Меню

Соотношение токов в понижающем трансформаторе



Соотношение токов в понижающем трансформаторе

Повышающие и понижающие трансформаторы

До сих пор мы с вами рассматривали трансформаторы, у которых первичная и вторичная обмотки имели одинаковую индуктивность, давая примерно одинаковые уровни напряжения и тока в обоих цепях. Однако, равенство напряжений и токов между первичной и вторичной обмотками трансформатора не является нормой для всех трансформаторов. Если индуктивности двух обмоток имеют разную величину, происходит нечто интересное:

Обратите внимание на то, что вторичное напряжение примерно в десять раз меньше первичного (0,9962 вольт против 10 вольт), а вторичный ток примерно в десять раз превышает первичный (0,9962 мА против 0,09975 мА). В этом SPICE моделировании описано устройство, которое в десять раз понижает напряжение и в десять раз повышает ток.

ransformers20

Трансформатор — это очень полезное устройство. С его помощью мы легко можем повысить или понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) путем повышения переменного напряжения и понижения переменного тока. На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования. Трансформатор, который на выходе (во вторичной обмотке) вырабатывает более высокое напряжение, чем приложено на входе (к первичной обмотке), называется повышающим трансформатором (его вторичная обмотка имеет больше витков, чем первичная). И наоборот, понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем подается на его вход, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

Посмотрите еще раз на фотографию, показанную в предыдущей статье:

ransformers16

На поперечном разрезе трансформатора хорошо видно первичную и вторичную обмотки.

Это понижающий трансформатор, о чем свидетельствует большое количество витков первичной обмотки и малое число витков вторичной обмотки. Он преобразует высокое напряжение и маленький ток в низкое напряжение и большой ток. Благодаря большому току вторичной обмотки, в ней используется провод большого сечения. Первичная обмотка, ток в которой имеет небольшую величину, может быть выполнена из провода меньшего сечения.

Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку — к нагрузке). В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока (этот вопрос рассматривался в предыдущей статье). Поэтому, при использовании трансформатора по «противоположному» назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).

Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение «Н» для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение «X» для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «H1», «H2», «X1» и «X2».

Если вы вспомните, что мощность равна произведению напряжения и тока, то поймете почему напряжение и ток всегда движутся в «противоположных направлениях» (если напряжение увеличивается, то ток уменьшается, и наоборот). Вы так же поймете, что трансформаторы не могут производить энергию, они могут только преобразовывать ее. Любое устройство, которое могло бы произвести больше энергии, чем потребило, нарушило бы Закон сохранения энергии (энергия не может быть создана или уничтожена, она может быть только преобразована).

Практическая значимость вышесказанного становится более очевидной, когда рассматривается альтернатива: до появления эффективных трансформаторов, преобразование уровней напряжения и тока могло быть достигнуто только за счет использования установок, содержащих моторы и генераторы:

ransformers21

Установка мотор/генератор иллюстрирует основной принцип трансформатора

В этой установке мотор механически соединен с генератором. Генератор предназначен для получения желаемых уровней напряжения и тока за счет скорости вращения мотора. В то время, как и мотор и генератор являются достаточно эффективными устройствами, использование их в связке не обладает достаточной эффективностью, так что общий КПД установки находится в диапазоне 90% или менее. Кроме того, движущиеся части данных установок подвержены трению и механическому износу, а это, в свою очередь, влияет как на срок службы, так и на производительность. Трансформаторы же, с другой стороны, способны преобразовывать переменное напряжение и ток с очень высокой эффективностью без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Справедливости ради стоит сказать, что установки мотор/генератор не обязательно являются устаревшими в сравнении с трансформаторами во всех сферах применения. Если трансформаторы явно превосходят моторы/генераторы в преобразовании переменного напряжения и тока, то они не могут преобразовать одну частоту переменного тока в другую, а также преобразовать (сами по себе) постоянное напряжение в переменное или наоборот. Установки мотор/генератор могут все это делать относительно просто, хотя и с некоторыми ограничениями эффективности, описанными выше. Эти установки также обладают уникальным свойством сохранения кинетической энергии: то есть, если по какой-либо причине источник питания мотора мгновенно отключается, его угловой момент (инерция вращательного движения) будет еще некоторое время поддерживать вращение генератора, изолируя тем самым нагрузку (питаемую генератором) от «сбоев» в основной энергосистеме.

При внимательном просмотре цифр в SPICE анализе вы должны увидеть соотношение между коэффициентом трансформации и двумя индуктивностями. Обратите внимание на то, что первичная обмотка (l1) имеет в 100 раз большую индуктивность, чем вторичная (10000 Гн против 100 Гн), и что напряжение было понижено с 10 В до 1 В (в 10 раз). Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток. Поскольку обе обмотки трансформатора намотаны вокруг одного и того же сердечника (для наиболее эффективной магнитной связи между ними), параметры, влияющие на их индуктивность равны, за исключением количества витков в каждой из обмоток. Если мы еще раз взглянем на формулу индуктивности, то увидим, что индуктивность катушки пропорциональна квадрату числа ее витков:

ransformers22

Таким образом, должно быть очевидно, что две обмотки трансформатора в вышеприведенном SPICE моделировании при соотношении их индуктивностей 100 : 1 должны иметь соотношение витков провода 10 : 1, так как 10 в квадрате равно 100. Поскольку соотношение витков соответствует соотношению между первичным и вторичным напряжениями и токами (10 : 1), мы можем сказать, что коэффициент трансформации напряжения и тока равен соотношению витков провода между первичной и вторичной обмотками.

ransformers23

Повышающее / понижающее действие соотношения витков обмоток в трансформаторе аналогично соотношениям шестеренок в механических редукторных системах, которые преобразуют значения скорости и крутящего момента во многом таким же образом:

ransformers24

Повышающие и понижающие трансформаторы, применяющиеся для распределения электроэнергии, могут иметь гигантские размеры (сопоставимые с размером дома). На следующей фотографии показан трансформатор подстанции высотой около четырех метров:

Читайте также:  Как измерить ток выходного напряжения

transformer25

Обзор:

  • Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношениями витков первичных и вторичных обмоток.

ransformers26

  • Коэффициент трансформации напряжения равен квадратному корню из отношения индуктивности первичной обмотки к индуктивности вторичной обмотки.

Источник

Упрощенный вид расчета трансформатора

Упрощенный вид расчета трансформатора

Трансформаторы

Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Конструкция трансформатора

Конструкция трансформатора.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Ток фуко

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Трансформатор позволяет понизить напряжение до необходимых параметров

Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Закон трансформации

Внимание! Если в собираемом вами трансформаторе не одна вторичная обмотка, то мощность первичной состоит из суммы мощностей вторичных.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Обратите внимание! Все полученные расчетным путем параметры имеют неокругленную цифру, поэтому округлять надо обязательно и всегда только в большую сторону. К примеру, расчетная мощность получилась 35,8 Вт, значит, округляем до 40 Вт.

Разновидности сердечников для трансформатора

Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче. Здесь важно, чтобы количество обмоток уместилось.

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока. Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц.

Обозначение трансформатора на схеме

Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Заключение по теме

В этой статье мы постарались ответить на вопрос, как рассчитать трансформатор сетевого типа? Данный принцип подбора является упрощенным. Но для практических целей он даже очень достаточный. Так что новичкам лучше использовать именно его, и не лезть в дебри математических выкладок с большим количеством составляющих. Конечно, в нем не учитываются все потери, но округления показателей компенсируют их.

Источник

Что такое понижающий трансформатор и принцип его работы

Понижающие трансформаторы относятся к категории преобразователей значения электрического тока. Причем их входящее напряжение будет выше, чем исходящее. Представленные установки применяются в линиях электропередач и быту. Принцип работы понижающих приборов, особенности и применение будут рассмотрены далее.

Понижающий трансформатор 220 на 12

  • 1 Конструкция
    • 1.1 Интересное видео: Понижающий трансформатор
  • 2 Назначение
  • 3 Расчет характеристик оборудования
  • 4 Разновидности
  • 5 Распространенные модели
    • 5.1 Интересное видео: Сетевой понижающий трансформатор
  • 6 Как выбрать?
  • 7 Установка и эксплуатация

Конструкция

В принципе работы трансформаторов используется физический закон электромагнитной индукции. Стандартные устройства имеют сердечник и две обмотки. Первичная обмотка понижающего трансформатора подключается к электрической сети. Вокруг сердечника магнитопривода генерируется магнитное поле. Во вторичной обмотке появляется электричество с определенным показателем напряжения.

Мощность на выходе определяется соотношением количества витков в обеих катушках. Соотношением витков, составляющих обмотку первичной и вторичной катушек, можно выбирать характеристики выходного напряжения. Устройство трансформаторов позволяет получить требуемое значение тока для питания промышленных и бытовых электроприборов.

Читайте также:  Разложение кислорода электрическим током

Автотрансформатор понижающий напряжения

Трансформаторы напряжения не меняют частоту тока. Для этого понижающему агрегату потребуется иметь в конструкции выпрямитель. Он будет менять частоту тока с переменного до постоянного значения, и наоборот.

В понижающих трансформаторах сегодня применяются полупроводники. Их работу дополняет схема интегрального типа. В цепь включаются конденсаторы, микросхемы, пьезоэлементы, резисторы и т. д. Такой понижающий бытовой трансформатор имеет небольшие габариты, высокий уровень КПД, малый вес. Он не шумит, не нагревается. В трансформаторах представленных типов допускается выбрать мощность исходящего тока. Устройство включает в схему защиту против короткого замыкания. Традиционные конструкции также пользуются спросом. Подобные схемы просты, надежны.

Интересное видео: Понижающий трансформатор

Назначение

Трансформаторы понижающие применяются в различных сферах человеческой деятельности. Силовые конструкции устанавливаются на подстанциях на пути следования линий электропередач. Представленные типы аппаратов понижают при работе показатель тока в сети от 380 до 220 В. При такой мощности работают бытовые электроприборы. Представленная установка называется промышленным трансформатором понижения тока.

Автотрансформаторы понижающие

К бытовым понижающим разновидностям относят приборы, которые работают на более низких мощностях. Они принимают 220 В на первичный контур, а выдают 42, 36, 12 В, учитывая требования потребителя.

Расчет характеристик оборудования

Трансформатор понижающий может относиться к различным категориям, что зависит от ряда параметров. Помимо конструкционных отличий (наличие пьезоэлементов, конденсаторов и т. д.) оборудование отличается мощностью, назначением, строением. Общим для них является коэффициент трансформации. Он всегда будет меньше 1. Не существует понижающий трансформатор с коэффициентом больше 1. Такие приборы относятся к категории повышающих агрегатов.

Схема работы трансформатора

Чтобы подобрать правильное количество витков в контурах, производится расчет. Известно, что коэффициент трансформации, равен 0,2. Прибор понижает напряжение в сети. В первичной обмотке 120 витков. Определим количество витков во вторичной катушке:

ВО = 120*0,2 = 24 витка.

Используя коэффициент трансформации, определяем выходное напряжение. Если на первичную обмотку поступает ток 220 В, расчет будет таким:

НВ = 220*0,2 = 44 В.

Зная коэффициент трансформации, как определить мощность оборудования, не составит труда. Когда мы выбираем прибор для изменения параметров тока в цепи, требуется определение потребностей стандартных потребителей. При пониженной нагрузке в сети бытовая техника не будет работать правильно. Чтобы в трансформаторе не вырабатывалось слишком низкое значение тока, обязательно учитывают коэффициент трансформации.

Понижение и повышение напряжения

Разновидности

Когда потребность промышленного или бытового оборудования в вопросе уровня напряжения определена, нужно обратить внимание на выбор разновидности аппарата. Различают следующие виды:

  1. Тороидальный. Сердечник получил форму тора. Прибор характеризуется малым весом, незначительными габаритами. Широко применяется в радиоэлектронике.
  2. Стержневый. Применяются для оборудования высокой или средней мощности. Простота конструкции отличает устройство сердечника.
  3. Броневой. Относятся к категории маломощных конструкций. Магнитопривод как броня охватывает контуры.
  4. Многообмоточный. Имеет две и более обмотки.
  5. Трехфазный. Применяется в промышленной сети. Прибор призван понижать напряжение с 380 В до приемлемого потребителем уровня. В некоторых случаях применяется в бытовых целях.
  6. Однофазный. Подключаются к однофазной сети. Это одна из наиболее востребованных разновидностей.

Электронный понижающий трансформатор

Многообразие представленных конструкций позволяет применять их в различных сферах деятельности человека. Стоимость оборудования зависит от мощности аппаратуры, сложности конструкции, области применения. Про понижающие трансформаторы 380/220 мы уже писали на этой странице.

Видео: Силовой понижающий трансформатор с несколькими вторичными обмотками.

Распространенные модели

Покупатели отдают предпочтение в большинстве случаев всего нескольким моделям. Чтобы правильно выбрать аппаратуру, потребуется знать их маркировку, ее расшифровку. Большим спросом пользуются такие модели:

  1. ТСЗИ. Трехфазная разновидность, внутренняя конструкция которой защищена специальным кожухом.
  2. ОСМ. Применяются в системах сигнализации, освещения. Их устанавливают в специальный ящик. Внутрь корпуса не должна попадать грязь, пыль, влага. Монтируются на дин-рейку.
  3. ТТп, ТС-180, ЯТП применяются в бытовых сетях. Монтируются просто. Используются для напряжения невысокого уровня.
  4. ОСОВ, ОСО. Обладает сухой системой охлаждения. Применяют в бытовых сетях.

Информация о разновидности прибора приведена в маркировке. Она указывается на корпусе трансформатора. Маркировка находится в открытом доступе для обслуживающего персонала.

Интересное видео: Сетевой понижающий трансформатор

Как выбрать?

Выбрать трансформаторное устройство представленного типа может профессионал. Существует несколько правил в проведении этого процесса. В первую очередь следует обратить внимание на показатель входного напряжения. Оборудование должно быть рассчитано на прием определенного напряжения.

Затем нужно установить, какой уровень тока требуется потребителю. В соответствии с этой характеристикой выбирают параметры выходного напряжения. Мощность приборов, подведенных к трансформатору, должна быть немного ниже, чем его выходное напряжение.

Качественные изделия выдерживают аварийные ситуации. В них предусмотрена особая защита от короткого замыкания, перенапряжения, резких скачков электричества, перегрузок. В этом случае система работает стабильно даже в неблагоприятных условиях.

Установка и эксплуатация

Внутреннюю часть представленного агрегата нужно тщательно защищать от неблагоприятных внешних воздействий. В корпус не должны попадать пыль, влага, грязь и прочие посторонние вещества. Поэтому оборудование устанавливается в защитный корпус, кожух или ящик. В него должен быть обеспечен легкий доступ. Обслуживающий персонал при необходимости быстро произведет осмотр системы в случае необходимости.

Ящик с понижающим трансформатором

Монтаж нужно проводить таким образом, чтобы исключить вероятность случайного соприкосновения человека к неизолированным проводникам тока. Агрегат подключается к заземлению при помощи медного провода. Сечение должно составлять от 2,5 мм и более.

Периодически производится осмотр, обслуживание и ремонт трансформаторов. Неисправности должны вовремя устраняться.

Интересное видео: Как намотать своими руками сетевой понижающий трансформатор 220 на 12 вольт?

При выборе места установки, условий эксплуатации обязательно учитывают требования производителя. ГОСТ устанавливает климатическое исполнение, которое должно учитываться при установке.

Рассмотрев особенности, применение и условия эксплуатации понижающих трансформаторов, можно выбрать оптимальную разновидность приборов.

Источник

Трансформатор

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Читайте также:  Действие человека при поражении электрического тока

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Источник