xl — индуктивное сопротивление в омах; L — индуктивность в генри (гн); ω — угловая частота где f — частота тока).
Кроме индуктивного сопротивления существует емкостное сопротивление , обусловливаемое как наличием емкости в проводниках и обмотках, так и включением в отдельных случаях в цепь переменного тока конденсаторов. При увеличении емкости С потребителя (цепи) и угловой частоты тока емкостное сопротивление уменьшается.
Емкостное сопротивление равно xс = 1/ωС, где хс — емкостное сопротивление в омах, ω — угловая частота, С — емкость потребителя в фарадах.
Рассмотрим цепь, активное сопротивление элементов которой r , индуктивность L и емкость С.
Рис. 1. Цепь переменного тока с резистором, катушкой индуктивности и конденсатором.
Полное сопротивление такой цепи z = √ r 2 + (х l — xc) 2 ) = √ r 2 + x 2 )
Графически это выражение можно изобразить в виде, так называемого, треугольника сопротивлений.
Рис.2. Треугольник сопротивлений
Гипотенуза треугольника сопротивлений изображает полное сопротивление цепи, катеты — активное и реактивное сопротивления.
Если одно из сопротивлений цепи — (активное или реактивное), например, в 10 и более раз меньше другого, то меньшим можно пренебречь, в чем легко убедиться непосредственным расчетом.
Донат на развитие сайта «Школа для электрика»:
Источник
Сопротивление омическое
Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .
Смотреть что такое «Сопротивление омическое» в других словарях:
омическое сопротивление химического источника тока — омическое сопротивление Сумма активных составляющих комплексного электрического сопротивления электролита, электродов и токоведущих деталей химического источника тока. [ГОСТ 15596 82] Тематики источники тока химические Классификация >>>… … Справочник технического переводчика
СОПРОТИВЛЕНИЕ — (1) аэродинамическое (лобовое) сила, с которой газ действует на движущееся в нём тело. Оно всегда направлено в сторону, противоположную скорости движения тела, и является одной из составляющих аэродинамической силы; (2) С. гидравлическое… … Большая политехническая энциклопедия
омическое сопротивление — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN ohmic resistance … Справочник технического переводчика
Омическое сопротивление химического источника тока — 35. Омическое сопротивление химического источника тока Омическое сопротивление Сумма активных составляющих комплексного электрического сопротивления электролита, электродов и токоведущих деталей химического источника тока Источник: ГОСТ 15596 82 … Словарь-справочник терминов нормативно-технической документации
омическое сопротивление — aktyvioji varža statusas T sritis Standartizacija ir metrologija apibrėžtis Laidininko varža nuolatinei elektros srovei. atitikmenys: angl. active resistance; ohmic resistance vok. ohmscher Widerstand, m; Wirkwiderstand, m rus. активное… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
омическое сопротивление — varžas statusas T sritis fizika atitikmenys: angl. resistor vok. Resistor, m; Widerstand, m rus. омическое сопротивление, n; резистор, m; сопротивление, n pranc. résistance, f; résistor, m … Fizikos terminų žodynas
омическое сопротивление — ominė varža statusas T sritis chemija apibrėžtis Laidininko varža nuolatinei elektros srovei. atitikmenys: angl. ohmic resistance rus. омическое сопротивление … Chemijos terminų aiškinamasis žodynas
омическое сопротивление — ominė varža statusas T sritis fizika atitikmenys: angl. ohmic resistance vok. ohmscher Widerstand, m rus. омическое сопротивление, n pranc. résistance ohmique, f … Fizikos terminų žodynas
сопротивление — varžas statusas T sritis fizika atitikmenys: angl. resistor vok. Resistor, m; Widerstand, m rus. омическое сопротивление, n; резистор, m; сопротивление, n pranc. résistance, f; résistor, m … Fizikos terminų žodynas
Источник
Сопротивление, проводимость и закон Ома
Электрическое сопротивление – физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.
Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.
В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости
где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².
Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.
Рис. 1. Удельное сопротивление проводника, ρ
Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).
Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников
Закон Ома
В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.
Существует несколько интерпретаций закона Ома.
Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R
Рис. 3. Закон Ома для участка цепи
Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А
На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).
Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии
Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.
Проводимость
Величина обратная сопротивлению, называется проводимостью:
Единица проводимости называется сименс (См): G, (g) = 1/Ом = См.
Источник