Меню

Сообщение применение электрического тока физика



Что такое электрический ток?

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Опыт с заряженными телами

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Электрофорная машина

Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м 2 . Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Электрический ток в металлах

Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

Электрический ток в газах

Рис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Рис. 6. Электрический ток в средах

Проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

Читайте также:  По методу контурных токов в приведенной ниже схеме уравнение для контура aboh будет иметь вид

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Источник

Доклад на тему: « Использование электрического тока в быту »

Доклады Электрический ток

« ИСПОЛЬЗОВАНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА В БЫТУ »

Выполнил ученик 10 «В» класса

Электричество – это энергия несущая силу и следовательно потенциальную опасность.

С цивилизацией к нам в дом пришло электричество. Оно даёт нам тепло, свет и силу, но с приходом этих благ приходят и опасности связанные с электричеством. Поэтому необходимо и в этой сфере проявлять бдительность для выживания в быту. Для начала нужно определиться с тем, что же такое электричество, в нашем случае электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц (электронов)

Свойства электричества

Электрический ток проходя через проводник нагревает его, что и влечёт последующие изменения изоляции, которые выливаются в технические неисправности и аварии.

Перегрузки электрической сети помогают «сжигать» изоляцию. Она усыхает, трескается и осыпается оголяя провода, а они уже являются прямыми «убийцами» стремящиеся сделать короткое замыкание со всем с чем прикоснуться.

Разные полюса не должны соприкасаться, электрическому току нужно обязательно пройти через какое либо устройство, чтобы сила тока соответствовала норме (т. е. ток должен отдать кому то свою силу). Когда ток идёт по проводам (имеющим определённое сопротивление) то уже отдаёт расчитанную силу, которая и вызывает его определённое нагревание. Точно также происходит при проходе через приспособления (лампы, плиты, телевизор и т. д.) которые мы используем в быту.

Все приборы в быту имеют своё сопротивление для прохождения тока. Измеряется оно кОм (килоомами), а сопротивление проводов – Ом (омами).

Если вдруг происходит «короткое замыкание», то сила тока (измеряется в А – амперах) резко увеличивается в несколько тысяч раз с выделение большого количества тепла (что зачастую и является причиной пожаров и прочих несчастных случаев. Поэтому всегда необходимо расчитывать, распределять и следить за нагрузкой электропроводки.

Причиной «короткого замыкания» может быть не только из-за перегрузки в сети, но и от неправильного соединения токоведущих концов, износа изоляции, перекручивания, влажность.

Опасность электрического тока заключается в основном, как электрический разряд который способен остановить работу сердца и дыхания. На это достаточно напряжения 36 вольт. Необходимо также знать, что убивает сила электрического тока, а не его напряжение.

Многим известны искры возникающие вследствие использования синтетической одежды, при соприкосновении с разными предметами и т. д. которые создают неприятные у нас ощущения. Этот ток называется статическим, его разряды могут достигать до 7000 В, а при работе с радио приборами всего лишь при напряжении 20 В какой то разряд может чувствительно «кольнуть», потому что сила тока там больше.

При сильном электрическом ударе ток проходящий через организм вызывает резкое сокращение скелетных, дыхательных мышц и мышц сердца. Этот внезапный спазм и влечёт за собой все остальные изменения в организме. Именно по этой причине человек схвативший оголённый электрический провод не в состоянии его отпустить и чем выше сила тока, тем сильнее спазм.

Длительность контакта с электрическим током конечно же имеет значение тоже и порой может быть решающим для выживания. Поэтому нужно об этом помнить и принимать быстрые и правильные действия по оказании неотложной помощи.

Интересен факт, что влияние на мозг электрического тока безболезненно, но тем не менее очень разрушительно. Встречаются также факты, когда люди выдерживают смертельные дозы силы электрического тока и напряжения без особого труда.

Есть объяснения этого феномена, которые сводятся к разным факторам среди которых есть место и особые свойства кожи, и волевые усилия и т. д., но нам для выживания эта информация не очень важна, т. к. главное в выживании не преодолеть трудность, а избежать опасность (преодоление является как дополнительным средством для выживания).

Важно помнить ещё один момент. Какая бы не была изоляция электрический ток всегда проходит в той или иной степени. Поэтому имея перчатки и изоляционный коврик не думайте, что вы полностью застрахованы. В случае скачков напряжения сила тока может подскочить в десятки раз (сила тока измеряется в А – амперах)

При воздействии тока высокого напряжения, происходят термические явления, а именно для организма это ожоги.

В бытовых условиях наличие перчаток и резиновой обуви (сухой) значительно обезопасит вас при работе с электричеством. Главное не стать участком замкнутой цепи потока электрического тока.

Действия при виде человека находящегося под воздействием электрического тока, сводятся к следующему:

1. Вырубить подачу электрического тока (центральный или локальный)

2. Помните пространство вокруг пострадавшего может быть опасным (мокрым, провода оголённые и т. д.)

3. С помощью изолированного предмета (палки) удалить электрический провод.

4. Вынести пострадавшего вне опасной зоны (не касайтесь открытых участков тела, только за сухую одежду) и применить методы неотложной помощи.

5. Помните, что возможно шоковое состояние и человек может пытаться много говорить, идти. Нужно его удержать до прибытия квалифицированной помощи.

Опасной зоной является поверхность в радиусе 1 метра (мокрой около 3-х) при упавшем проводе. Если это провод (ЛЭП), то как правило человека уже не спасти, потому что ток очень большой силы. На крыше вагона электропоезда напряжение около 27000 В также создает опасную зону, это стоит знать любителям «прокатиться на крыше».

Все промышленные электрические приборы изготавливаются в соответствии определённых стандартов в целях безопасности. Поэтому используя их нужно строго следовать инструкциям к ним приложенным.

Самодельные электрические приборы могут быть потенциально опасными, поэтому к ним нужно относится особенно бдительно.

Все электрические приборы должны иметь выключатели и иметь заземление.

Правила обращения с электричеством:

1. Уважайте силу электрического тока. Внимательно следите за своими действиями и движениями. Понимайте, что делаете.

2. При ремонте или замене деталей в электроприборах отключайте его от источника питания. При необходимости используйте свет от фонарика работающего от батареек.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

3. Избегайте хватать сразу 2 провода, даже если они «вроде» отключены от сети. Проверьте ещё раз.

4. Располагайте провода отдельно, во избежание случайного соприкосновения неизолированных концов.

5. После соединения проводов сразу изолируйте и только потом приступайте к соединению следующей пары.

6. В качестве изоляции не используйте канцелярские липкие ленты.

7. Вода является опасным «соседом» для электричества, поэтому максимально удаляйте их друг от друга.

8. Сохраняйте в целости все виды проводок (изоляции) и соединений.

9. Нельзя использовать мокрые электрические приборы.

Основная часть современной лампы накаливания – спираль из тонкой вольфрамовой проволоки. Вольфрам – тугоплавкий металл, его температура плавления 3387 ° С. В лампе накаливания вольфрамовая спираль нагревается до 3000 ° С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала. Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, современные лампы наполняют азотом, иногда – криптоном или аргоном. Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. разрушению накаленной нити.

Промышленность выпускает лампы накаливания на напряжение 220 и 127 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 и 6 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).

Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плитки, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.

Основная часть всякого нагревательного электрического прибора – нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (до °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием нихром » . Удельное сопротивление нихрома р = 1,1 (Oм • мм)/ м, что примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома дает возможность изготовлять из него весьма удобные – малые по размерам – нагревательные элементы.

В нагревательном элементе проводник в виде проволоки или ленты наматывается нa пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит нихромовая лента, от которой нагревается нижняя часть утюга.

Электрические цепи всегда рассчитаны на определенную силу тока. Если пo той или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция – воспламениться.

Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание. Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало, пo сравнению с сопротивлением участка цепи. Короткое замыкание может возникнуть, например, при ремонте проводки под током или при случайном соприкосновении оголенных проводов.

Сопротивление цепи при коротком замыкании незначительно, поэтому в цепи возникает большая сила тока, провода при этом могут сильно накалиться и стать причиной пожара. Чтобы избежать этого, в сеть включают предохранители.

Назначение предохранителей – сразу отключить линию, если сила тока вдруг окажется больше допустимой нормы. Рассмотрим устройство предохранителей, применяемых в квартирной проводке.

Главная часть предохранителя – проволока С из легкоплавкого металла (например, из свинца), проходящая внутри фарфоровой пробки П. Пробка имеет вихтовую нарезку Р и центральный контакт К. Нарезка соединена с центральным контактом свинцовой проволокой. Пробку ввинчивают в патрон, находящийся внутри фарфоровой коробки.

Свинцовая проволока представляет, таким образом, часть общей цепи. Толщина свинцовых проволок рассчитана так, что они выдерживают определенную силу тока, например 5 А, 10 А и т. д. Если сила тока превысит допустимое значение, то свинцовая проволока расплавится и цепь окажется разомкнутой.

Предохранители с плавящимся проводником называют плавкими предохранителями, в котором перегоревшую деталь можно заменять. Еще есть предохранители, действие которых основано нe на плавлении, а на тепловом расширении тел при нагревании ( слайд №8 ). Предохранители располагают нa специальном щитке, устанавливаемом у самого ввода проводов в квартиру, называемом счетчиком. В каждый из проводов последовательно включают отдельный предохранитель. Некоторые люди вместо настоящих предохранителей вставляют «жучки», т. е. различные проволочки. Этого делать нельзя, т. к. обычная проволока при резком возрастании силы тока не перегорает и электрическая цепь не прерывается, следовательно произойдет возгорание проводов всей проводки, а это ведет к пожару.

Читайте также:  Девушки ток в спорте

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Если с предохранителями в квартире все в порядке, то люди могут спокойно пользоваться различными электрическими приборами.

Тело человека и животных очень хорошо проводит электрический ток, поскольку содержит ионные растворы. Характер и глубина воздействия электрического тока на организм человека зависит от силы и рода тока и времени его действия, пути прохождения через тело человека, физического и психологического состояния последнего. Наибольшую опасность представляет прохождение тока через мозг и те нервные центры, которые контролируют дыхание и сердце человека. Смерть человека может наступить при силе тока 0,1А (100 мА). Особенно опасны участки, расположенные на висках, спине, тыльных сторонах рук, голенях, затылке и шее. Их сопротивление существенно меньше, чем у остальных частей тела. Самыми уязвимыми у человека являются, так называемые, акупунктурные точки на шее и мочках ушей: при ударе током в эти точки смертельным может оказаться даже напряжение 10–15 В.

Сопротивление человеческого тела не имеет постоянного значения. Оно зависит от состояния человека, его кожи, наличия на ее поверхности пота, содержания алкоголя в крови. Сухая, огрубевшая кожа имеет высокое сопротивление, а тонкая, нежная и влажная – низкое. Снижается сопротивление и при различных повреждениях кожи (порезы, царапины, ссадины). При сухой и неповрежденной коже сопротивление тела человека от пальцев одной руки до пальцев другой составляет 100000 Ом и выше. Если же руки потные, то сопротивление между ними оказывается равным 1500 Ом и ниже. Каждому из этих случаев соответствует свое смертельное напряжение.

Опасность поражения током требует обязательного соблюдения правил безопасного труда при работе с электрическими цепями. Прикоснувшись к проводнику, находящемуся под напряжением, человек включает себя в электрическую цепь.

Переменный ток более опасен , чем постоянный. Напряжение, действующее при соприкосновении с одним полюсом или фазой источника тока, называется напряжением прикосновения. В случае, когда человек оказывается вблизи упавшего на землю провода, находящегося под напряжением, возникает опасность поражения шаговым напряжением. Напряжение шага – это напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. Такую цепь создает растекающийся по земле от провода ток. Оказавшись в зоне растекания тока, человек должен соединить ноги вместе и, не спеша выходить из опасной зоны так, чтобы при передвижении ступня одной ноги не выходила полностью за ступню другой. При случайном падении можно коснуться земли руками, чем увеличить разность потенциалов и опасность поражения. Действие электрического тока на организм характеризуется основными поражающими факторами: электрический удар, приводящий к судорогам, остановке дыхания и сердца; электрические ожоги; механическое воздействие; биологическое действие тока выражается в раздражении и перевозбуждении нервной системы.

При поражении человека электрическим током нужно освободить пострадавшего от проводника с током. В первую очередь следует обесточить проводник. Если отключить его невозможно, надо срочно отделить от него пострадавшего, используя сухие палки, веревки и другие средства. Можно взять пострадавшего за одежду, если она сухая и отстает от тела, не прикасаясь при этом к металлическим предметам и частям тела, не покрытым одеждой. При оказании помощи надо изолировать себя от «земли», встав на непроводящую ток подставку (сухая доска, сухая резиновая обувь и т. п.), и обернуть руки сухой тканью. Пострадавшему обеспечить покой и наблюдение за пульсом и дыханием.

Чтобы избежать поражения электрическим током, необходимо все работы с электрическим оборудованием и приборами проводить после отключения их от электрической сети. Электроприборы и электромашины в доме, ванной и на кухне – потенциальные источники опасности. Стоя под душем или держась одной рукой за водопроводный кран, опасно мокрым пальцем даже дотрагиваться до неисправного выключателя.

Однако действие электрического тока на человеческий организм может быть не только отрицательным, но и положительным. Во время медицинского обследования в современной поликлинике и при жалобах пациентов на сердечные или головные боли врачи обязательно снимают электрокардиограмму или энцефалограмму – сигналы небольших биологических токов, протекающих в сердце или головном мозге. Сравнивая форму сигналов определенного участка организма в здоровом и больном состоянии, легко установить причину заболевания. Посредством электрических раздражений мозга (электрошоком) лечат некоторые психические заболевания. Кратковременные высоковольтные электрические разряды через сердце помогают иногда предотвратить смерть пациента при тяжелом нарушении сердечной деятельности. При радикулите, невралгии и некоторых других заболеваниях применяют гальванизацию (электрофорез): приложив к пациенту электроды, пропускают через него слабый постоянный ток. Это оказывает болеутоляющий эффект, улучшает кровообращение.

Источник

Понятие, виды и свойства электрического тока

Время на чтение:

Электрический ток

Применение электрического тока разнообразно, поскольку невозможно представить без него жизнь человечества. Следует понимать его природу возникновения, чтобы направить энергию во благо, а не во вред. Электрический ток подчиняется законам физики, которые используются для изготовления различных устройств. Для его грамотного использования нужно знать основные электрические величины.

Основные понятия

Электрическим током называется упорядоченное движение заряженных частиц, благодаря которым может порождаться электромагнитное поле. К заряженным частицам можно отнести следующие: электроны, протоны, нейтроны, дырки и ионы. В научной литературе нейтрон не имеет заряда, однако участвует в образовании электромагнитного поля.

Кроме того, некоторые не знают, почему электроток является векторной величиной. Это утверждение следует из его определения, поскольку он имеет направление. В некоторых источниках можно встретить такое определение: электроток — скорость, с которой происходит изменение зарядов элементарных частиц в определенный момент времени. Ток характеризуется силой и напряжением (разность потенциалов). Свойства, которыми обладает электроток: тепловое, механическое, химическое и создание электромагнитного поля.

Сила и тип тока

Сила тока — количество заряженных частиц, проходящих через проводник за единицу времени, равную одной секунде. Материалы по проводимости делятся на три группы: проводники, полупроводники и диэлектрики. Проводники — вещества, которые способны проводить ток, поскольку в них есть свободные электроны. Их наличие можно выяснить по таблице Д. И. Менделеева, воспользовавшись электронной конфигурацией химического элемента.

Что называется электрическим током

Полупроводники могут проводить поток заряженных частиц при определенных условиях. Простым примером является полупроводниковый диод, проводящий ток только в одном направлении. Носителями заряда являются электроны и дырки. В диэлектриках нет вообще носителей заряда, следовательно, этот факт исключает проводимость электричества вообще.

Сила тока обозначается буквой I и измеряется в амперах (А). 1 А — единица измерения силы неизменяющегося тока, который проходит по двум проводникам бесконечной длины и очень малой площади поперечного сечения, являющимися параллельными между собой и расположенными в вакуумном пространстве на расстоянии одного метра друг от друга, причем каждый метр такого проводника может вызывать силу взаимодействия, равную 2*10^(-7) Н.

Упрощенный вариант формулировки следующий: сила электротока, при которой через площадь поперечного сечения проводника за единицу времени t проходит количество электричества Q, называется ампером. Определение записывается в виде формулы и имеет следующий вид: I = Q / t.

Бывают вспомогательные единицы измерения, к которым относят мА (0,001 А), кА (1000 А) и т. д.

Значение силы тока измеряется при помощи амперметра, который подключается в цепь последовательно. Видов электрического тока всего два: постоянный и переменный. Если ток остается постоянным или изменяется по величине, не меняя направления, то он называется постоянным.

 применение электрического тока

Переменный ток изменяется по амплитудному значению и направлению протекания по какому-либо закону. Его основной характеристикой является частота. По закону изменения амплитуды их можно разделить на следующие виды: синусоидальные и несинусоидальные. Первые изменяются по гармоническому закону и его графиком является синусоида. Формула синусоидального тока включает в себя максимальное значение силовой характеристики Iм, время t и угловую частоту w = 2 * 3,1416 * f (частота тока источника питания): i = Iм * sin (w * t). Еще одной величиной, характеризующей электроток, является напряжение или разность потенциалов.

Разность потенциалов

Любое вещество состоит из атомов, состоящих из элементарных частиц. Ядро обладает положительным зарядом, а вокруг него по своим орбитам вращаются электроны, имеющие отрицательный заряд. Атомы являются нейтральными, поскольку число электронов равно количеству протонов в ядре.

Понятие электрического тока

При потерях электронов атомами образуется электромагнитное поле, создаваемое протонами, поскольку они стремятся вернуть недостающие отрицательно заряженные частицы. Если по какой-то причине произошел избыток электронов, то формируется электромагнитное поле с отрицательной составляющей. В первом и во втором случаях формируются положительные и отрицательные потенциалы соответственно. Различие между ними называется напряжением или разностью потенциалов.

Величина различия прямо пропорциональна значению напряжения: при увеличении разницы возрастает значение напряжения. При соединении потенциалов с различными знаками возникает электроток, который стремится устранить причину разности и вернуть атом в исходное состояние.

Электрическое напряжение — работа, совершаемая электромагнитным полем по перемещению точечного заряда. Единица измерения напряжения является вольт (В), а его значение можно измерять с помощью вольтметра. Он подключается параллельно участку или электроприбору, на котором необходимо измерить разность потенциалов. 1 В является разностью потенциалов между двумя точками с зарядом 1 Кл, при котором сила электромагнитного поля совершает работу, равную 1 Дж.

Условия получения и законы

Электроток возникает при воздействии электромагнитного поля на проводник. Но также справедливо и обратное утверждение, доказывающее возникновение электрического поля в результате протекания тока. Важными условиями его получения являются такие факторы: наличие свободных электронов и источника напряжения. Наличие носителей заряда влияет на проводимость, а напряжение является внешней силой, которая способствует «вырыванию» из кристаллической решетки этих частиц.

Проводимость веществ

Носителями заряда в металлах являются электроны. При высокой температуре проводника возникает движение атомов, некоторые из них распадаются и образуются новые свободные электроны. Заряженные частицы взаимодействует с атомами и узлами кристаллической решетки, и часть энергии превращается в тепловую. Этот процесс называется электрическим сопротивлением проводника. Оно зависит от следующих составляющих:

Ток электрический в средах

  • Температуры.
  • Типа вещества.
  • Длины проводника.
  • Площади поперечного сечения.

При уменьшении температуры вещества происходит снижение его сопротивления. Зависимость от типа вещества объясняется тем, что каждое вещество состоит из атомов. Они образуют между собой кристаллическую решетку, причем у каждого вещества она разная. Каждый атом имеет определенную электронную конфигурацию, а следовательно, отличается от других наличием носителей заряда.

Кроме того, потоку заряженных частиц сложнее пройти через длинный проводник с маленьким значением его площади поперечного сечения.

Проводником является и электролит или жидкость, проводящая электрический ток. Носителями заряда в жидкостях являются ионы, которые бывают положительно (анионы) и отрицательно (катионы) заряжены. Электрод с положительным потенциалом называется анодом, а с отрицательным — катодом. Перемещение происходит при подаче напряжения на электроды. Катионы перемещаются к аноду, а анионы — к катоду.

Читайте также:  Работа операционного усилителя по постоянному току

При протекании тока через электролит происходит его нагревание, в результате которого увеличивается сопротивление жидкости. Некоторые газы способны проводить электроток тоже. Носителями заряда в них являются ионы и электроны, а сам «заряженный газ» называется плазмой.

Электричество в полупроводниках подчиняется тем же законам, что и в проводниках, но есть некоторые отличия. Представлять носители заряда в них могут электроны и дырки. При уменьшении температуры сопротивление его возрастает. При внешнем воздействии на полупроводник связи в кристаллической решетке ослабевают и появляются свободные электроны, а в месте, где они были, происходит образование дырки. Однако она притягивает другой электрон, который находится рядом. Так и происходит движение дырок. Следовательно, сумма дырочного и электронного электромагнитных полей образует электроток.

Основные соотношения

Все явления подчиняются физическим законам, и электричество не является исключением. Основные соотношения зависимости одной величины от других описаны в законах, которые применяются для расчета различных схем для простых и сложных устройств. Кроме того, правила помогают избежать различных аварийных ситуаций, поскольку электричество может служить и во вред человечеству, вызывая пожары, травмы и даже смерть.

Что называют электрическим током

Основным законом, используемым в электротехнике, является закон Ома для участка и полной цепи. Для участка цепи он показывает зависимость силы тока I от напряжения U и электрического сопротивления R и его формулировка следующая: ток, протекающий на участке цепи, прямо пропорционален значению напряжения и обратно пропорционален сопротивлению этого участка (I = U / R).

Для полной цепи, в которой существует электродвижущая сила (e) и внутреннее сопротивление источника питания: формулировка выглядит следующим образом: ток, протекающий в полной цепи, прямо пропорционален электродвижущей силе (ЭДС) и обратно пропорционален полному сопротивлению цепи с учетом внутреннего сопротивления источника питания (i = e / (R + Rвн)).

Из этих законов можно получить следствия, которые нужны для нахождения величин напряжения, ЭДС и сопротивлений. Следствия из законов Ома:

Виды электрического тока

  • R = U / I.
  • U = I * R.
  • e = i * (R + Rвн).
  • R = (e / i) — Rвн.
  • Rвн = (e / i) — R.

Электроток, при прохождении через проводник или полупроводник, совершает работу, при которой выделяется тепловая энергия. Это одно из его свойств. Ее численное значение определяется с помощью закона Джоуля-Ленца.

Закон показывает зависимость количества теплоты от величин напряжения и силы тока, а также времени протекания электротока.

Его формулировка следующая: количество теплоты Q, выделяемое током при протекании через проводник за единицу времени, прямо пропорционально зависит от напряжения и силы тока (Q = U * I * t). Следствия из этого закона следующие:

 электроток

    • Q = sqr (I) * R * t.
    • Q = (sqr (U) * t) / R.
    • I = Q / (U * t).
    • I = sqrt ((Q / (R * t)).
    • U = Q / (I * t).
    • U = sqrt (Q * R * t).
    • t = Q / (U * I).
    • t = Q / (sqr (I) * R).
    • t = Q / (sqr (U) / R).
  • Q = P * t.
  • P = Q / t.
  • t = Q / P.

Величина Р является мощностью и вычисляется по формуле: Р = U * I. Если электрический ток в цепи не совершает механическую работу и не производит никакого действия, то все электрическая энергия преобразуется в тепловую, т. е. A = Q.

Опытным путем было установлено, что при пересечении линий электромагнитной индукции проводником замкнутого типа в нем появляется электроток. Закон о влиянии электромагнитного поля на возникновение тока называется законом Фарадея. Он гласит: отрицательное значение ЭДС электромагнитной индукции в контуре, который является замкнутым, равно изменению магнитного потока с течением времени. Из закона Фарадея следует, что при движении проводника в постоянном магнитном поле на концах первого возникает разность потенциалов. Этот принцип используется для изготовления генераторов, трансформаторов и т. д.

Таким образом, электрический ток, как все явления и процессы, подчиняется определенным законам, которые позволяют не только контролировать, но и избегать негативных последствий, связанных с его работой. Производить расчеты нужно и для экономии времени, поскольку подбор номинала какого-либо элемента схемы может привести к выходу из строя устройства.

Источник

Электрический ток и его использование

Урок 29. Технология 8 класс ФГОС

Доступ к видеоуроку ограничен

Конспект урока «Электрический ток и его использование»

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

На сегодняшний день сложно представить нашу жизнь без электричества. Ведь именно оно освещает наше жильё и улицы, приводит в движение трамваи, троллейбусы и поезда.

Да, и все бытовые приборы, которыми мы пользуемся дома, работают при помощи электрической энергии.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Без него невозможно было бы развитие кибернетики, вычислительной и космической техники.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Так откуда же она берётся?

Чтобы любая энергия стала полезной человеку, он должен был научиться с ней обращаться, это значит, должен был научиться преобразовывать одни виды энергии в другие.

Человечество справилось с этой нелёгкой задачей. Люди стали получать электрическую энергию, которая так необходима для производственных и бытовых нужд, из других видов энергии: механической, тепловой, световой, химической.

Преобразования энергии различных видов в электрическую энергию происходят на электростанциях. Устройство, которое преобразует какую-либо энергию в электрическую, называют источником.

Основную часть электрической энергии люди получают преобразованием механической энергии при помощи специальных электромеханических машин.

Эти машины называются – электрогенераторы. В электрогенераторе механическая энергия турбины преобразуется в электрическую энергию. Турбина – это такое вращающееся колесо специальной конструкции. Так, например, на гидроэлектростанциях турбина вращается за счёт энергии падающей воды.

На тепловых электростанциях турбина вращается с помощью энергии движения пара.

А на ветряных электростанциях – за счёт энергии ветра.

На космических станциях источником электрической энергии являются фотоэлементы. Именно они преобразуют солнечную энергию в электрическую.

Помимо стационарных источников существуют переносные источники электрической энергии. Это гальванические элементы, различные аккумуляторы, а также батареи из них.

В переносных источниках электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом – электролитом. Существуют ещё и малогабаритные механические генераторы, которые работают за счёт мускульной силы рук или ног человека. Примером малогабаритного механического генератора может послужить генератор для велосипедной фары.

Давайте попробуем разобраться, как же происходит процесс передачи электрической энергии.

Вообще, первые сведения об электричестве появились много столетий назад и относились они тогда к электрическим зарядам, которые получались посредством трения. Ещё в Древней Греции было установлено, что если янтарь натереть шерстяной тканью, то он приобретёт способность притягивать лёгкие предметы.

Кстати, по-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество». Затем люди выяснили, что точно такими же свойствами обладают и многие другие вещества. Тогда такие вещества были названы наэлектризованными. Сейчас же мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами же тела называем заряженными.

Итак, электрическая энергия передаётся при помощи потока мельчайших заряженных частиц.

Эти заряженные частицы всегда возникают при тесном контакте различных веществ. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае вещества называют проводниками, во втором – диэлектриками или изоляторами.

Проводниками являются все металлы, растворы солей, кислот, включая обычную питьевую воду.

Примерами изоляторов могут служить стекло, резина, различные пластмассы.

Следует знать, что деление веществ на проводники и диэлектрики весьма условно. Так как все вещества в большей или меньшей степени проводят электричество.

В природе различают два вида электрических зарядов. Условно их называют положительными и отрицательными.

Вокруг каждого из этих зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу. В случае взаимодействия различных веществ разноимённые заряды будут стремиться перейти из одного вещества в другое. Перемещение этих заряженных частиц и будет представлять собой электрический ток.

Вообще, электрическим током называется упорядоченное (направленное) движение заряженных частиц под действием электрического поля.

Исторически за направление электрического тока было принято движение положительных зарядов, которые перемещаются от положительного полюса источника к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов, прошедших за единицу времени через поперечное сечение проводника, называется силой тока.

Выражается эта зависимость следующей формулой: , где – сила тока, – количество зарядов, – время.

Единицу силы тока называют ампером, в честь французского учёного Андре Ампера.

Электропитание всех электрических устройств осуществляется постоянным и переменным током. Электрический ток, направление и значение которого не меняются со временем, называют постоянным. А электрический ток, направление и значение которого способны периодически изменяться, называют переменным.

Электропитание большинства электротехнических устройств осуществляется переменным током.

А теперь давайте рассмотрим особенности протекания электрического тока в различных средах и его применение.

Итак, при рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока – элементарных зарядов – характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным.

В металлических проводниках ток образуется за счёт движения электронов, имеющих отрицательный заряд. Вообще, все металлы являются проводниками тока. Применение тока в металлах используется для передачи электроэнергии на расстояние.

Из жидкостей электрический ток проводят только электролиты – растворы солей, кислот и щелочей. Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко применяют в аккумуляторах, в электрометаллургии для получения алюминия и бокситов, а также при электрохимической обработке материалов и очистке металлов от примесей.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают лампы дневного света, лазеры, прожекторы.

Устройства, которые преобразуют электрическую энергию в другие виды энергии – свет, тепло, механическую и химическую энергию, – называют приёмниками или потребителями электрической энергии, а в электротехнике – нагрузкой.

Для того чтобы электрическое устройство (или нагрузка) работало, его нужно соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике их называют проводами.

То, о чём мы сейчас с вами говорили: источник электрической энергии, нагрузка и соединительные провода – всё вместе это называется электрической цепью.

Итоги урока

На этом уроке мы говорили об электрическом токе и его использовании. Рассмотрели различные источники электроэнергии. Разобрались, как происходит процесс передачи электрической энергии. А также рассмотрели особенности протекания электрического тока в различных средах и его применение.

Источник