Меню

Снять с электрического поля тока



§ 2.3. Электрическое поле проводника с током

Условия возникновения и поддержания электрического тока

Для возникновения и поддержания электрического тока необходимы два условия:

1) наличие свободных (не связанных между собой) заряженных частиц (носителей заряда)

. Такими носителями заряда* в металлах и полупроводниках являются электроны, в растворах электролитов — положительные и отрицательные ионы, в газах — электроны и ионы;

2) нужны еще какие-то причины, вызывающие упорядоченное движение этих частиц

. Если, например, мы хотим в вакууме обеспечить упорядоченное движение электронов в определенном направлении, им необходимо хотя бы в начале движения сообщить скорость. Если дальше на пути движения электронов не встретится никаких препятствий, они будут двигаться по инерции с этой начальной скоростью.

    * Подробнее об этом будет рассказано в главе «Электрический ток в различных средах».

В веществе заряженным частицам двигаться упорядоченно в определенном направлении труднее. Например, электроны, обеспечивающие электрический ток в металлическом проводнике, могут сталкиваться с ионами кристаллической решетки; взаимодействие между ионами раствора электролита и нейтральными молекулами приводит к силам «трения» между ними; упорядоченному движению заряженных частиц в газе мешают столкновения с другими заряженными или нейтральными частицами газа и т. д. Чтобы все эти помехи не прекратили упорядоченного, дрейфового движения заряженных частиц, необходима сила, действующая на частицы в определенном направлении.

На заряженные частицы, как мы знаем, действует электрическое поле с силой Обычно именно электрическое поде внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника существует разность потенциалов. Когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный ток. Устройства, создающие и поддерживающие разность потенциалов на концах проводника, называются источниками тока или генераторами.

Вдоль проводника, по которому течет постоянный электрический ток, потенциал уменьшается от максимального значения на одном конце проводника до минимального — на другом.

Это уменьшение потенциала можно обнаружить на простом опыте.

В качестве проводника можно использовать бумажную (телеграфную) ленту, на поверхность которой наносится мягким графитом равномерный проводящий слой по всей длине. Собирают установку (рис. 2.7). Один конец ленты присоединяют к полюсу (кондуктору) электрофорной машины, ленту натягивают и другой ее конец закрепляют под винтовой зажим на изолирующем штативе.

При отсутствии тока (конец ленты на изолирующем штативе ни с чем не соединен) лента имеет одинаковый потенциал по всей ее длине. В этом легко убедиться, если пробным шариком, соединенным с электрометром, корпус которого заземлен, касаться ленты в разных ее точках. Показания электрометра, измеряющего потенциал проводника относительно земли, при этом будут одинаковыми.

Заземлим теперь один конец ленты, соединенный с зажимом штатива, и снова будем измерять потенциалы в различных точках ленты. Результаты измерений теперь показывают, что эти потенциалы оказываются неодинаковыми, т. е. поверхность проводника, по которому течет ток, не является поверхностью равного потенциала (эквипотенциальной). У полюса электрофорной машины показания электрометра максимальны, а по мере приближения к штативу наблюдается постепенное уменьшение значения потенциала, и у штатива оно доходит до нуля. Изменение потенциала вдоль проводника графически представлено на рисунке 2.8.

2. Потенциал внутри проводника – константа. Ну, очевидно, напряжённость – это градиент потенциала, производная от потенциала, если напряжённость – ноль (это означает, что производная – ноль), сама функция – постоянная. Потенциал во всех точках проводника одинаков. Это утверждение верно для всех точек проводника вплоть до поверхности. Отсюда мораль:

3. Поверхность проводника является эквипотенциальной поверхностью. Ну, и отсюда:

4. Силовые линии поля ортогональны поверхности проводника.

Всё это можно резюмировать такой картинкой:
Скажем, имеем точечный заряд и проводник, внесённый в поле этого заряда. Произойдёт следующее: там, где силовые линии входят, сконцентрируется на поверхности проводника отрицательный заряд, скажем, электроны сюда подойдут, а на противоположной стороне появятся положительные заряды, это не скомпенсированные заряды ионов, из которых построена кристаллическая решётка.

Силовые линии поля будут ортогонально втыкаться в проводник, с другой стороны они будут исходить, опять же ортогонально к поверхности проводника. Ну, и, в общем-то, электрическое поле будет существенно изменено. Мы видим, что, если поверхность проводника будет внесена в поле заряда, вся конфигурация поля будет искажена. Если на проводник посадить заряд (либо снять с него часть электронов, либо насадить), этот заряд будет распределяться так, чтобы напряжённость внутри была равна нулю и чтобы поверхность проводника приняла во всех точках одинаковый потенциал.

Эту вещь полезно иметь в виду, тогда можно качественно представлять себе, как выглядит поле в окрестности заряженного проводника.

Я нарисую произвольный проводник и на него посажу заряд +q, ну, уединённый проводник (больше ничего нет). Какова будет структура поля? Соображения такие: поверхность эквипотенциальная, потенциал меняется непрерывно, значит, соседняя эквипотенциаль будет мало отличаться от этой. Вот, я могу более менее качественно нарисовать систему эквипотенциальных поверхностей. Дальше они будут так выпрямляться, и, в конце концов, на больших расстояниях орбитами будут сферы, как от точечного заряда. А теперь, силовые линии поля ортогональны этим поверхностям…

Вот такой ёж получился. Вот такая картина силовых линий.

Теперь немножко математики.

Мы имеем уравнение . В пустоте , учитывая, что , мы получаем такое уравнение: . Потенциал электрического поля в пустоте удовлетворяет уравнению , которое называется уравнением Лапласа.

Математически эта проблема сводится к решению такого уравнения при заданных граничных условиях, что на заданной поверхности).

Перейти на страницу: 2

Электрическое поле внутри проводника с током

Проводникам с током можно придавать самую разнообразную форму. Провода можно намотать на катушку, согнуть под любым углом и т. д. При этом с помощью амперметра (прибора для измерения силы тока) можно обнаружить, что сила тока в проводнике не зависит от его формы.

Если не меняется сила тока в проводнике, то, согласно соотношению (2.2.7), не меняется и скорость направленного движения электронов в проводнике. Во всех сечениях проводника одного и того же диаметра она одинакова. Но скорость упорядоченного движения электронов зависит от силы, действующей на них, т. е. от напряженности электрического поля внутри проводника. Значит, напряженность поля во всех сечениях проводника должна быть одинаковой по модулю и не меняться при изменении формы проводника.

Линии напряженности электрического поля на протяжении всего проводника параллельны его поверхности

(оси проводника). Они не могут пронизывать поверхность проводника и при любой форме проводника повторяют его изгибы (рис. 2.9). Если бы линии напряженности пронизывали поверхность проводника изнутри, то вектор имел бы составляющую, перпендикулярную поверхности проводника. Заряженные частицы двигались бы к поверхности и накапливались на ней. Созданное этими зарядами поле неизбежно влияло бы на движение заряженных частиц, и сила тока не могла оставаться постоянной.

Проводник в электростатическом поле. Поле внутри проводника и у его поверхности.

Проводником называют вещества, содержащие свободные заряженные частицы, которые могут упорядоченно двигаться под действием электрического поля. Типичным примером проводника является любой металл, где электроны свободно перемещаются между узлами кристаллической решетки. Поместим незаряженный металл в однородное электростатическое поле . Под влиянием поля свободные электроны проводника начнут перемещаться про­тив поля (рис.1.23). В результате в данном случае левая часть проводника заря­дится отрицательно, а правая, на которой окажется недостаток электронов — поло­жительно. Это явление называется электростатической индукцией. Индуцирован­ные заряды создадут внутри проводника свое поле , направленное противопо­ложно

внешнему . Перераспределение зарядов в проводнике будет происходить до тех пор, пока поле не скомпенсирует . При этом суммарная напряженность поля внутри проводника станет равной нулю и движение зарядов прекратится. Так как внутри проводника , то . Это означает, что все точки внутри проводника имеют одинаковый потенциал, т.е. проводник является эквипотенциальным те­лом.

На поверхности проводника напряжен­ность поля перпендикулярна к ней, т.е. , где — нормальная (т.е. перпендикулярная к поверхности) составля­ющая напряженности. При этом — тангенциальная (касательная к поверхности) составляющая напряженности равна нулю, так как в против­ном случае свободные электроны продолжали бы перемещаться на поверхности под действием , а этого не происходит. Т.е. , где dl

— элемент длины поверхности проводника. Отсюда , т.е. поверх­ность проводника тоже эквипотенциальна. Таким образом внутри проводника и на его поверхности, т.е. имеется разрыв непрерывности на поверхно­сти проводни­ка, что объясняется наличием поверхностной плотности заряда s. Введение незаряженного проводника в однородное электростатическое поле искажает его: вблизи проводника оно становится неоднородным.

Если проводник заряжен, то сообщенные ему заряды будут удаляться друг от друга под действием кулоновских сил отталкивания и распределяться только на по­верхности проводника. Внутри проводника не скомпенсированных зарядов не будет. Проведем внутри проводника произвольную замкнутую поверхность S. По теореме Гаусса следует . Так как Е внутри проводника нет, то и .

Рис.1.24. К определению на­пряженности поля Е вблизи поверхности заряженного проводника.

Свойство зарядов размещаться только на внешней поверхности проводника ис­пользуется для электростатической защиты (экранирования) тел, измерительных приборов от внешних электростатических полей.

Определим напряженность поля вблизи заряженного проводника. Для этого выделим на его поверхности S малую площадку dS и построим не ней цилиндр с об­разующей l

Читайте также:  Сервер для пвп тока пвп

перпендикулярной поверхности и основаниями равными dS (рис.1.24). По­ток напряженности электрического поля через боковую поверхность цилиндра равен нулю, так как параллельна
l
. Поток через нижнее основание тоже равен нулю, так как внутри проводника поля нет. Таким образом, поток через верхнее осно­вание цилиндра и есть суммарный поток через всю цилиндрическую поверхность. Применяя теорему Гаусса, получим , , где s — поверхностная плотность смещенных зарядов. Смещенные индуцированные заряды появляются на поверхности проводника, вследствие их перемещения под дей­ствием электрического поля. Из полученной формулы можно сделать следую­щий вы­вод:
напряженность поля вблизи поверхности заряженного проводника опреде­ляется поверхностной плотностью зарядов, находящихся на нем.
Если проводник находится в среде с диэлектрической проницаемостью e, то . Так как , то D = s. Следовательно, электростатическое смещение (или индукция) численно равно поверхностной плотности смещенных зарядов на поверхности проводника. Поэтому вектор и назвали вектором электрического смеще­ния.

Распределение зарядов на поверхности проводника, т.е. величина s, зависит только от его формы. Наибольшая плотность заряда (в силу отталкивания одноименных за­ря­дов) оказывается на наиболее выпуклых местах поверхности — на ребрах и остриях. Вблизи этих мест напряжен­ность поля Е максимальна.

Поле внутри и снаружи проводника.

Внутри проводника = 0

. Это означает, что потенциал
j
в проводнике одинаков во всех точках, следовательно, поверхность проводника является эквипотенциальной. Напряженность электрического поля у поверхности проводника:

— локальная поверхностная плотность заряда, — компоненты электрического поля, перпендикулярная и касательная к поверхности, соответственно.

Метод изображений.

Метод изображений основан на подгонке потенциала под граничные условия: необходимо найти другую задачу (конфигурацию зарядов), у которой конфигурация поля в интересующей нас части пространства была бы той же. Рассмотрим точечный заряд , когда он находится около безграничной проводящей плоскости (рис. 1,а).

В нашем случае другой задачей является задача с двумя зарядами и (рис.1,б), поле этой системы известно. Совместим со средней эквипотенциальной поверхностью проводящую плоскость и уберем заряд . Согласно теореме единственности поле в верхнем полупространстве останется прежним (рис. 1,в). Для вычисления этого поля достаточно ввести фиктивный заряд – изображение , противоположный по знаку заряду , поместив его на другую сторону проводящей плоскости на таком же расстоянии от нее, что и заряд . Фиктивный заряд создает в верхнем полупространстве точно такое же поле, как и индуцированные заряды на плоскости.

Проводники в электрическом поле

Поле внутри проводника и его поверхности.

Проводник — вещество, в котором существуют свободные заряды, способные перемещаться под действием сколь угодно малого электрического поля.
Поэтому равновесие в проводнике может наблюдаться лишь при выполнении следующих условий:

1. Напряженность поля всюду внутри проводника должна быть равна нулю: Е = 0. Следовательно, потенциал внутри проводника должен быть постоянным: = const.

2. Напряженность поля на поверхности проводника должна быть в каждой точке направлена по нормали к поверхности, так как касательная составляющая вектора Е вызвала бы перемещение носителей тока по поверхности, что противоречит условию равновесия зарядов в проводнике: . Следовательно, поверхность проводника является эквипотенциальной поверхностью.

Согласно теореме Гаусса алгебраическая сумма зарядов внутри поверхности проводника будет равна нулю. Следовательно, при равновесии, ни в каком месте внутри проводника не может быть избыточных зарядов — все они расположатся на поверхности проводника.

При внесении незаряженного проводника в электрическое поле носители заряда приходят в движение: положительные в направлении вектора отрицательные — в противоположную сторону. В результате у концов проводника возникают заряды противоположного знака (индуцированные заряды), которые создают поле, противоположное внешнему полю. Таким образом, накопление зарядов у концов проводника приводит к ослаблению в нем поля. Перераспределение носителей заряда происходит до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряженности вне проводника — перпендикулярными к его поверхности.

Электроемкость проводников и конденсаторов.

Проводник называется уединенным, если он находится так далеко от других проводников и заряженных тел, что влиянием их электрических полей можно пренебречь.

Потенциал уединенного проводника пропорционален его заряду.

Электроемкость уединенного проводника — физическая величина, измеряемая отношением изменения заряда проводника к изменению его потенциала: . Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним.

Электроемкость зависит от размеров и формы проводников, диэлектрической проницаемости среды, в которую они помещены, и расположения окружающих тел, но не зависит отматериала проводника. В СИ за единицу электрической емкости принимается фарада (Ф).

Электроемкость уединенного проводящего шара радиусом R равна .

Конденсаторы представляют собой два проводника, разделенные слоем воздуха или диэлектрика, толщина которого малапо сравнению с размерами проводника. Проводники в этом случае называют обкладками конденсатора.

Плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг отдруга. Если заряды пластин одинаковы по модулю и противоположныпо знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной. Поэтому почтивсе электрическое поле сосредоточено внутри конденсатора. Если пренебречь эффектами, возникающими на краях обкладок плоского конденсатора (краевой эффект), то электрическое поле плоского конденсатора можно считать однородным. Напряженность этого поля , где — разность потенциалов между обкладками конденсатора, d — расстояние между пластинами.

Электроемкость плоского конденсатора , где — относительная диэлектрическая проницаемость среды, находящейся между пластинами конденсатора, S — площадь одной пластины, d — расстояние между пластинами.

Емкость сферического конденсатора, состоящего из двухконцентрических обкладок сферической формы с радиусами и , между которыми находится диэлектрик с проницаемостью , выражается формулой .

Емкость цилиндрического конденсатора, состоящего из двух тонкостенных коаксиальных металлических цилиндров высотой h и радиусами и , между которыми находится диэлектрик с проницаемостью , имеет вид .

Конденсаторы характеризуются напряжением пробоя, т.е. такой минимальной разностью потенциалов обкладок, при которой проходит электрический разряд через слой диэлектрика в конденсаторе.

Емкость при параллельном и последовательном соединении конденсаторов.

Емкость батареи параллельно соединенных конденсаторов равна сумме емкостей всех конденсаторов .

При последовательном соединении складываются обратные величины их емкостей .

Энергия заряженного уединенного проводника, конденсатора и системы точечных зарядов.

Сообщение заряда проводнику связано с совершением работы по преодолению сил кулоновского отталкивания. Эта работа идет на увеличение электрической энергии проводника. Элементарная работа dA по перенесению малого заряда dq из бесконечности на уединенный проводник равна Работа по сообщению проводнику потенциала равна . Энергия проводника равна .

Аналогичное выражение получается для конденсатора: .

Для системы точечных зарядов: , где — потенциал i-го проводника в поле остальных зарядов.

Энергия электростатического поля.

Энергия электростатического поля плоского конденсатора: , где — разность потенциалов между пластинами, — объем конденсатора.

Объемная плотность энергии электростатического поля – энергия электростатического поля в единице объема: .

Источник

Статическое электричество и защита от него

Статическое электричество – энергия, накопленная проводником, внешне изолированным от других предметов. Явление выражено в электрическом заряде, находящемся в состоянии покоя. В его основе заложен дисбаланс, вызванный потерей или приобретением атомами электронов и созданием положительных и отрицательных ионов.

Как правило, эффект возникает в местах присутствия электромагнитного поля. Однако, наблюдаются случаи, когда этому явлению нет четких объяснений.

Общая информация

Наиболее вероятные варианты накопления статического электричества:

  1. Взаимодействие двух материалов, обладающих электропроводностью, с последующим отделением их друг от друга. Электростатический заряд образуется в результате трения, сдавливания, намоточных операций, касания вращающихся предметов.
  2. Операции по расслоению, разрезанию, распиловке материалов.
  3. Резкое изменение температурного режима, падение влажности.
  4. Излучения с повышенной интенсивностью (радиоактивное, ультрафиолетовое).

Электричество может накапливаться как на поверхности предметов, так и в сухом воздухе, насыщенном пылью. Примером такого явления служит молния во время грозы.

Статическое электричество проявляет себя:

  • искрением (разрядом);
  • образованием магнитного поля (притягиванием, отталкиванием).

Несмотря на значительный потенциал (до 6 кВ) в большинстве случаев для здоровья человека это явление не опасно. Самым частым следствием касания к наэлектризованному предмету становится небольшая искра, вызывающая легкое покалывание и сокращение мышц. Однако, если накопленный заряд обладает высоким потенциалом, а кожа человека имеет малое сопротивление, возможен ожог и даже поражение электрическим током.

Статическое электричество

Польза и вред

Если польза этого явления остается под вопросом, то его вред для человека очевиден. Прежде всего, это сказывается на работе электроники и электротехнических устройств. Разряд вызывает разрушение микросхем и транзисторов, становится причиной пробоя конденсаторов. Мощный разряд способен вывести из строя обмотку электродвигателя.

Возникающее электромагнитное поле становится причиной помех, возникающих в радиоприемниках, отрицательно сказывающихся на работе телефонов и компьютеров, нарушает работу коммуникаций.

Вред статического электричества выражается в магнитной составляющей, сопровождающей данное явление. Притягивание между предметами отрицательно сказывается при резке, раскрое легких, синтетических материалов.

При достаточном накапливании электрического заряда образуется искра, способная поджечь легковоспламеняющиеся вещества. Данный факт представляет серьезную угрозу для АЗС, хранилищ пожароопасных и взрывоопасных предметов, мукомольной и угольной промышленности.

Явление способствует накоплению пыли, что негативно отражается на чистоте окружающей среды. Конкретно для людей, его вред выражен в непослушании сухих волос во время расчесывания, неприятных ощущениях при прикосновении с «заряженной» одеждой, а также дискомфорте, возникающем на психоэмоциональном уровне.

Что касается пользы этого эффекта, то здесь примеров немного. Явление используется в обучающих и научных целях. Его притягивающие особенности нашли применение в некоторых средствах для уборки помещений от пыли, в покраске и смешивании мелкодисперсных веществ.

Читайте также:  Аппарат импульсных токов тонус 1 дт 50 3

Девочка убирает

Такая метелка-султанчик отлично собирает пыль за счет возникающего статического электричества

Как снять статическое электричество

Учитывая негативные факторы данного явления, методы защиты от него волнуют умы многих ученых мирового сообщества.

С человека

Перед тем, как снять статическое электричество с человека желательно выявить причины его возникновения. Устранение данного эффекта сводится к банальному «заземлению». Для этого достаточно:

  • прикоснуться к батарее отопления;
  • на несколько секунд прижать ладони к земле;
  • взять в руки металлический предмет и притронуться к чему-либо массивному, сделанному из токопроводящего материала.

Полностью избежать данного явления практически никогда не удается, но уменьшить вероятность его возникновения можно, если:

  • исключить трение, контакт с подвижными телами, изолированными от земли и не имеющими выхода для сброса накопленного заряда;
  • избегать нахождения в электрическом поле (возле работающих электроустановок, трансформаторов, линий ЛЭП);
  • перейти на одежду и постельное белье из натуральных тканей;
  • при касании с синтетическими предметами пользоваться перчатками из хлопчатобумажной ткани;
  • отказаться от обуви на резиновой или другой, электроизолирующей подошве.

Хлопчатобумажные перчатки

С волос

Не менее важным для людей становится вопрос, как снять статическое электричество с волос. Наэлектризованность является настоящим бедствием для тех, у кого локоны склонны к сухости. Снять заряд и сделать прическу поможет:

  1. Плоская расческа из металла, дерева или, имеющая щетину из натуральных материалов. Синтетики способствуют накапливанию электрического заряда.
  2. Мытье головы не чаще чем раз в два дня. Слишком чистые волосы лишены сальной защиты и более подвержены сухости, соответственно – наэлектризованности.
  3. Кондиционер и сыворотка с эффектом увлажнения. Даже небольшое количество средства позволит сохранить в волосах влагу и избежать статического электричества.
  4. Крем-антистатик.

При сушке обработке волос феном не стоит доводить их до полной сухости. С особой осторожностью нужно пользоваться лаками. Входящие в них полимеры могут притягивать электричество. Наэлектризованность волос легко устраняется с помощью небольшого количества воды или антистатической салфетки.

Волосы электризуются

С одежды

Электрический заряд на предметах гардероба становится причиной дискомфорта и способствует притягиванию пыли. Избавиться от статического электричества на одежде можно:

  • используя металлические плечики;
  • вставляя в вещи английские булавки;
  • проведя по изделью смоченной в воде ладонью;
  • распыляя антистатики и специальные кондиционеры.

С предметов домашнего обихода

Наэлектризованность домашней утвари вызывает массу неудобств. Основными из них являются внезапные разряды и загрязнение интерьера. До того, как избавиться от статического электричества в квартире, необходимо присмотреться к правилам расстановки электробытовых приборов и обеспечить их заземление. Скопление электроники в одном месте способствует возникновению мощных электрических полей.

Статическое электричество дома

Главным сторонником накопления зарядов является сухой воздух и запыленность квартиры. Побороть это проявление помогает постоянные влажные уборки и принудительное поднятие влажности с помощью намоченных полотенец, емкостей с водой или специальных приборов.

Уменьшить наэлектризованность помогает комнатная декоративная растительность. Помимо снятия заряда она очищает воздух от токсинов и тяжелых металлов.

При проведении уборки квартиры, особое внимание следует уделять предметам, которые часто перемещаются и создают эффект трения.

Чтобы уменьшить вероятность накопления электрических зарядов в квартире, следует компоновать интерьер из вещей, содержащих меньше синтетических материалов.

Что такое нейтрализатор

Одним из самых действенных устройств в борьбе со статическим электричеством является нейтрализатор (ионизатор). Этот прибор в течение нескольких секунд снимает заряд с поверхности электроизолированного предмета, приближая его уровень к электростатическому полю Земли.

Нейтрализатор статического электричества

Эти приборы бывают планочного, соплового и вентиляторного типа. К их основным преимуществам относятся:

  • направленность и равномерное распределение ионов по всей площади квартиры;
  • установка в проточной вентиляции и кондиционерах;
  • способность безопасного избавления от накопленных зарядов до 20 кВ.

На производстве и в промышленности избавление от статического электричества требует принятия комплексных мер. Защита от него определяется правилами техники безопасности, поскольку его негативные проявления наносят гораздо более существенный ущерб.

Природа статического электричества: видео

Источник

Как самостоятельно избавиться от статического электричества

Безусловно, что каждый человек на планете хоть раз поддавался ударам тока, когда прикасался к дверной ручке, машине или другим предметам. Многие задают себе вопрос: «Что это? Как работает? Почему происходит такое действие?». Можно сказать одно, что это статическое электричество, о котором важно знать. Об этом и о многих других вопросах на эту тему оговорено в данной статье.

Как самостоятельно избавиться от статического электричества

Статическое электричество – что это?

Статическое электричество – частое явление, которое объясняется избытком свободных электронов, переносчиков природного тока. Появляется оно и запасается чаще всего на поверхности или в середине того или иного материала, который не имеет способности проводить ток. Если сказать по-другому, то статическое электричество собирается и храниться до определенного времени на диэлектрике или же на изолированном проводнике.

Такое явление очень распространено как в быту, так и в природе. Столкнуться с ним можно, если находиться близко возле водопада или берега моря, молнии или сходов лавин. Если говорить о повседневной жизни человека, то такой вид электричества можно получить из-за обычного трения.
Стоит обратить внимание на то, что сам человек способен вырабатывать свое индивидуальное электростатическое поле, поэтому некоторые очень чувствительны к такому току, а другие, наоборот, ничего не ощущают. Причиной этого всего является индивидуальная работа центральной нервной системы, которая таки и вырабатывает это поле. Так что, чем крепче нервы – тем сильнее поле.

Как убрать статическое электричество?

Очень неприятно, когда взаимодействие с этим явлением оставляет не лучшие воспоминания. Если прикасаясь к любому предмету человека, поражаем небольшим разрядом тока – значит, действие статического электричества усилилось, и его нужно снимать.

Как убрать статическое электричество в квартире?

Статическое элекстричество может быть не только на одежде, но и, так скажем, во всей квартире. На любых предметах, начиная иголкой, булавкой или заколкой, заканчивая телевизором, холодильником и прочим. Поэтому, чтобы уменьшить «общение» с этим явлением, не опасаться находиться рядом и дотрагиваться до мебели и других вещей, стоит знать, как снимать статическое электричество. Вот несколько советов, которые нужно использовать при борьбе с током, если рядом нет антистатика.

  1. Пыль на экране телевизора или компьютера очень часто подвергается такому заряду. Это все потому, что пыль сама по себе накапливает небольшой ток, а если она находиться на экранах, связанных с электричеством, тогда их количество значительно быстрее увеличивается.
    Для того, чтобы это исправить – нужно чаще проводить влажную уборку, тщательно протирая мониторы. Таким образом, накопление тока на поверхностях предметов и в воздухе уменьшится.
    Как самостоятельно избавиться от статического электричества
  2. Насчет влажности и воздуха в помещении тоже есть небольшой секрет. Влажность в воздухе, приравнивается к монетам в кармане – очень хорошо притягивает заряды тока.
    Для того чтобы снизить появление статических зарядов в воздухе, можно набрать бутылки с водой и расставить по квартире. Это увлажняет воздух и соответственно собирает к себе все заряды. Подождав несколько часов можно воду из бутылок вылить, а квартиру проверить, таким образом, выветрив все возможные заряды из дома.
    Как самостоятельно избавиться от статического электричества
  3. Бывает, что даже после таких хитростей частота зарядов не перестает уменьшаться, и это начинает серьезно беспокоить всю семью. Тогда стоит провести в квартире тщательную ревизию. Необходимо свести к минимуму количество синтетики в доме. Лучше заменить их на те, которые точно не смогут доставить проблем с электростатикой. Это шелк, шерсть, хлопок и другие материалы.
    Как самостоятельно избавиться от статического электричества

Как убрать статический ток с одежды?

Довольно противные или даже болезненные ощущения, когда, надевая свой любимый свитер, волосы электризуются, прическа портится, а сама вещь — бьет током. И так происходит не только со свитером, но и со всеми вещами из гардероба. Стоит задуматься, не пора ли начать бороться с этим током?
Можно приобрести специальные средства в магазинах, но это очень дорого и химикаты не очень благоприятно воздействуют на кожу человека. Поэтому можно следовать советам, приведенным ниже, которые помогают снять заряд на одежде с помощью домашних средств.

  1. Первое, что придет на помощь — пищевая сода. Когда придет момент стирки, необходимо прямо в самой стиральной машинке, на вещи насыпать одну четвертую часть стакана. Стоит учитывать, что количество используемой соды меняется, если одежды в барабане машинки меньше или больше среднего количества. Однако, в любом случае, больше половины стакана насыпать за один раз нельзя. Сода образовывает некий защитный слой на одежде, который мешает образованию тока, и при этом на одежде его не видно, если придерживаться нормы. В противном случае, если насыпать больше половины стакана, то весь защитный слой будет очень виден для окружающих.
  2. Еще одним неплохим вариантом решения проблемы может стать обычный уксус. После окончания стирки, не вынимайте сразу одежду, а влейте в барабан приблизительно 50 мл белого дистиллированного уксуса. Его можно заменить, использовать яблочный уксус, что сильно не изменит результат. Далее, необходимо включить машинку и поставить белье полоскать и отжимать.
    Уксус действует так же, как и сода – создает защитный слой. Но если использовать больше уксуса, то последствием будет не цвет одежды, а резкий запах.
  3. Еще одним вариантом считается использование натуральных тканей. Статическое электричество на них очень плохо скапливается. Поэтому при стирке можно просто положить в барабан ткань изо льна, кусок шерсти или еще что-то. Таким образом, весь заряд, скопившийся на одежде, перейдет на этот кусочек и его можно будет легко утилизировать.
  4. Есть также маленькая хитрость. К одежде, которая подвержена току, можно приколоть с внутренней стороны металлическую булавку, заколку, брошку или просто положить немного мелочи в карман. Статическое электричество быстро уйдет на проводящий металл, и не будет скапливаться на одежде.
Читайте также:  При высоких напряжениях более опасен a постоянный ток

Источник

Электрическое поле и электрический ток

Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле.

Электрическое поле

Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Напряженность электрического поля

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Потенциал. Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

Диэлектрики в электрическом поле

Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики

Виды диэлектриков

К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Электроемкость и конденсатор

Электроемкость – количественная мера способности проводника удерживать заряд.

Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.

Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, т. к. равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электрический ток

Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в газах – ионы и электроны. Количественной характеристикой тока является сила тока.

Источниками могут служить – гальванический элемент(происходят хим. реакции и внутренняя энергия, превращается в электрическую) и аккумулятор(для зарядки через него пропускают постоянный ток, в результате химической реакции один электрод становиться положительно заряженным, другой – отрицательно.

Действия электрического тока: тепловое, химическое, магнитное.

Направление электрического тока: от + к –

Направленное движение заряженных частиц

Направленное движение заряженных частиц

Поэтому достаточным условием для существования тока является наличие электрического поля и свободных носителей заряда. О наличии тока можно судить по явлениям, которые его сопровождают: Проводник, по которому течет ток, нагревается. Электрический ток может изменять химический состав проводника.

Силовое воздействие на соседние точки и намагниченные тела.

При существовании электрического поля внутри проводника, на концах его существует разность потенциалов. Если она не меняется, то в проводнике устанавливается постоянный электрический ток.

Сила тока

Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.

Сила тока, как и заряд, величина скалярная. Она может быть как положительной, так и отрицательной. За положительное направление силы тока принято движение положительных зарядов. Если с течением времени сила тока не меняется, то ток называется постоянным .

Электродвижущая сила

Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.

Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.

Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит. В машине постоянного тока сторонней силой является сила Лоренца.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.

Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

При параллельном соединении электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.

Соединение источников тока

Соединение источников тока

Соединение источников тока

Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.

Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.

Источник

Adblock
detector