Меню

Соленоид в цепи переменного тока



Соленоиды (Часть 1). Виды и устройство. Работа и особенности

Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.

Виды соленоидов

Solenoidy risunok 2

По назначению соленоиды разделяют на два класса:

  1. Стационарные. То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
  2. Импульсные. Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.

Стационарные способны создать поля не более 2,5х10 5 Э. Соленоиды импульсного типа могут создать поля 5х10 6 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I, где k – постоянная величина соленоида, поддающаяся расчету.

Стационарные делятся:
  • Резистивные.
  • Сверхпроводящие.

Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.

Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.

Устройства для создания мощных магнитных полей включают в себя три главные части:
  1. Соленоид.
  2. Источник тока.
  3. Система охлаждения.

При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.

Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.

Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.

Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.

Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.

Критическое поле повышается при снижении температуры от 0 до наибольшего значения. Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.

Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.

Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.

Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.

Устройство и принцип действия

Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется магнитное поле.

Solenoidy risunok

Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.

Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:

Formula

Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0 — вакуумная магнитная проницаемость.

На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.

По краям соленоида магнитная индукция равна:

Formula 2

Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.

Этот ток образует в соленоиде магнитное поле:

Formula 3

Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:

Formula 4

Индуктивность соленоида определяется:

Formula 5

Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 — вакуумная магнитная проницаемость.

При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: активной и реактивной. Они зависят от индуктивности и электрического сопротивления проводника катушки.

Источник

Соленоид

Рис. 1. Соленоид с однослойной намоткой.

Образование магнитного потока в соленоиде. В центре по длине на оси соленоида магнитное поле практически однородно.

Схема магнитных и вихревых электрических полей в соленоиде при протекании по обмотке переменного тока.

Рис.2. Картина силовых линий магнитного поля, создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

Солено́ид — (греч. solen — канал, и eidos — подобный) разновиднось катушки индуктивности. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, длина которого значительно больше диаметра, магнитное поле направлено параллельно оси соленоида и однородно, причём его напряжённость пропорциональна силе тока и (приближённо) числу витков. Внешнее магнитное поле соленоида подобно полю стержневого магнита (см. рис.2). [1]

Конструктивно длинные соленоиды выполняются в виде однослойной намотки (см. рис. рис.1), так и многослойной.

Читайте также:  Номинал тока в светодиоде

Если длина намотки значительно превышает её диаметр, то в полости соленоида при подаче в него электрического тока создаётся магнитное поле, близкое к однородному.

Также часто соленоидами называют электромеханические устройствами, исполнительными механизмами, обычно со втягиваемым ферромагнитным сердечником. В таком применении соленоид почти всегда снабжается внешним ферромагнитным магнитопроводом, обычно называемым ярмом.

Содержание

  • 1 Соленоид на постоянном токе
  • 2 Индуктивность соленоида
  • 3 Соленоид на переменном токе
  • 4 Применение
  • 5 Примечание
  • 6 См. также

Соленоид на постоянном токе [ править | править код ]

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно [2]

<\displaystyle B=\mu _<0 data-lazy-src=

Соленоиды — устройство, работа, применение

В этой статье речь пойдет о соленоидах. Сначала рассмотрим теоретическую сторону данной темы, затем практическую, где отметим сферы применения соленоидов в различных режимах их работы.

Соленоидом называется цилиндрическая обмотка, длина которой значительно превышает ее диаметр. Само слово соленоид образовано сочетанием двух слов — solen и eidos, первое из которых переводится как труба, второе — подобный. То есть соленоид — это катушка, по форме напоминающая трубу.

Соленоиды, в широком смысле, — это катушки индуктивности, наматываемые проводником на цилиндрический каркас, которые могут быть как однослойными, так и многослойными . Поскольку длина намотки соленоида сильно превышает его диаметр, то при подаче постоянного тока через такую обмотку, внутри нее, во внутренней полости, формируется почти однородное магнитное поле.

Соленоид

Зачастую соленоидами называют некоторые исполнительные механизмы, электромеханического принципа работы, как например соленоидный клапан автоматической коробки передач автомобиля или втягивающее реле стартера. Как правило, в качестве втягиваемой части выступает ферромагнитный сердечник, а сам соленоид оснащен снаружи магнитопроводом, так называемым ферромагнитным ярмом.

Если в конструкции соленоида магнитный материал отсутствует, то при протекании по проводнику постоянного тока, вдоль оси катушки формируется магнитное поле, индукция которого численно равна:

Где, N – число витков в соленоиде, l – длина намотки соленоида, I – ток в соленоиде, μ0 — магнитная проницаемость вакуума.

На краях соленоида магнитная индукция вдвое меньше, чем внутри него, поскольку обе половины соленоида в месте их объединения привносят равный вклад в магнитное поле, создаваемое током соленоида. Это можно сказать о полубесконечном соленоиде или о достаточно длинной, по отношению к диаметру каркаса, катушке. Магнитная индукция по краям будет равна:

Поскольку соленоид — это в первую очередь катушка индуктивности, то как и любая катушка, обладающая индуктивностью, соленоид способен запасать в магнитном поле энергию, численно равную работе, которую совершает источник для создания в обмотке тока, порождающего магнитное поле соленоида:

Изменение тока в обмотке приведет к возникновению ЭДС самоиндукции, и напряжение на краях провода обмотки соленоида будет равно:

Читайте также:  Ток күшінің амплитудалық мәні 10 а болса оның әсерлік мәні

Индуктивность соленоида будет равна:

Где, V – объем соленоида, z – длина провода в обмотке соленоида, n – число витков в единице длины соленоида, l – длина соленоида, μ0 — магнитная проницаемость вакуума.

При пропускании через провод соленоида переменного тока, магнитное поле соленоида так же будет переменным. Сопротивление соленоида переменному току имеет комплексный характер, и включает в себя как активную, так и реактивную составляющие, определяемые индуктивностью и активным сопротивлением провода обмотки.

Практическое использование соленоидов

Соленоиды применяются во многих отраслях промышленности и во многих областях гражданской сферы деятельности. Часто поступательные электроприводы — это как раз пример работы соленоидов на постоянном токе. Ножницы отрезания чеков в кассовых аппаратах, клапаны двигателей, тяговое реле стартера, клапаны гидравлических систем и т. д. На переменном токе соленоиды работают в качестве индукторов тигельных печей.

Обмотки соленоидов, как правило, изготавливают из медного, реже — из алюминиевого провода. В высокотехнологичных отраслях применяют обмотки из сверхпроводников. Сердечники могут быть железными, чугунными, ферритовыми или из иных сплавов, часто в форме пакета листов, а могут и вовсе отсутствовать.

В зависимости от назначения электрической машины, сердечник делается из того или иного материала. Устройства типа подъемных электромагнитов, сортирующие семена, очистители угля и т. д. Далее рассмотрим несколько примеров применения соленоидов.

Электромагнитный клапан трубопровода

Электромагнитный клапан трубопровода

работа электромагнитного клапана

Пока напряжение на обмотку соленоида не подано, тарелка клапана плотно прижата к пилотному отверстию пружиной, и трубопровод перекрыт. При подаче тока в обмотку клапана, якорь и соединенная с ним тарелка клапана поднимаются, втягиваясь катушкой, противодействуя пружине, и открывая пилотное отверстие.

Разность давлений с разных сторон от клапана приводит к движению жидкости в трубопроводе, и пока на катушку клапана подано напряжение, трубопровод не перекрыт.

Когда питание с соленоида снято, пружину больше ничего не удерживает, и тарелка клапана устремляется вниз, перекрывая пилотное отверстие. Трубопровод вновь перекрыт.

Втягивающее реле стартера автомобиля

Втягивающее реле стартера автомобиля

работа соленоида

Стартер является по сути мощным мотором постоянного тока с питанием от аккумулятора автомобиля. В момент пуска двигателя зубчатая шестерня стартера (бендикс) должна быстро сцепиться с маховиком коленвала на некоторое время, и одновременно включается мотор стартера. Соленоид здесь — обмотка втягивающего реле стартера.

Втягивающее реле установлено на корпусе стартера, и при подаче питания к обмотке реле происходит втягивание железного сердечника, соединенного с механизмом, выдвигающим шестерню вперед. После пуска двигателя питание с обмотки реле снимается, и шестерня возвращается обратно благодаря пружине.

Соленоидный замок

В соленоидных электрозамках ригель приводится в движение усилием электромагнита. Такие замки применяются в системах контроля доступа и в шлюзовых дверных системах. Оборудованная таким замком дверь может быть открыта только в период действия управляющего сигнала. После снятия этого сигнала закрытая дверь останется запертой независимо от того, открывалась ли она.

К преимуществам соленоидных замков можно отнести их конструкцию — она намного проще, чем у моторных замков, более износостойка. Как видим, здесь соленоид снова работает в паре с возвратной пружиной.

Соленоидный индуктор сквозного нагрева

Соленоидный индуктор сквозного нагрева

При сквозном нагреве используют обычно соленоидные многовитковые индукторы. Обмотку индуктора изготавливают из медной трубки с водяным охлаждением или из медной шины.

В установках средней частоты используют однослойные обмотки, а в установках промышленной частоты обмотка может быть как однослойной, так и многослойной. Это связано с возможным уменьшением электрических потерь в индукторе и с условиями согласования параметров нагрузки и с параметрами источника питания по напряжению и коэффициенту мощности. Для обеспечения жесткости катушки индуктора чаще всего применяют ее стяжку между торцовыми асбоцементными плитами.

В современных установках индукционной закалки и нагрева соленоиды работают в режиме питания переменным током высокой частоты, поэтому ферромагнитный сердечник им, как правило, не нужен.

Соленоидный двигатель

В однокатушечных соленоидных двигателях включение и выключение рабочей катушки приводит к механическому движению кривошипно-шатунного механизма, причем возврат осуществляется опять же пружиной, подобно тому, как это происходит в электромагнитном клапане и в соленоидном замке.

В многокатушечных соленоидных двигателях попеременное включение катушек осуществляется при помощи вентилей. К каждой катушке ток от источника питания подается в один из полупериодов синусоидального напряжения. Сердечник поочередно втягивается то одной, то другой катушкой, совершая возвратно-поступательное движение, приводя во вращение коленчатый вал или колесо.

Соленоиды на экспериментальных установках

Соленоиды на экспериментальных установках

Экспериментальные установки типа детектора ATLAS, работающие на Большом адронном коллайдере в ЦЕРН, используют мощные электромагниты, которые тоже включают в себя соленоиды. Эксперименты в физике элементарных частиц проводятся с целью обнаружения строительных блоков материи и изучения фундаментальных сил природы, на которых держится наша Вселенная.

Катушки Тесла

Наконец, ценители наследия Николы Тесла всегда используют соленоиды для построения катушек. Вторичная обмотка трансформатора Тесла — не что иное, как соленоид. И длина провода в катушке оказывается очень важной, ведь строители катушек используют здесь соленоиды не как электромагниты, а как волноводы, как резонаторы, в которых как в любом колебательном контуре есть не только индуктивность провода, но и емкость, формируемая в данном случае расположенными вплотную друг к другу витками. Кстати, тороид на вершине вторичной обмотке призван как раз скомпенсировать эту распределенную емкость.

Надеемся, что наша статья была для вас полезной, и теперь вы знаете, что такое соленоид, и как много сфер его применения есть в современном мире, ведь перечислили мы отнюдь не все из них.

Источник

Соленоиды: подключение, управление, примеры работы

Используйте соленоиды TAU-0520T или TAU-0530T для изготовления электрозамков, музыкальных инструментов и даже пушки Гаусса

Видеообзор

Общие сведения

Соленоид — это цилиндрическая обмотка, длина которой значительно превышает ее диаметр. Слово соленоид образовано сочетанием двух слов — «solen» и «eidos», первое из которых переводится как труба, второе — подобный. То есть соленоид — это катушка, по форме напоминающая трубу.

Соленоиды — обычная катушка индуктивности, внутри которой при подаче напряжения возникает магнитное поле. Это поле втягивает в катушку магнитный сердечник, который и совершает механическую работу, например открывает замок или меняет положение клапана.

Подключение и настройка

Соленоид срабатывает при появлении на его обмотки напряжения 12 вольт, поэтому подключайте его к управляющей плате через силовой ключ или реле.

При подключении к Arduino или Iskra JS удобно использовать Troyka Shield. С Troyka Slot Shield можно обойтись без лишних проводов.

Примеры использования

Рассмотрим несколько примеров работы соленоидов.

Соленоидный Blink

В качестве примера будем включать и выключать соленоид раз в секунду, подключенный через силовой ключ к 4 пину.

Электромеханический ксилофон

Автоматизируем детский музыкальный ксилофон.

Как собрать

В качестве источника звука возьмём детский ксилофон на семь нот. Соленоиды буду играть роль ударной палочки, следовательно понадобится семь соленоидов и семь силовых ключей. Ключи подключим с помощью двух Troyka Pad 1×4 (Troyka-модуль) к управляющей плате Iskra Neo через Troyka Shield.

Подключим Troyka Pad 1×4 к Troyka Shield

После этого установим силовые ключи и кнопку на Troyka Pad 1×4 и подключим к ним соленоиды

Читайте также:  Ваттметр для постоянного тока схема

Подключим 12 В через разъем внешнего питания к плате Iskra Neo.

Принцип работы

Контроллер понимает мелодии в формате рингтонов Nokia RTTTL и конвертирует их в семинотную мелодию.

Источник

Индуктивность в цепи переменного тока

Лабораторная работа № 7

Индуктивность в цепи переменного тока

Цель работы: исследование зависимости сопротивления соленоида от частоты синусоидального тока, определение индуктивности соленоида, а также взаимной индуктивности коаксиальных соленоида и короткой катушки.

Приборы и оборудование: соленоид и короткая катушка на коммутационной плате, генератор синусоидального напряжения, два цифровых вольтметра.

Теоретическая часть

Рассмотрим тонкий замкнутый провод, по которому течет ток . По закону Био — Савара созданное этим током магнитное поле в каждой точке пространства пропорционально . Поэтому и поток вектора через замкнутый контур, образованный проводом, пропорционален току :

Коэффициент пропорциональности L зависит от геометрических размеров контура и называется его индуктивностью или самоиндукцией.

Для увеличения индуктивности в электротехнике и радиотехнике широко применяются проволочные катушки с достаточно плотной винтовой намоткой — соленоиды (рис.1). Если шаг винтовой линии мал по сравнению с радиусом витка , а длина соленоида значительно превышает этот радиус, то магнитное поле внутри такого длинного соленоида ( ) практически однородно и направлено вдоль его оси (рис.1,а). Величина магнитной индукции может быть найдена, например, при помощи теоремы о циркуляции вектора

после чего нетрудно вычислить магнитный поток через витки соленоида

и его индуктивность

где = 4p×10–7 Гн/м — магнитная постоянная; N1 — число витков; — площадь каждого витка. Заметим, что соленоид с разомкнутыми выводами не представляет замкнутого контура, но такой контур образуется при включении соленоида в цепь. Поскольку магнитный поток через витки соленоида обычно значительно превышает поток через остальную часть замкнутого проводящего контура, то можно считать, что индуктивность контура определяется индуктивностью включенного в него соленоида.

Строго говоря, индукция магнитного поля в соленоиде не является постоянной, а уменьшается примерно в два раза при приближении к его торцам (см. рис.1,б и лабораторную работу № 3). Поэтому формула (1) дает для индуктивности несколько завышенное значение. Приведем без вывода формулу для расчета индуктивности длинного соленоида с учетом такого краевого эффекта:

Рассмотрим теперь случай, когда через соленоид, индуктивность которого , протекает переменный ток

частоты и амплитуды . По закону электромагнитной индукции в цепи возникает ЭДС самоиндукции

Напряжение на соленоиде определим по закону Ома для участка цепи, содержащего эту ЭДС:

Сопротивление соленоида во многих случаях целесообразно рассматривать в качестве отдельного элемента цепи. Иными словами, реальный соленоид можно представить в виде последовательно соединенных идеального соленоида индуктивностью L, который не имеет сопротивления, и резистора сопротивлением R, который не обладает индуктивностью. Напряжение на индуктивности (т. е. на идеальном соленоиде)

где — амплитуда колебаний напряжения . Следовательно, эффективные значения напряжения на индуктивности и тока через нее связаны соотношением

Это выражение экспериментально проверяется в упражнении 1.

Заметим, что величину

называют индуктивным сопротивлением, а сопротивление — активным или омическим сопротивлением. Индуктивное сопротивление увеличивается с ростом частоты и при достаточно высоких частотах ( ) значительно превышает активное сопротивление . В этом случае формула (3) применима и для реального соленоида, обладающего активным сопротивлением.

Рассмотрим теперь случай, когда вблизи соленоида расположена проволочная катушка. При протекании через соленоид тока i возникает магнитное поле , которое создает магнитный поток Ф12 через витки катушки. Из закона Био — Савара следует, что поток Ф12 пропорционален току i:

Коэффициент пропорциональности L12 зависит от геометрических размеров соленоида, катушки, их взаимного расположения и называется взаимной индуктивностью контуров — соленоида и катушки. Если ток i в соленоиде переменный , то в катушке возникает ЭДС

Напряжение на выводах разомкнутой катушки , а эффективное значение этого напряжения

В упражнении 2 выражение (4) используется для экспериментального определения взаимной индуктивности.

Если катушка плотно «надета» на длинный соленоид, то взаимную индуктивность L12 можно рассчитать теоретически. В этом случае

где N2 — число витков в катушке.

Описание эксперимента

Электрическая схема установки показана на рис.2. Переменный ток, возбуждаемый генератором Г, протекает через резистор R, соленоид L и резистор . Для определения эффективного значения этого тока используется вольтметр VR. С его помощью измеряется эффективное значение напряжения на резисторе R, а затем по закону Ома рассчитывается :

Резисторы, специально включаемые в цепь для определения тока, часто называют токовыми сопротивлениями. Резистор предназначен для ограничения величины протекающего в цепи тока.

Вольтметр VL измеряет эффективное значение напряжения на соленоиде, когда переключатель находится в положении . Если же этот переключатель находится в положении , то вольтметр VL измеряет напряжение на короткой катушке с несколько большим диаметром, чем у соленоида, которая «надета» на соленоид.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Выполнение работы

Упражнение 1. Определение индуктивности соленоида.

Переключатель установите в положение . Частоту переменного напряжения, вырабатываемого генератором, установите равной 20 кГц. Выходное напряжение генератора установите близким к максимально возможному. При помощи вольтметров VL и VR измерьте эффективные значения напряжения на соленоиде и токовом сопротивлении . Воспользовавшись формулой

рассчитайте индуктивность L соленоида.

По формуле (2) рассчитайте теоретическое значение индуктивности L и сравните его с найденным экспериментально. При расчете погрешностей воспользуйтесь паспортными данными измерительных приборов, учтите также погрешности величин R, и , которые указаны на измерительном стенде.

Изменяя частоту переменного напряжения в пределах от 2 до
20 кГц, измерьте зависимость от частоты . Постройте график этой зависимости и по угловому коэффициенту полученной прямой определите индуктивность L.

Упражнение 2. Определение взаимной индуктивности.

Для двух-трех значений частоты в диапазоне (10…20) кГц измерьте напряжения UL2 (переключатель в положении «UL2″) и соответствующие значения UR При помощи (4) определите взаимную индуктивность L12. Рассчитайте также L12 теоретически по формуле (5).

Подготовка к работе

1. Физические понятия, величины, законы, знание которых необходимо для успешного выполнения работы:

· переменный ток; амплитуда; частота; циклическая частота; период; фаза;

· эффективные значения переменного тока и напряжения;

· вектор магнитной индукции; закон Био — Савара;

· магнитный поток; закон электромагнитной индукции;

· самоиндукция; взаимная индукция;

2. Приведите в рабочей тетради подробный вывод всех соотношений теоретической части работы.

3. Изучите экспериментальную часть работы. Приведите в рабочей тетради электрические схемы измерений в упражнениях 1 и 2.

4. При подготовке к работе рекомендуем изучить Приложения 2 и 4 учебно-методического пособия.

Расчетное задание.

1. Рассчитайте по формуле (2) индуктивность соленоида, а также поправку

обусловленную учетом краевых эффектов. В расчетах примите 700 витков, мм, см, где N — номер бригады; K — номер (по алфавиту) студента в бригаде ( 1, 2 или 3).

2. Рассчитайте индуктивное сопротивление такого соленоида при частоте 20 кГц. Постройте график зависимости индуктивного сопротивления соленоида от частоты в диапазоне (2…20) кГц.

Литература

1. Электромагнетизм. Основные законы. — М.-СПб.: Физматлит, 2001. — §§ 6.1 — 6.4; 9.1 — 9.4.

2. Курс общей физики. Электричество и магнетизм. — М.: Астрель, 2001. — §§ 6.1 — 6.3; 6.11; 6.12; 8.1; 8.2; 8.5; 8.7.

3. Электричество. — М.: Наука, 1985. — §§ 217, 219.

Источник