Меню

Сложение токов в комплексной форме



Комплексное напряжение

date image2020-04-07
views image1885

facebook icon vkontakte icon twitter icon odnoklasniki icon

Символический метод расчета

Электрических цепей переменного

Синусоидального тока

КОМПЛЕКСНЫЕ ТОКИ И НАПРЯЖЕНИЯ

Математическое введение (формула Эйлера)

Между синусоидальными и экспоненциальными (показательными) функциями существует простая зависимость, которая получила название формулы Эйлера,

,

где — мнимая единица. В частности, если ,

.

Формула Эйлера применяется для перевода комплексных чисел из показательной формы в алгебраическую. В показательной форме комплексное число содержит модуль z и аргумент :

.

В алгебраической форме комплексное число имеет действительную часть x и мнимую часть y:

.

, . (4.1)

Решив эти уравнения относительно и , получаем формулы для перевода комплексных чисел из алгебраической формы в показательную

, . (4.2)

В задачах электротехники пределы изменения обычно выбирают в пределах от до и вычисляют по формуле

Для запоминания формул (4.1) и (4.2), предназначенных для перевода комплексных чисел из одной формы записи в другую, можно использовать треугольник, похожий на треугольник сопротивлений (рис. 4.1).

Рис. 4.1. Треугольник, иллюстрирующий зависимости между действительной и мнимой частями комплексного числа, с одной стороны, и его модулем и аргументом, с другой стороны

Комплексный ток

В электрической цепи с источником синусоидального напряжения протекают синусоидальные токи. Пусть один из них равен

,

где I — действующее значение тока. Запишем соответствующую косинусоидальную функцию

.

Затем с помощью формулы Эйлера составим комплексную функцию

.

Множитель одинаков для всех токов цепи. Комплексное число характеризует ток рассматриваемой ветви.

И 4.1 Определение. Комплексное число называют комплексным током. Модуль комплексного тока равен действующему значению синусоидального тока, аргумент комплексного тока – начальной фазе синусоидального тока.

Комплексное напряжение

Синусоидальному напряжению можно сопоставить комплексное напряжение аналогично тому, как синусоидальному току был поставлен в соответствие комплексный ток:

.

Здесь U – действующее значение напряжения; — его начальная фаза.

И 4.2 Определение. Комплексное число называют комплексным напряжением. Модуль комплексного напряжения равен действующему значению синусоидального напряжения, аргумент комплексного напряжения – начальной фазе синусоидального напряжения.

Преобразование синусоидальных токов и напряжений в комплексные числа (комплексные токи и напряжения) позволяет преобразовать тригонометрические уравнения, составленные по законам Кирхгофа для синусоидальных токов и напряжений, в алгебраические уравнения для комплексных токов и напряжений. Благодаря тому, что в уравнениях для комплексных токов можно опустить множитель , общий для всех токов, решение алгебраических уравнений оказывается не столь громоздким, как решение тригонометрических уравнений. Решив систему уравнений Кирхгофа относительно комплексных токов, можно затем по комплексным токам определить синусоидальные токи.

Источник

Приложение 1. Комплексный метод расчета электрических цепей синусоидального тока

Все графические методы расчета цепей синусоидального тока не обеспечивают точного расчета электрических цепей, кроме того, они сложны и трудоемки.

Наиболее простым и точным методом расчета электрических цепей синусоидального тока является комплексный метод, основанный на теории комплексных чисел.

Синусоидальная величина изображается вращающимся вектором на комплексной плоскости с осями ±1 и ±j, где мнимая единица, символ.

За положительное направление вращения вектора принято направление против часовой стрелки. За время, равное одному периоду, вектор совершает один оборот.

На рис.4.5 изображен вектор комплексного тока , которому соответствует комплексное число

Рис.4.5. Составляющие комплексного числа на комплексной плоскости

где I — модуль действующего значения тока, равный длине вектора;

где — действительная составляющая тока; — мнимая составляющая; yi = arctg ( ) – аргумент тока, равный начальной фазе, т. е. угол между вектором и действительной полуосью +1 при t = 0. Аргумент положительный, если вектор отложен в направлении против движения часовой стрелки, и отрицательный — если по часовой.

Комплексные значения синусоидальных величин обозначают несинусоидальных — z, S.

Над комплексными числами можно производить все алгебраические действия (при сложении и вычитании удобнее использовать алгебраическую форму, а при умножении, делении, возведении в степень, извлечении корня – показательную).

Алгебраическая форма записи:

Тригонометрическая форма записи:

İ = Icosyi + jsinyi .

Показательная форма записи:

İ = Ie j y i .

Переход из одной формы записи в другую осуществляется по формуле Эйлера через тригонометрическую форму записи

e ± j α =cosα±j sinα.

Например: İ = 10e j37º = 10cos37˚ + j10sin37º = 10 · 0,8 + j10 0,6 = = 8 + j6 = (8² + 6²) 1/2 e +jarctg6/8 = 10e +j37º (А).

При работе с комплексными числами используют и сопряженные комплексные величины, имеющие одинаковые модули и одинаковые по величине, но противоположные по знаку аргументы:

İ = 10e j 37º , А; I* =10ej37º , А.

Произведение İ I* = 10e j 37º 10ej 37º = 100e j 0° , À.

Приложение 2.

Таблица Основные свойства элементов цепей переменного тока

Двухполюсник Резистор (резистивное сопротивление Катушка (индуктивное реактивное сопротивление Конденсатор (емкостное реактивное сопротивление)
Обозначение
Связь между мгновенными значениями u и i i= uR/R uL = Ldi/dt i = CduC/dt
Если задано uR = maxsinωt uL = Umaxsinωt uC = Umaxsinωt
То имеем i = maxsinωt/R i = Umaxsin(ωt – – π/2)/ωL = = Imax sin(ωt – π/2) i= ωCUmaxcosωt= = Imax sin(ωt +π/2)
Действующее значение тока I = UR/R I = ULL ICUC
Сопротивление (или соответственно реактивное сопротивление) R XL = ωL XC = 1/ωC
Сдвиг фаз φ = ψU – ψi = 0 φ = ψU – ψi =+90 ͦ φ = ψU – ψi = –90 ͦ
Сдвиг по фазе
Комплексное сопротивление
Расчет комплексным методом
Зависимость сопротивления от частоты R R ω XL ωL ω XC 1/ωC ω
Читайте также:  Приближенный расчет токов кз

Приложение 3.Расчет электрических цепей комплексным методом

Задача 1.

Определить ток и напряжения на участках цепи рис.1, если известны следующие данные:

R = 8 Ом; XL =6 Ом

Рис.1. Пример к расчету цепи с последовательным включением R и XL

Решение.

Комплексное сопротивление цепи, Ом:

где = arctqXL/R = 37°

Начальная фаза тока ψi = –37°.

Напряжения участков цепи, В :

Задача 2.

Определить ток, напряжения на участках цепи и мощности электрической цепи при последовательном соединении R, L и С рис.2, если известны следующие данные:

R = 8 Ом; XL =6 Ом, ХС = 12 Ом.

Рис. 2. Последовательное соединение R, L и С.

Решение.

Определяем комплексное сопротивление цепи, Ом:

где = arctq(XLС)/R = arctq (6 12)/8 = 37°

Определяем комплексный ток, А:

Определяем комплексные напряжения на участках цепи, В:

= 3872 – j2904

Определяем комплексную полную мощность цепи, ВА:

= = = =4840cos37º – j4840sin37 º = 3872 – j2904

Активная мощность, Вт:Р = 3872

Реактивная (емкостная) мощность, вар:

Задача 3.

Определить токи ветвей для схемы рис. 3, если известны следующие данные:

u(t) = 183sin314t; R1 = 8 Ом; R2 = 12 Ом; XL =6 Ом; XC = 5 Ом.

Рис. 3. Параллельное соединение ветвей с R-L и R-C

Решение.

Комплексное действующее входное напряжение цепи, В:

Комплексные токи параллельных ветвей, А:

Сумма комплексных токов параллельных ветвей, А:

Полученному комплексному току соответствует синусоидальный ток, А:

i(t) = 20

Задача 4.

В четырехпроводную сеть с линейным напряжением Uл =220 В, включен трехфазный приемник, соединенный по схеме «звезда» (рис.4). Комплексные сопротивления фаз приемника:

Найти комплексные токи в линейных и нейтральном проводах.

Решение.

Фазное напряжение, В:

Комплексные фазные напряжения, В:

Комплексные линейные токи равны соответственно комплексным фазным токам, А:

Комплексный ток в нейтральном проводе, А:

+ + + = ˗˗ 2,81 + j4,9 =5,9e j 120

Приложение 4. Техника безопасности при работе с электротехническими установками. Опасность поражения

Лабораторные стенды являются действующими электроустановками и при определенных условиях могут стать источником опасности поражения электрическим током. Дело в том, что тело человека обладает свойством электропроводности и при соприкосновении с неизолированными элементами установки, находящейся под напряжением, становится звеном электрической цепи. Возникший вследствие этого в теле человека электрический ток может вызвать ожог кожи (электрическую травму) или нанести тяжелые поражения нервной, сердечной и дыхательной системам организма (электрический удар).

Установлено, что как постоянный, так и переменный электрические токи при величине ),05 А являются опасными, а при величине 1 А – смертельными.

Чтобы оценить, при каком напряжении может быть нанесен серьезный ущерб здоровью человека или какое напряжение считать опасным для жизни, надо знать величину сопротивления тела человека. Однако, это чрезвычайно изменчивая величина, зависящая от свойств кожи человека, его душевного состояния и ряда других величин. Как показывают измерения, сопротивление тела человека может изменяться в широких пределах – от 700 до нескольких десятков тысяч Ом. Нетрудно посчитать, что напряжение даже в несколько десятков вольт (40 ÷ 60 В) может при неблагоприятном стечении обстоятельств создать условия, когда возможен электрический удар. Поэтому следует всегда помнить о возможности поражения электрическим током и соблюдать меры предосторожности.

ЛИТЕРАТУРА

1. Алиев, И. И. Электротехнический справочник / И. И. Алиев. – М.: Радио Софт, 2004. – 384 с.

2. Беневоленский С.Б. Основы электротехники /Беневоленский С.Б., Марченко С. Л. – Москва: Физматлит, 2006. – 566 с.

3. Горошко, В. И. Электротехника, основы электроники и электрооборудование химических производств / В. И. Горошко, И. О. Оробей, Л. М. Давидович. – Минск: БГТУ, 2006. – 246 с.

4. Григораш О. В. Электротехника и электроника /О. В. Григораш, Г. А. Султанов, Д. А. Нормов. – Ростов-на-Дону; Краснодар: Феникс: Неоглари, 2008. – 462с.

5. Данилов И. А. Общая электротехника / И. А. Данилов. – Москва: Высшее образование, 2009. – 673с.

6. Жаворонков М. А. Электротехника и электроника / Жаворонков М. А., Кузин А.В. – Москва: Академия, 2005. – 394с.

7. Иванов, И. И. Электротехника /Иванов И. И., Соловьев В. И, Равдоник В. С. – Изд. 3-е, Санкт-Петербург: Лань, 2005. – 496 с.

8. Касаткин, А. С. Электротехника / А. С. Касаткин, М. В. Немцов. 10-изд; – Москва: Академия, 2007. – 538 с.

9. Кононенко В. В. Электротехника и электроника / В. В. Кононенко и др; под ред. Кононенко В. В. 4-е изд. – Ростов-на-Дону: Феникс, 2008. – 778 с.

10. Коровкина Н. П. Электротехника и основы электроники [Электронный ресурс]: Тексты лекций для студентов спец.1-36 07 01. 01, 1-36 07 01.02, 1-36 01 08, 62,8 мБ, формат pdt -2012г. Кафедра автоматизации производственных процессов и электротехники

Читайте также:  Как текут токи в полевом транзисторе

11. Рекус, Г. Г. Основы электротехники и электроники в задачах с решениями / Рекус Г. Г. – Москва: Высшая школа, 2005. — 343с.

12. Электрические цепи. – Минск: БГТУ. 2005. – 56 с.

Источник

Комплексный метод расчета электрических цепей переменного тока

Существенное упрощение достигается изображением синусо­идальных функций времени комплексными числами.

Существует несколько форм представления комплексного числа:

— алгебраическая форма: ;

— показательная (или экспоненциальная) форма: ;

— тригонометрическая форма: .

Все эти формы связаны между собой, в частности, модуль числа , аргумент .

Для геометрического изображения используется прямоугольная система координат, в которой по горизонтальной оси откладываются вещественные числа, а по вертикальной – мнимые. Такая плоскость называется плоскостью Гаусса. , ,

Для вещественной и мнимой частей комплексного числа употреб­ляют также обозначения: , .

Две комплексные величины, имеющие равные модули и равные, но противоположные по знаку аргументы, называют сопря­женными.

Если , то сопряженное ему комплексное число запишется в форме . При этом соблюдается равенство: .

Пусть имеется синусоидально изменяющийся ток .

Его можно представить в форме .

Комплексное число будем рассматривать как символическое изображение дейст­вительного синусоидального тока, которое определяется при заданной частоте ω двумя ве­личинами – амплитудой и начальной фазой.

Комплексное число называют комплексной амплитудой тока.

Рассмотрим теперь выражение для производной по времени от синусоидального тока

Изображение производной будет иметь вид:

Таким образом, операция дифференцирования действительной функции заменяется умножением на ее комплексного изображения.

Рассмотрим изображение интеграла от сину­соидальной функции. В частности, заряд сможет быть найден как

.

(Так как мы рассматриваем только случаи, когда приложенное к зажимам цепи напряжение и э. д. с, действующие в цепи, сину­соидальны и не содержат постоянных составляющих, то напряжения на конденсаторах и заряды на конденсаторах также не содержат постоянных составляющих).

Искомое изображение интеграла будет

Т. о. операция интегрирования действительной функции заменяется делением на ее комплексного изображения.

Таким образом, комплексный метод позволяет заменить интегро-дифференциальное уравнение, содержащее функции времени, алгебраическим уравнением с их комплексными изображениями.

1. Замена заданных функций времени их комплексными изображениями.

2. Замена всех уравнений, составленных по закону Кирхгофа, алгебраическими уравнениями для комплексных изображений.

3. Нахождение комплексных изображений искомых функций.

4. Переход к оригиналам этих функций.

В качестве примера рассмотрим цепь с последовательно соединенными участками R,L и C,к зажимам которой приложено напряжение, изменяющееся по синусоидальному закону .

Требуется найти ток в цепи: .

1) В соответствии с алгоритмом заменяем функции времени их изображениями: , .

2) Составляем уравнение по второму закону Кирхгофа:

и записываем его для комплексных изображений, заменив ток,его производную и интеграл их комплексными выражениями:

.

Полученное уравнение уже является алгебраическим. Все слагаемые имеют одинаковый множитель , на который уравнение можно поделить. Окончательно получаем уравнение для комплексных амплитуд:

.

Поэтому рассматриваемый метод расчета часто называют методом комплексных амплитуд. В дальнейшем сразу не будем писать множитель , а составлять уравнение для комплексных амплитуд.

3) Из последнего уравнения легко определяется комплексная ам­плитуда тока:

,

где – полное комплексное сопротивление цепи.

4) Зная выражение для комплексной амплитуды тока в виде , легко записать выражение для мгновенного тока:

Нас обычно интересуют действующие токи и напряжения. Так как действующие синусоидальные токи и напряжения меньше их амплитуд в , то обычно вместо комплексных амплитуд рассмат­ривают комплексные действующие величины: , .

Комплексные сопротивление и проводимость

Отношение комплексного напряжения к комплексному току называют комплексным сопротивлением цепи и обозначают .

,

где – активное, реактивное и полное сопротивления цепи.

В частности, для последовательного соединения R,L и C

.

Аналогично, отношение комплексного тока к комплексному напряжению называют комплексной проводимостью цепи и обозначают . Имеем:

,

где – активная, реактивная и полная проводимости цепи.

Для параллельного соединения трех элементов

.

Очевидно, существует связь: или

Основные законы электрических цепей в комплексной форме

Вид законов электрических цепей переменного тока в комплексной форме такой же, как и для цепи постоянного тока. Только необходимо произвести замену соответствующих постоянных величин комплексными: , , , , , .

Закон Ома в комплексной форме имеют вид: .

Достоинство этих выражений заключается в том, что в них учи­тывается как связь между действующими значениями тока и напряжения,так и сдвиг фаз между ними.

Первый закон Кирхгофа в применении к узлу цепи .

Второй закон Кирхгофа применительно к контуру цепи .

Возможность использовать соотношения для цепей постоянного тока справедлива и для эквивалентных преобразований.

При последовательном соединении участков цепи напряжение на зажимах всей цепи равняется сумме падений напряжений на отдельных участках.Следовательно, при после­довательном соединении комп­лексное сопротивление всей цепи равно алгебраической сумме комплексных сопротивлений от­дельных участков цепи:

При параллельном соединении участков цепи общий ток на входе цепи равен сумме токов в отдельных участках. Таким образом, при параллельном соединении комплексная проводимость всей цепи равна алгебраической сумме комплексных проводимостей отдельных участков цепи:

.

При смешанном соединении:

; , . , , .

Расчет сложных цепей переменного тока комплексным методом осуществляется с помощью тех же методов, что и цепей постоянного тока при замене соответствующих величин их комплексными аналогами.

Читайте также:  Измерение силы тока в цепи переменного тока с конденсатором

Источник

Почему для расчетов в цепях переменного тока используются комплексные числа

Как известно, для решения некоторых типичных задач электротехники применяют комплексные числа. Но для чего их используют и почему это делают именно так? В этом мы и постараемся разобраться по ходу данной статьи. Дело в том, что комплексный метод, или метод комплексных амплитуд, удобен при расчетах сложных цепей переменного тока. И для начала вспомним немного математических основ:

Комплексное число

Как видите, комплексное число z включает в себя мнимую и действительную части, которые между собой различаются и обозначаются в тексте по разному. Само же комплексное число z может быть записано в алгебраической, тригонометрической или показательной форме:

Комплексное число может быть записано в алгебраической, тригонометрической или показательной форме

Считается, что представление о мнимых числах начало зарождаться в 1545 году, когда итальянский математик, инженер, философ, медик и астролог Джироламо Кардано в своем трактате «Великое искусство» опубликовал данный метод решения уравнений, где, кстати, признался, что идею ему передал Никколо Тарталья (итальянский математик) за 6 лет до публикации этой работы. В работе Крадано решал уравнения вида:

Уравнение Кардано

В процессе решения данных уравнений ученый вынужден был допустить существование некого «нереального» числа, квадрат которого был бы равен минус единице «-1», то есть будто бы существует квадратный корень из отрицательного числа, и если его теперь возвести в квадрат, то получится, соответственно, отрицательное число, стоящее под корнем. Кардано указал правило умножения, согласно которому:

Правило умножения Кардано

На протяжении трех веков математическое сообщество пребывало в процессе привыкания к новому подходу, предложенному Кардано. Мнимые числа постепенно приживались, однако принимались математиками неохотно. И лишь с публикациями работ Гаусса по алгебре, где он доказывал основную теорему алгебры, комплексные числа наконец-то основательно приняли, на дворе был 19 век.

Мнимые числа стали настоящей палочкой — выручалочкой для математиков, ведь сложнейшие задачи стали решаться гораздо проще с приятием существования мнимых чисел.

Так вскоре дело дошло и до электротехники. Электрические цепи переменного тока порой оказывались очень сложными, и для их расчета приходилось вычислять множество интегралов, что зачастую весьма неудобно.

Наконец, в 1893 году гениальный электротехник Карл Август Штейнмец выступает в Чикаго на Международном электротехническом конгрессе с докладом «Комплексные числа и их применение в электротехнике», чем фактически знаменует начало практического применения инженерами комплексного метода расчетов электрических цепей переменного тока.

Переменный ток

Из курса физики нам известно, что переменный ток — это такой ток, который изменяется во времени как по величине, так и по направлению.

В технике встречаются различные формы переменного тока, однако наиболее распространен сегодня ток переменный синусоидальный, именно такой используется всюду, при помощи него электроэнергия передается, в виде переменного тока она генерируется, преобразуется трансформаторами и потребляется нагрузками. Синусоидальный ток периодически изменяется по синусоидальному (гармоническому) закону.

Синусоидальный ток

Действующие значения тока и напряжения меньше амплитудных значений в корень из двух раз:

Действующие значения тока и напряжения меньше амплитудных значений в корень из двух раз

В комплексном методе действующие значения токов и напряжений записывают так:

Действующие значения токов и напряжений в комплексном виде

Обратите внимание, что в электротехнике мнимая единица обозначается буквой «j», поскольку буква «i» уже занята здесь для обозначения тока.

Из закона Ома определяют комплексное значение сопротивления:

Комплексное значение сопротивления

Сложение и вычитание комплексных значений осуществляется в алгебраической форме, а умножение и деление — в показательной форме.

Давайте разберем метод комплексных амплитуд на примере конкретной схемы с определенными значениями основных параметров.

Пример решения задачи с применением комплексных чисел

напряжение на катушке 50 В,

сопротивление резистора 25 Ом,

индуктивность катушки 500 мГн,

электроемкость конденсатора 30 мкф,

сопротивление провода катушки 10 Ом,

частота сети 50 Гц.

Найти: показания амперметра и вольтметра, а также ваттметра.

Для начала запишем комплексное сопротивление последовательно соединенных элементов, которое состоит из действительной и мнимой частей, затем найдем комплексное сопротивление активно-индуктивного элемента.

Вспоминаем! Для получения показательной формы находят модуль z, равный корню квадратному из суммы квадратов действительной и мнимой частей, а также фи, равное арктангенсу частного от деления мнимой части на действительную.

Пример решения задачи с применением комплексных чисел

Далее найдем ток и соответственно показания амперметра:

Ток

Итак, амперметр показывает ток 0,317 А — это ток через всю последовательную цепь.

Теперь найдем емкостное сопротивление конденсатора, затем определим его комплексное сопротивление:

Комплексное сопротивление

Далее вычислим полное комплексное сопротивление данной цепи:

Полное комплексное сопротивление данной цепи

Теперь найдем действующее напряжение, приложенное к цепи:

Действующее напряжение, приложенное к цепи

Вольтметр покажет действующее напряжение 19,5 вольт.

Наконец, найдем мощность, которую покажет ваттметр с учетом разности фаз между током и напряжением

Расчет мощности

Ваттметр покажет 3,51 Ватт.

Теперь вы понимаете, какое важное место комплексные числа занимают в электротехнике. Они применяются для удобного расчета электрических цепей. На этой же основе работают и многие электронные измерительные приборы.

Донат на развитие сайта «Школа для электрика»:

Источник

Adblock
detector