Меню

Сколько времени потребуется для того чтобы при плотности тока 50



Как рассчитать необходимое сечение провода по мощности нагрузки?

При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.

Для чего нужен расчет сечения кабеля

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Правильному подбору проводника посвящёна отдельная глава в ПУЭ: «Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны».

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( «Правила устройства электроустановок«). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно «Правилам устройства электроустановок«, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на ступень больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².

Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.

Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².

Выбираем по мощности

Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.

Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.

Таблица 1. Подбор сечения провода по мощности для кабеля с медными жилами

Сечение токопроводящей жилы, мм² Для кабеля с медными жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75.9
50 175 38.5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Таблица 2. Подбор сечения провода по мощности для кабеля с алюминиевыми жилами

Сечение токопроводящей жилы, мм² Для кабеля с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,2

Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.

В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:

  • высокая прочность;
  • упругость;
  • стойкость к окислению;
  • электропроводность больше, чем у алюминия.

Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.

Как рассчитать по току

Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ (ПУЭ-7 п.1.3.10-1.3.11 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ).

Таблица 3. Электрический ток для медных проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечение проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Для расчета алюминиевых проводов применяют таблицу.

Таблица 4. Электрический ток для алюминиевых проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечения проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.

Расчет сечения кабеля по мощности и длине

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения — м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.
Читайте также:  Сила тока при сварки алюминия

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ — удельное сопротивление материала, l — длина проводника, S — площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

Открытая и закрытая прокладка проводов

В зависимости от размещения проводка делится на 2 вида:

  • закрытая;
  • открытая.

Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.

При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Определение площади сечения проводника по его диаметру

Как рассчитать необходимое сечение провода по мощности нагрузки?

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Как рассчитать необходимое сечение провода по мощности нагрузки?

Какой провод лучше использовать для проводки в квартире и в частном деревянном доме?

Как рассчитать необходимое сечение провода по мощности нагрузки?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать необходимое сечение провода по мощности нагрузки?

Как перевести амперы в киловаты?

Как рассчитать необходимое сечение провода по мощности нагрузки?

Способы вычисления потребления электроэнергии бытовыми приборами

Источник

Технологический процесс хромирования

Технологические операции при ремонте (восстановлении) деталей хромированием выполняют в следующей последовательности.

Механическая обработка. Поверхности деталей, подлежащие хромированию, шлифуют до выведения следов износа и получения необходимой геометрической формы.

Промывка деталей в органических растворителях и протирка ветошью. В качестве растворителей применяют бензин, керосин, трихлорэтан, бензол и др.

Монтаж деталей на подвеску. Необходимо следить, чтобы детали одинаково отстояли от поверхности анода. Ванну следует загружать однородными деталями, укрепленными на одинаковых подвесках. Подвески и контакты должны быть изготовлены из одинаковых материалов. Контактные крючки рекомендуется изготавливать из бронзы и меди. В качестве материала для подвесок, применяют сталь, сечения подвесок рассчитывают, исходя из плотности тока 0,7… 1,0 А/мм2. Ежедневно аноды очищают от окислов и налета электролита.

Обезжиривание. Рекомендуется применять электролитическое обезжиривание в растворе следующего состава: едкий натр (NaOH)—30… 50 г/л; кальцинированная сода (iNa2C03)—25…30 г/л и жидкое стекло (Na2Si03) — 10 … 20 г/л.

Температура электролита — 60… 70°, плотность тока — 5….15 А/дм2. Время выдержки на катоде — 2… 3 мин, а на аноде — 1…2 мин. После обезжиривания детали сначала промывают горячей водой (60… 80°), а затем холодной. Обезжиривание считается законченным, если после промывки вода равномерно смачивает поверхность. После обезжиривания производится изоляция1 поверхностей, не подлежащих хромированию. Для изоляции можно применять перхлорвиниловый лак, лак АК-20, целлулоид,, винипласт, плексиглас, хлорвиниловые трубки или хлорвиниловую» изоляционную ленту.

Декапирование — это процесс обработки деталей в хромовом* электролите, состоящем из 100 г хромового ангидрида (СгОз) и 2…3 г серной кислоты (H&SO4) на 1 л воды.

Декапирование (травление) стальных деталей проводят в течение 30… 90 с при плотности тока 25… 40 А/дм2. А для деталей из серого чугуна лучшие результаты, в смысле прочности сцепления, достигаются при плотности тока 20… 25 А/дм2 и продолжителыюсти декапирования 25… 30 сек. Температура электролита во всех случаях должна быть 55… 60 °С.

Процесс хромирования. После анодного декапирования детали загружают в ванну хромирования и прогревают их при выключенном токе в течение 5… 6 мин, а затем дают полный ток согласно режиму хромирования. При хромировании чугунных деталей вначале в течение 3… 5 мин дают «толчок тока» при плотности, в 2…2,5 раза превышающей выбранную по режиму. Колебания температуры электролита могут быть в пределах ±1 °С. Не допускаются перерывы тока в процессе электролиза, так как они вызывают отслаивание хромового покрытия. Продолжить процесс после перерыва тока можно, если хромируемую поверхность подвергнуть анодному травлению при плотности тока 25… 30 А/дм2 в течение 30… 40 с, а затем изменить направление тока. В этом случае осаждение хрома следует начинать при катодной плотности тока 20… 25 А/дм2 и постепенно увеличивать до нормальной.

Аноды для хромирования изготавливают из чистого свинца или сплава, состоящего из 92…93% свинца и 7… 8% сурьмы. Аноды из чистого свинца в большей степени покрываются нерастворимой и непроводящей пленкой хромовокислого свинца, чем аноды из сплава свинца и сурьмы. В большинстве случаев аноды изготавливают плоскими и цилиндрическими. При хромировании деталей сложной конфигурации очертания анода определяются формой катода. Расстояние между анодами и деталями рекомендуется делать 30… 35 мм, но не более 50 мм. Расстояние деталей от днища ванны должно составлять не менее 100… 150 мм, а от верхнего уровня электролита — не менее 50… 80 мм. Уровень электролита должен быть ниже верхних кромок ванны на 100…150 мм. При завешивании деталей в ванну необходимо, чтобы все участки анодов были одинаково удалены от противоположных участков катода. При этом толщина слоя хрома откладывается равномерно по всей поверхности детали.

Глубина погружения анодов и деталей (катодов) в ванну должна быть одинаковой, так как при различной глубине на краях хромируемых деталей образуются утолщения, искажающие форму. Скорость осаждения слоя хрома при плотности тока 40… 100 А/дм2 составляет 0,03… 0,06 мм/ч.

По окончании процесса хромирования детали выгружают из ванны и вместе с подвесками промывают в холодной воде (в сборнике электролита) 15… 20 с. Окончательно детали моют в холодной проточной воде.

Обработка после покрытия. Промытые и очищенные от изоляции детали иногда подвергают термической обработке при температуре 150—200°С в течение 2…3 ч, а затем механической.

Для шлифования применяют круги мягкие или средней твердости с размером зерна от 60 до 120. Шлифование ведут при интенсивном охлаждении жидкостью и при скорости круга 20…30.м/с и выше. Скорость вращения детали—12…20 м/мин.

Режимы электролиза. Процесс осаждения хрома и свойства хромовых покрытий зависят от режима, при котором осаждается хром на поверхности металла, т. е. от катодной плотности тока и температуры электролита. Наиболее ясное представление о примерных границах режимов электролиза, обеспечивающих получение серого, блестящего и молочного осадков хрома, дает диаграмма плотности тока и температуры (DK—t), изображенная на рисунке 19.

Серый осадок хрома появляется на катоде при низких температурах электролиза (35…50 °С) и широком диапазоне плотностей тока. Осадки блестящего* хрома обладают высокой твердостью (6000… 9000 Н/мм2), высокой износостойкостью и меньшей хрупкостью.

tmp1 21

Рис. 19. Зоны хромовых осадков.

Молочный хром получается при более высоких температурах, электролита (выше 70 °С) и широком интервале плотностей тока. Молочные осадки отличаются пониженной твердостью (4400..-6000 Н/мм2), пластичностью и повышенной коррозионной стойкостью.

Пористое хромирование. Пористое хромирование применяется при ремонте деталей, работающих на трение в паре с различными металлами и сплавами при высоких удельных давлениях и окружных скоростях или при повышенных температурах. К таким деталям относятся гильзы цилиндров двигателей внутреннего сгорания, коленчатые валы и др.

Пористые хромовые покрытия можно получать механическим,, химическим и электрохимическим способами.

При механическом способе на поверхность детали до хромирования наносят углубления в виде пор или каналов. Такую подготовку обеспечивают накаткой специальным роликом, дробеструйной обработкой и другими способами. После хромирования воспроизводятся неровности, полученные при подготовке.

Химическим способом получают пористость путем травления поверхности в соляной кислоте.

Наибольшее распространение получил электрохимический способ получения пористого хрома. Этот способ заключается в анодной обработке хромированных деталей в электролите того же состава. В зависимости от режимов хромирования пористость хромовых покрытий бывает двух типов — канальчатая и точечная.. При ремонте гильз цилиндров, втулок, коленчатых валов и подобных им деталей применяется канальчатый тип пористости. Такук> пористость и наименьший износ в условиях трения можно получить при хромировании в электролите, состоящем из 250 г Сг03 и 2,5 г H2S04 на 1 л воды, при температуре электролита ¦60+1 °С и катодной плотности тока 55… 60 А/дм2. Травление ведут при плотности анодного тока 35 …45 А/дм2 в течение 8 мин в том же электролите.

Точечная пористость образуется при хромировании в универсальном электролите при плотности тока 45… 55 А/дм2 и температуре 50… 55 °С. Анодную обработку проводят так же, как и при канальчатой пористости, т. е. при плотности тока 35… 45 А/дм2 в течение 8 мин.

Хромирование в саморегулирующемся электролите. В последнее время разработан новый хромовый электролит, называемый скоростным саморегулирующимся, его состав: хромовый’ ангидрид — 225… 300 г/л, кремнефтористый калий — 20 г/л и сернокислый стронций — 6 г/л.

В таком электролите выход по току при хромировании составляет 17… 22%. Саморегулирующимся он назван потому, что при электролизе в нем автоматически поддерживается необходимая концентрация анионов, вводимых в хромовый электролит. Это происходит в результате избыточного количества труднорастворимых солей кремнефтористого калия и сернокислого стронция, растворимость которых изменяется в зависимости от концентрации хромового ангидрида и температуры электролита.

Чтобы получить износостойкое покрытие в саморегулирующемся электролите, рекомендуют соблюдать следующие режимы хромирования: плотность тока 50… 100 А/дм2, температура электролита 45… 55°С. Молочные осадки можно получить при температуре электролита 55… 70 °С и плотности тока 20… 35 А/дм2. Микротвердость покрытий из саморегулирующегося электролита составляет 3000… 13 000 Н/мм2.

Читайте также:  Шина 20х3 допустимый ток

Недостаток такого электролита — сильное взаимодействие его со сталью и другими металлами, в результате чего происходит растравливание обрабатываемых поверхностей. Поэтому загружать детали в ванну необходимо только при включенном токе. Аноды для хромирования в саморегулирующемся электролите рекомендуется применять из сплава: 90% свинца и 10% гост олово. Чтобы приготовить саморегулирующийся электролит, в ванне хромирования растворяют нужное количество хромового ангидрида и доливают воду до рабочего уровня. Предварительно хромовый ангидрид подвергают анализу на содержание серной кислоты, которую удаляют из электролита путем добавления в него углекислого бария или стронция. На 1 г серной кислоты вводят 2,2… 2,3 г углекислого бария или 1,53 г углекислого стронция. После осаждения серной кислоты в электролит вводят нужное количество сернокислого стронция и кремнефтористого калия и нагревают до температуры 50…60°С. Нагревание длится 15… 16ч при периодическом перемешивании через каждые 2… 3 ч. После этого электролит готов к эксплуатации.

Корректируют электролит путем систематического добавления хромового ангидрида. Вместе с хромовым ангидридом вводят углекислый стронций. Кремнефторид калия и сернокислый стронций в количестве 1 г/л добавляют, когда поверхность отхромированных деталей приближается к 1 м2.

Контроль хромовых покрытий. В производственных условиях качество покрытий следует проверять внешним осмотром и замером размеров хромированных поверхностей. При внешнем осмотре необходимо обращать внимание на блеск, отслоение и плотность осадка, равномерность и отсутствие шелушения и другие видимые дефекты. Дефекты покрытий получаются в результате неисправностей в работе ванн хромирования, например отслаивание покрытия возникает в результате недостаточного обезжиривания и декапирования, а также при наличии перерывов тока в процессе хромирования. Шелушение осадков появляется при недостаточном контакте детали с подвеской или при повышенной плотности тока. Неравномерное покрытие может быть при образовании пленки хроматов свинца на анодах, недостатке серной кислоты, избытке трехвалентного хрома. Во избежание перечисленных выше дефектов, необходимо откорректировать электролит и устранить другие неполадки в работе ванн хромирования.

Оборудование. Схема расположения оборудования участка восстановления деталей хромированием приведена на рисунке 20.

Источники тока — выпрямители с напряжением 12 В ВАКГ-12/6-3000, ВАГГ-12/600М, ВАС-600/300 и другие, а также низковольтные генераторы АНД 500/250, 750/375, 1000/500, 1500/750. Ванны для гальванического участка изготавливают из листовой стали толщиной 4… 5 мм. Облицовка для ванн промывки и обезжиривания не требуется. Внутреннюю поверхность ванны хромирования облицовывают свинцом.

tmp1 22

Рис. 20. Расположение оборудования
на участке восстановления
деталей хромированием:
1 — выпрямитель; 2 — электрощитг;
3 — ванна для электрохимического обезжиривания;
4 — ванна для горячей промывки;
5 — ванна для холодной промывки;
6 — ванна для декапирования;
7 — ванна для хромирования;
8 — ванна для улавливания электролита;
9 — шкаф сушильный; 10— стеллаж ремфонда;
11 — электротельфер;
12 — сборник-нейтрализатор;
13 — стол для монтажа и демонтажа.

Материалы. Ориентировочный расход материалов в граммах на 1 дм2 восстановленной поверхности для средней толщины покрытия 0,1 мм при хромировании в универсальном электролите приведен в таблице 13.

Себестоимость восстановления 1 дм2 поверхности хромированием в универсальном электролите при толщине покрытия 0,1 мм ориентировочно составляет 44,8 коп., 0,2 мм — 52,0 коп., 0,3 мм—-58,6 коп.

Электролитическое железо имеет светло-серый цвет, обладает достаточно высокой твердостью и износостойкостью. Химический состав электролитического железа зависит от состава исходных материалов, используемых при электролизе.

При обычном осаждении с применением стальных растворимых анодов содержание примесей в покрытиях находится в пределах: 0,035 …0,06% С; 0,03 …0,05% S; 0,05 …0,01% Р, 0,0009… 0,023% Si; до 0,01% Мп.

В электролитических осадках железа имеются также примеси таких металлов, как Mg, Со, Ni и другие, обусловленные содержанием этих металлов в анодах и электролитах. Кроме этого, электролитическое железо содержит значительное количество водорода, выделяющегося на катоде вместе с железом. Атомный вес железа 55,85 г. Электрохимический эквивалент 1,042 г/А-ч.

Составы электролитов. На ремонтных предприятиях наибольшее распространение для железнения получили горячие хлористые электролиты, состоящие из двух компонентов: хлористого железа и соляной кислоты. В ремонтной практике чаще всего применяют четыре вида хлористых электролитов, отличающихся концентрацией железа.

Малоконцентрированный электролит содержит 200 …250 г/л хлористого железа (FeCl2-4H20). При температуре 60… 80 °С и плотности тока 30… 50 А/дм2 электролит обеспечивает получение плотных, гладких мелкозернистых осадков железа с твердостью 4500… 6500 Н/мм2, толщиной 1,0… 1,5 мм. Выход железа по току составляет 85… 95%. Скорость осаждения железа равна 0,4… 0,5 мм/ч на сторону. Электролит допускает колебание кислотности при электролизе от 0,8 до 1,5 г/л, которое незначительно отражается на механических свойствах покрытий. Недостатком этого электролита является постепенное увеличение концентрации железа в процессе электролиза в результате несоответствия между скоростью растворения анодов и скоростью осаждения железа на катоде, что вызывает затруднения при обслуживании ванны железнения.

Среднеконцентрированный электролит оптимальной концентрации содержит 300…350 г/л хлористого железа (FeCl2-4H20). Катодный выход железа из этого электролита при температуре 75 °С и плотности тока 40 А/дм2 составляет 96%. В этом электролите анодные и катодные выходы железа по току становятся примерно одинаковыми, концентрация железа остается почти неизменной и электролит длительное время по концентрации железа не требует корректировки. В настоящее время этот электролит нашел широкое применение на ремонтных предприятиях.

Среднеконцентрированный электролит содержит 400 …450 г/л хлористого железа. Электролит используется для восстановления деталей, имеющих достаточно высокие износы и сравнительно невысокую твердость. Электролит дает возможность получать гладкие плотные покрытия толщиной до 2 мм и твердостью 2500… 4500 Н/мм2. Электролит также находит применение для восстановления посадочных отверстий в корпусных, деталях.

Высококонцентрированный электролит содержит 600… 680 г/л хлористого железа. Электролит при температуре 95… 105°С и плотности тока 5…20 А/дм2 позволяет получать мягкие (120… 200 кг/мм2), вязкие покрытия толщиной 3… 5 мм..

Электролиты более высокой концентрации рекомендуется применять в случаях, когда к восстанавливаемым деталям не предъявляются повышенные требования по твердости рабочих поверхностей.

За последнее время разработаны холодные электролиты, позволяющие применять более высокие плотности тока и обеспечивающие высокую производительность процесса.

Хлористый марганец МпС12-4Н20 Аскорбиновая кислота Двухлористое железо FeCl2-4H20 Хлористый марганец МпС12-4Н20 Хлористый калий КС1 (или) NaCl Аскорбиновая кислота Двухлористое железо FeCl2*4H20 Сернокислое железо FeS04*7H20 Двухлористое железо FeCl2-4H20 Метилсульфатное железо Fe (CH3OSO3) 2*4Н20

Хлористые электролиты без добавок, приведенные в таблице* позволяют получать качественные износостойкие покрытия толщиной 0,6… 1,0 мм и обеспечивать восстановление широкой номенклатуры изношенных деталей до нормальной работоспособности и номинальных размеров. Электролит, в состав которого» входят двухлористое железо и йодистый калий, обеспечивает по-пучение качественных осадков, железа’ при условии применения асимметричного переменного тока.

Присутствие аскорбиновой кислоты в электролитах позволяет вести электролиз в широких пределах значений pH от 1,8 до 6,0, что значительно упрощает регулирование кислотности электролита. Электролит, состоящий из двухлористого железа и метил-сульфатного железа, по сравнению с хлористым менее агрессивен и более устойчив к окислению. Покрытия, полученные из этого электролита, имеют меньшее количество трещин, обладают более равномерной структурой.

Приготовление и корректирование электролита. Для приготовления хлористого электролита используют двухлористое железо (Fe€l2-4H20).

Соляная кислота (НС1) применяется в виде водного раствора разной концентрации с плотностью от 1,14 до 1,20. Приготовление электролита производится в следующем порядке. В ванну заливают проточную или дистиллированную воду комнатной температуры и добавляют соляную кислоту из расчета 0,5 г/л воды. В подкисленную воду засыпают двухлористое железо, выдерживая требуемую концентрацию, и перемешивают до полного растворения. После растворения двухлористого железа электролит должен отстояться в течение 1 … 2 ч, пока не примет светло-зеленый цвет. Затем электролит проверяют на кислотность. Нормальная кислотность должна быть pH 0,8… 1,2. При необходимости добавляют недостающее количество кислоты в соответствии с ее плотностью, приведенной ниже.

Плотность кислоты, г/см3 1,14 1,15 1,16 1,17 1,18 1,19 1,20 Количество кислоты, г/л 20 19 18 17 16 15 14 Количество кислоты, см*/л……. 18 16,6 15,5 14,6 13,6 12,6 11,6

Приготовленный таким образом электролит следует проработать током при плотности 30 А/дм2 и соотношение поверхностей анодов и катодов Sa : SK = 2 : 1 в течение двух часов.

Удельный вес электролита (плотность) г/см8 1,12 1,15 1,17 1,20 1,23 1,26 1,29 1,32 1,35
Концентрация железа, г/л … 200 260 300 350 400 450 500 550 600.
Контроль кислотности электролита можно осуществлять с помощью индикаторной бумаги «Рифан» с pH 0,3 …2,2 или потенциометров ЛПУ-01, ЛПМ-60.

Источник

Деталь надо покрыть слоем хрома толщиной 50 мкм. Сколько времени потребуется для покрытия, если норма плотности тока1 при хромировании 2 кА/м2?

Ответ

Ответы

Ответ

Решение к задаче представлено в виде картинки и приложено к ответу

Деталь надо покрыть слоем хрома толщиной 50 мкм. С

Ответ

Ответ

Определим объем покрытия:

V = S·h = 1·50·10⁻⁶ = 50·10⁻⁶ м³

m = ρ·V = 7 200 · 50·10⁻⁶ ≈ 0,360 кг

Электрохимический эквивалент хрома:

Из закона Фарадея:

t = m / (k·I) = 0,360 / (0,18·10⁻⁶·4000) ≈ 500 с или около 8 минут

Ответ

а) 1) Прибавить 1;
2) умножить на 2;
3) прибавить 1.

б) 1) Прибавить 1;
2) прибавить 1;
3) прибавить 1;
4) умножить на 2;
5) умножить на 2;
6) умножить на 2;
7) прибавить 1;
8) умножить на 2.

в)1)Прибавить 1;
2) прибавить 1;
3) прибавить 1;
4) умножить на 2;
5) умножить на 2;
6) умножить на 2;
7) умножить на 2;
8) прибавить 1;
9) умножить на 2;10) прибавить 1.

Источник

Электролиз с растворимым анодом

При электролизе используют инертные аноды (Pt, графит), реже иридий, золото, тантал. В качестве растворимых анодов могут быть Cu, Ni, Cd, Al и другие металлы. При этом виде электролиза анод – металл окисляется (растворяется), образующиеся катионы металла перемещаются к катоду и на нем восстанавливаются до металла. Таким образом, металл растворимого анода осаждается на катоде. Электролиз с растворимым анодом имеет важное техническое значение, в частности широко применяется для очистки металлов – электрорафинирования.

Законы Фарадея

Протекание первичных анодных и катодных процессов подчиняется законам, установленным М. Фарадеем.

1-й закон Фарадея: масса вещества m, выделяемая на электроде электрическим током, прямо пропорциональна количеству электричества Q, прошедшего через электролит:

m = Кэ× Q или m = Кэ× I×t, (17.1)

где Q = I×t, I – сила тока, А; t – время пропускания тока, с; Кэ – электрохимический эквивалент, равный количеству вещества, кг, выделяемого при прохождении 1 кулона (Кл) или 1 ампер×секунды (А×с) электричества. Как следует из 2-го закона Фарадея, электрохимический эквивалент вещества таков

Читайте также:  Тока не ври мне

здесь mэ – эквивалентная масса вещества, г/моль.

2-й закон Фарадея: массы различных веществ, выделяемых одним и тем же количеством электричества, прямо пропорциональны их эквивалентным массам mэ:

Для выделения на электроде одного эквивалента любого вещества необходимо затратить одно и то же количество электричества, а именно 96487 Кл, называемое числом Фарадея. Число Фарадея F равно произведению числа Авогадро на заряд электрона: F = NA × e = 96487.

Из законов Фарадея следует, что

где m – масса вещества, образовавшегося или подвергнувшегося превращению, г; mэ – эквивалентная масса этого вещества, г/моль; I – сила тока, А; t –продолжительность электролиза, с.

При практическом проведении электролиза некоторая часть электроэнергии затрачивается на побочные процессы, в частности на преодоление сопротивления электролита. Важной характеристикой рентабельности работы электролизера является выход по току (h, %):

где mпр – масса практически выделенного вещества; mтеор – масса вещества, которая теоретически должна выделиться по уравнению (17.4).

Выход по току (%) можно рассчитать по формуле

где Qтеор – количество электричества, необходимое по закону Фарадея для выделения данного количества вещества; Qпр – количество электричества, практически затраченного на выделение того же количество вещества.

На процесс электролиза существенно влияет плотность тока, т. е. величина тока I, приходящаяся на единицу рабочей поверхности электрода S. Плотность тока (выражается в А/см 2 или А/дм 2 ):

Пример 1. При электролизе раствора NaCl было получено 400 см 3 раствора, содержащего 18 г NaOH. За то же время в кулонометре выделилось 20,2 г меди из раствора сульфата меди. Определить выход по току.

Решение. Используем закон эквивалентов:

(теоретическое количество щелочи). По условию mпр = 18 г, тогда выход по току

Пример 2. Ток, проходя через раствор кислоты, выделяет за 6 мин 120 см 3 Н2, измеренного при температуре 17 °С и давлении 98910 Па. Найти силу тока.

Решение. По уравнению Менделеева — Клайперона найдем массу водорода:

Силу тока находим по обобщенной формуле закона Фарадея (17.4):

Пример 3. Вычислить катодную плотность тока на цилиндрическом электроде диаметром 3 см, высотой 5 см при силе тока 0,4 А.

Решение. Поверхность электрода S = p × d × h = 3,14 × 3 × 5 = 47,1 см 2 , плотность тока

17.1. Ток силой 2,2 А проходит через раствор медного купороса в течение 2 ч. Какова масса выделившейся меди?

Ответ: 5,216 г.

17.2. Сколько граммов серной кислоты образуется при электролизе раствора медного купороса в течение 3 ч 10 мин при силе тока 0,56 А?

Ответ: 3,245 г.

17.3. Через раствор FeCl2 пропускали ток силой 3 А в течение 12 мин, а через раствор FeCl3 за это же время — ток силой 4 А. В каком из растворов масса выделившегося железа больше?

Ответ: больше из FeCl2.

17.4. Через соединенные последовательно растворы SnCl2 и SnCl4 пропускали в течение 10 мин ток силой 3 А. Вычислить массы олова и хлора, выделившихся из каждого раствора в отдельности.

Ответ: Sn – 1,105 г и 0,554 г; Cl2 – 0,6613 г.

17.5. Через раствор иодида бария пропускают ток силой 5,2 А в течение 18 мин. Какие реакции протекают на электродах? Какие вещества и в каких количествах выделятся на электродах?

Ответ: H2 – 0,058665 г; I2 – 7,387 г.

17.6. Сколько граммов КОН образуется при электролизе раствора КСl, если на аноде выделилось 10,85 л хлора, объем которого измерен при 22 °С и 99 975 Па?

Ответ: 49,64 г.

17.7. Какие процессы происходят на электродах при электролизе раствора NiSO4, если оба электрода сделаны из никеля? Как изменится масса анода после пропускания тока силой 3,2 А в течение 30 мин?

Ответ: уменьшится на 1,752 г.

17.8. Какие процессы протекают на электродах при электролизе сульфата кадмия (электроды нерастворимые)? Какие вещества и в каком количестве выделяются на электродах при прохождении через раствор тока силой 3,6 А в течение 42 мин?

Ответ: Cd – 5,283 г; O2 – 0,7521 г.

17.9. Сколько времени надо пропускать электрический ток через раствор соли серебра, чтобы покрыть с двух сторон пластинку размером 4´6 см 2 слоем серебра толщиной 0,02 мм, если сила тока 0,6 А, а плотность серебра 10,5 г/см 3 ?

Ответ: 25 мин 2 с.

17.10. Вычислить силу тока, выделяющего за 30 мин из раствора серной кислоты 380 см 3 гремучего газа, измеренного при 22 °С и 99975 Па. (Гремучий газ – смесь H2 и O2 в объемном соотношении 2:1.)

Ответ: 1,105 А.

17.11. Электрический ток, проходя в течение 7 мин через бездиафрагмный электролизер (рис. 19, а), содержащий разбавленную серную кислоту, выделяет 50 см 3 гремучего газа, измеренного при 18 °С и 99442 Па. Рассчитать силу тока. (Гремучий газ – смесь H2 и O2 в объемном соотношении 2:1).

Ответ: 0,623 А.

17.12. Какой силы ток надо пропускать через 0,12 н. раствор Bi(NO3)3, чтобы в течение 30 мин полностью выделить металл из 40 см 3 раствора?

Ответ: 0,26 А.

17.13. Через раствор медного купороса пропускали электрический ток в течение 30 мин. При этом выделилось 0,25 г меди. Амперметр показывал 0,4 А. Определить ошибку (D) в показаниях амперметра.

Ответ: показания меньше на 0,0217 А.

17.14. Через раствор соли серебра пропускали электрический ток в течение 1 ч. При этом выделилось 0,4830 г серебра. Амперметр показывал 0,09 А. Какова относительная ошибка в его показаниях?

17.15. При электролизе раствора медного купороса образовалось 6,35 г меди. Какой газ и в каком количестве (по объему) выделился на аноде, если он измерен при 25 °С над водой при давлении 99980 Па? Давление водяных паров при этой температуре равно 3172,6 Па. Сколько времени продолжался электролиз, если сила тока была 0,2 А?

Ответ: O2 – 1,278 л; 26 ч 47 мин.

17.16. Сколько кислорода, см 3 , при н. у. выделится при электролизе раствора серной кислоты током силой 2,6 А за 4 мин?

Ответ: 36,01 см 3 .

17.17. Сколько водорода, см 3 , при н. у. выделится при электролизе раствора Na2SO4 током силой 2,4 А за 5 мин 45 с?

Ответ: 96,1 см 3 .

17.18. Сколько кислорода, см 3 , при н. у. должно выделиться на аноде за время, в течение которого отложилось на катоде 0,1324 г серебра при одной и той же силе тока?

Ответ: 6,871 см 3 .

17.19. Электрический ток силой 1 А проходит в течение 1 ч через раствор CuSO4 (электроды нерастворимые). Определить количества выделившейся меди, г, и образовавшейся серной кислоты в растворе (в молях) за указанное время, если выход по току равен 90 %.

Ответ: Cu – 1,067 г; H2SO4 – 1,68×10 — 2 моль.

17.20. Какие процессы протекают при электролизе водного раствора КСl? Вычислить, какое количество гидроксида калия получится при пропускании тока силой 10 А в течение 6 ч 20 мин, если выход по току составляет 60 %.

Ответ: 79,39 г.

17.21. Какой силы ток надо пропускать через расплавленный NaOH в течение 3 ч 30 мин, чтобы получить 22 г металлического натрия при выходе по току 40 %?

Ответ: 18,32 А.

17.22. Вычислить время, необходимое для получения электролизом 1 т алюминия при силе тока 20000 А и выходе по току 80 %.

Ответ: 186 ч 18 мин 20 с.

17.23. В растворе находилось 0,2 моль HgCl2 и 0,3 моль СuС12. Какие вещества и в каком количестве выделятся на угольных электродах, если через раствор пропускать ток силой 10 А в течение 2 ч? Что останется в растворе? (Ответ: выделится а) на катоде Hg – 40,12 г и Cu – 11,0 г; б) на аноде 26,44 г Cl2. Останется в растворе 8,06 г Cu и 1,57 г Cl — ).

17.24. Смешали 20 см 3 0,1 н. AgNO3 и 20 см 3 0,6 н. Cu(NO3)2. Через раствор пропустили ток силой 0,3 А в течение 1 ч. Какие вещества и в каком количестве выделятся на угольных электродах? Что останется в растворе?

Ответ: выделится: а) на катоде Ag – 0,2158 г и Cu – 0,2923 г; б) на аноде 0,0896 г O2. Останется в растворе 0,089 г Cu и 0,173 г NO3 — .

17.25. Металлический предмет общей поверхностью 100 см 2 требуется покрыть слоем никеля 0,2 мм. Плотность никеля 8,9 г/см 3 . Какова плотность тока и сколько времени потребуется его пропускать при силе тока 3 А, если 10 % тока теряется в аппаратуре?

Ответ: 3 A/дм 2 ; 6 ч 1 мин 20 с.

17.26. Стальную пластинку размером 10´20 см 2 требуется электролитически покрыть с одной стороны слоем хрома толщиной 0,025 мм из раствора Cr(NO3)3. Вычислить катодную плотность тока и время, необходимое для получения данного покрытия, если пропускать ток силой 0,18 А. Плотность хрома 6,92 г/см 3 .

Ответ: 0,09 А/дм 2 ; 29 ч 43 мин 20 с.

17.27. Вычислить анодную и катодную плотности тока, если через раствор пропускали ток силой 2,1 А; электроды выполнены в виде прямоугольных листов с размерами анода 5´8 см 2 , катода 10´20 см 2 . (Толщиной пластин пренебречь.)

Ответ: 2,625 А/дм 2 ; 0,525 А/дм 2 .

17.28. При электролизе раствора соли никеля в течение 4 ч 30 мин катод с площадью поверхности 10 см 2 покрылся слоем никеля толщиной 0,025 мм. Вычислить силу тока и катодную плотность тока, если выход по току составил 81 %. Плотность никеля 8,9 г/см 3 .

Ответ: 0,05576 А; 0,5576 А/дм 2 .

17.29. Рассчитать силу тока, который можно пропускать через раствор с цилиндрическим катодом, чтобы не превысить катодную плотность тока 0,2 А/см 2 . Высота катода 5 см, а диаметр цилиндра 3 см.

Ответ: не более 9,42 А.

17.30. Для полного выделения цинка из 1,1250 г цинковой руды после соответствующей обработки потребовалось 9,5 мин при силе тока 1,1 А. Определить содержание оксида цинка в руде, % мас.

Источник