Меню

Схема возбуждения генераторов переменного тока 380



Системы возбуждения синхронных генераторов: разновидности, схемы, достоинства и недостатки

Системы возбуждения синхронных генераторов

Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

  1. начальное возбуждение;
  2. холостой ход;
  3. включение в сеть методом точной синхронизации или самосинхронизации;
  4. работу в энергосистеме с допустимыми нагрузками и перегрузками;
  5. форсировку возбуждения по напряжению и по току с заданной кратностью;
  6. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  7. гашение поля генератора в аварийных режимах и при нормальной остановке;
  8. электрическое торможение агрегата.

Система независимого возбуждения с возбудителем постоянного тока

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения:
• системы тиристорные независимые (СТН) – рис.5.2;
• системы тиристорные самовозбуждения (СТС) – рис.5.3;
• системы бесщеточные диодные (СБД) – рис.5.4

  1. Системы тиристорного независимого возбуждения (СТН)
  2. Система тиристорного самовозбуждения (СТС)
  3. Система тиристорного самовозбуждения резервная (СТСР)
  4. Системы бесщеточные диодные (СБД)
  5. Системы возбуждения для дизель-генераторов
  6. Автоматы гашения поля (АГП)

Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях – рис.5.2.

Абрамян Евгений Павлович

Система тиристорная независимая (СТН)

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом – её параметры не зависят от процессов, протекающих в энергосистеме.

Васильев Дмитрий Петрович

В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Система тиристорного самовозбуждения (СТС)

Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%. Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.

Система тиристорного самовозбуждения (СТС)

Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток – не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН.

Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

Абрамян Евгений Павлович

Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля – электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Система бесщеточная диодная (СБД)

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

Орлов Анатолий Владимирович

Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.

Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.

Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.
Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.

Главное достоинство бесщеточных возбудителей состоит в отсутствии контактных колец и щеточного контакта в цепи обмотки ротора турбогенератора и в сокращении длины машины.

Абрамян Евгений Павлович

Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

Система бесщеточная диодная (СБД)

Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

Система бесщеточная диодная (СБД)

Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

Бесщеточная диодная система возбуждения (СБД) обладает меньшим быстродействием по сравнению с тиристорными системами (СТС и СТН). Так, время нарастания напряжения возбуждения до максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5% от номинального составляет величину не более 50мс, тогда как в тиристорных системах – не более 25 мс.

Система бесщеточная диодная (СБД)

В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.

Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

Читайте также:  Внешние признаки поражения электрическим током

Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).

Системы возбуждения для дизель-генераторов

АО «Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения. Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6. Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

Система бесщеточная с диодным синхронным возбудителем (СБД), магнитоэлектрическим подвозбудителем с постоянными магнитами и статическим тиристорным регулятором возбуждения представлена на рис.5.7.

Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

Основные характеристики систем возбуждения дизель-генераторов

Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.

Автоматы гашения поля (АГП)

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока.

Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО «Электросила” представлены в табл.5.2.

Источник

Что такое система возбуждения в генераторе переменного тока?

Понятие возбуждения и его особенности

Возбуждение – это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.

Описание процесса

Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.

Простой электромагнит и концентрация поля

Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North – северный) и S (South – южный).

Что такое система возбуждения в генераторе переменного тока?
Рис. 3.13(а). Простой электромагнит.

Из-за большого расстояния между полюсами магнитные силовые линии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).

Что такое система возбуждения в генераторе переменного тока?
Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.

И, наконец, выполним полюса магнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить “утечка” магнитного поля наружу. При вращении ротора эта “утечка” будет пересекать обмотки статора, и наводить в них э.д.с.

Питание ротора постоянным током: особенности процесса

Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.

Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).

Что такое система возбуждения в генераторе переменного тока?

Рис. 3.14. Зубчатый ротор генератора.

Возбуждение генератора: знакомство с определением

Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.

Обмотка возбуждения генератора: знакомство с определением

Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ). Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока.

Для чего служит обмотка возбуждения генератора

Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).

Катушка возбуждения генератора: знакомство с определением

Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:

  • Статор – он неподвижный.
  • Ротор – производит вращения вокруг статора.

Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.

Источник

Возбуждение синхронных генераторов

Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение — от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Изменение напряжения возбуждения при форсировке

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот — Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

Читайте также:  Как сдвинуть фазу тока конденсатором

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Принципиальная схема независимого электромашинного возбуждения генератора

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Принципиальная схема высокочастотного возбуждения турбогенератора

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Принципиальная схема независимого тиристорного возбуждения генераторов

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Принципиальная схема бесщеточного возбуждения генераторов

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Принципиальная схема зависимого электромашинного возбуждения

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Принципиальная схема полупроводникового самовозбуждения

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей — неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.

Источник

Трехфазные генераторы: устройство и принцип работы, правила подключения

  1. Устройство
  2. Принцип работы
  3. Преимущества и недостатки
  4. Виды
  5. Как выбрать?
  6. Схемы подключения

Трехфазный генератор находит широкое применение в частном секторе. Такие электрогенераторы имеют мощность 6, 10, 15 кВт и выше. В этой статье рассмотрены схема и принцип работы таких устройств, указаны их основные различия и правила подключения.

Устройство

Назначение электрического генератора – преобразовывать механическую энергию в электрическую. Он состоит из 2-х основных частей – подвижного ротора и неподвижного статора.

  • Ротор закрепляется на подшипниках. С одной стороны к нему присоединяется привод от внешнего источника движения, а с другой – крыльчатка для охлаждения.
  • Статор – неподвижный элемент. На нем расположены лапы крепления установки, охлаждающие ребра и выходные клеммы. А еще табличка с техническими характеристиками.

Другие составные части.

  • Скользящий контакт ротора. Необходим для питания его обмоток или отвода генерируемого электричества. В большинстве моделей его нет.
  • Средства индикации и контроля.
  • Боковые крышки.
  • Масленки для подачи смазки к подшипникам и другие не менее важные элементы.
Читайте также:  Какая формула выражает связь сил токов в обмотках трансформатора

Теперь нужно разобраться в методе получения электричества.

Принцип работы

Принцип действия трехфазных генераторов основан на законе электромагнитной индукции. Он гласит: на концах металлической рамки, помещенной во вращающееся магнитное поле, будет индуцироваться электродвижущая сила (ЭДС). При этом может вращаться как сама рамка, так и магниты.

Так устроены демонстрационные модели. В реальных генераторах вместо рамки применяется катушка из тонкого медного провода с изолированными друг от друга жилами. Это делается для увеличения коэффициента полезного действия установки.

Так работает однофазный генератор. Для получения 3-фазного тока обмоток должно быть 3. При этом они располагаются по окружности, и угол между ними (его называют угол сдвига фаз) составляет 120 градусов.

В современных моделях 3-х фазных генераторов в качестве магнита выступает ротор. При этом магнит может быть постоянным или электрическим. В последнем случае для питания ротора применяют скользящий контакт с графитовыми щетками. Для запуска такого устройства нужен отдельный источник электроэнергии.

Силовая обмотка располагается в статоре. Это убирает необходимость передавать большие токи через скользящий контакт и повышает надежность работы.

Преимущества и недостатки

3-х фазные генераторы переменного тока имеют целый ряд достоинств.

  1. Более высокий коэффициент полезного действия по сравнению с однофазными. Это значит, что для получения одинаковой мощности тока требуется меньше топлива.
  2. С одного генератора возможно получение 2-х значений напряжения, отличающихся в 1,75 раза. Обычно это 380 В и 220 В. Это расширяет сферу его применения, такой генератор можно использовать и в частном доме, и в промышленности.
  3. При одинаковой мощности они обладают меньшими габаритными размерами и массой, чем однофазные.
  4. Для передачи 3-х фазного тока нужно 3 или 4 провода. Для работы 3-х однофазных генераторов проводов нужно минимум 6.
  5. Более высокая надежность установки.
  6. Для работы большинства промышленного оборудования нужен именно 3-х фазный ток. Применение такого генератора решает эту задачу.
  7. Для получения однофазного напряжения можно подключить только 1 обмотку. Но это не лучшее решение с точки зрения экономичности.
  8. Из переменного тока с помощью выпрямителя можно сделать постоянный.

Такие генераторы имеют и недостатки.

  1. Относительная сложность подключения с юридической точки зрения. Для легального подведения 3-х фазного напряжения требуется специальное разрешение от энергокомпании. А получить его весьма хлопотно.
  2. Необходимо усиление средств безопасности. Нужно больше устройств защиты, УЗО необходимо ставить на каждую фазу.
  3. Работающий генератор не рекомендуется оставлять без присмотра. Нужно следить за показаниями контрольно-измерительной аппаратуры.
  4. Шум и вибрация при работе устройства.

3-фазные генераторы переменного тока не имеют сильных различий между собой. Они отличаются лишь мощностью и особенностями конструкции.

По мощности вырабатываемого тока они бывают:

  • 5 кВт;
  • 6 кВт;
  • 10 кВт;
  • 12 кВт;
  • 15 кВт и более.

Надо сказать, что это стандартный ряд мощности, и он не является абсолютным. Производители могут изготавливать машины и с другими характеристиками.

Кроме того, реальная выходная мощность зависит от многих факторов, таких как качество и чистота топлива, состояние атмосферы (на холоде и при высокой влажности мощность уменьшается) и тому подобное.

По виду применяемого топлива генераторы бывают:

  • дизельные;
  • бензиновые;
  • работающие на дровах или природном газе.

Наибольшее распространение получили первые 2 варианта. При этом дизельные, в силу своей конструкции, надежнее, поскольку работают без системы зажигания. Еще они более экономичные. Бензиновые, в свою очередь, легче запускаются в сложных условиях.

Модели на газу не так эффективны в частном пользовании, и потому менее распространены.

По принципу действия генераторы бывают синхронные и асинхронные.

  • Синхронные. Их достоинство – могут выдержать кратковременную перегрузку в 5-6 раз. Такое бывает при запуске некоторых типов электродвигателей и другого мощного оборудования, когда пусковые токи значительно превышают номинальные. Но у них есть недостатки – это большие габариты и масса, а также меньшая надежность по сравнению с асинхронными собратьями.

  • Асинхронные. Их основные черты – легкость, компактность, простота конструкции и безотказность работы. Но они сразу выходят из строя при перегрузке. Поэтому максимально вырабатываемая ими мощность должна быть значительно выше, чем расходуемая потребителями (раза в 3 – 4). Вдобавок рекомендуется ставить качественную и дорогую защиту от перегрузок.

Также генераторы могут обладать дополнительными функциями:

  • возможность подключения дополнительных линий для увеличения нагрузочной способности;
  • регулировка характеристик выходного тока (например, его формы);
  • наличие электромагнитного реле-регулятора.

По назначению генераторы бывают:

  • основные;
  • вспомогательные.

Они различаются только способом подключения.

Это все, что касается классификации генераторов. Теперь давайте поговорим о выборе этого устройства.

Как выбрать?

При покупке в первую очередь ориентируйтесь на условия, в которых будет работать генератор.

  • Для начала определите требуемую мощность. Она должна превышать суммарную мощность одновременно включенных потребителей. Рекомендуется иметь небольшой (или большой) запас на случай экстренных ситуаций.
  • Выберите вид топлива. Решите, что для вас важнее – экономичность или способность запуститься в любых условиях.
  • Если в сети возможны перегрузки, нужно покупать синхронную модель. Но учтите, что она потребует более тщательного обслуживания, чем асинхронная, и обладает меньшим сроком службы. Да и на систему защиты придется потратиться. Если перегрузки полностью исключены, лучшим выбором станет асинхронный генератор.

Затем проверьте качество изготовления.

  • Покрутите ротор рукой. Он должен вращаться легко. Хруст, щелчки и рывки в подшипниках не допускаются, как и биение ротора. Он не должен шататься в подшипниках.
  • Контакты и клеммы должны быть блестящими. Не допускается сорванная резьба. Если есть провода, требуется их надежная изоляция. Особенно в местах стыков и перегибов.
  • На статоре и каркасе не должно быть трещин. Внимательно осмотрите опорную часть.
  • Проверьте генератор в работе. Показания измерительной аппаратуры должны быть стабильными. Звук выхлопа обязан быть ровным.
  • Ответственные производители внимательно окрашивают изделие и хорошо крепят логотип. Если краска вызывает сомнения, от такого генератора лучше отказаться.
  • Солидность любой фирмы определяется качеством сервиса. Убедитесь, что при возникновении неисправности вы сможете найти специалиста для ее устранения.

Затем обратите внимание на дополнительные функции.

  • Хорошо, если на заводе уже будут смонтированы измерительные приборы.
  • Лучше покупать модели, имеющие как ручной запуск, так и со стартера.
  • Проверьте удобство транспортировки. Если есть колесики, они должны хорошо крутиться. Если есть ручки, за них должно быть удобно держаться.

И не бойтесь задавать вопросы консультантам, даже, по их мнению, нелепые. Время, которое вы потратите на выбор, с лихвой компенсируется беспроблемной эксплуатацией.

Но мало выбрать хороший генератор, его еще надо правильно подключить.

Схемы подключения

Главная задача при подключении к имеющейся энергосети – не допустить «встречи» генерируемого тока и поступающего с электростанции. Иначе последствия будут плачевными.

Для решения этой задачи существует несколько методов подключения генератора к электросети.

Через розетку

Самый простой метод. Потребители подключаются к генератору напрямую. Но есть серьезные недостатки:

  • полное отсутствие защитных устройств;
  • нужно купить специальную 4-х полюсную розетку, рассчитанную на большой ток.

Применять этот метод настоятельно не рекомендуется. Мы написали про него только потому, что он есть.

Через распределительный автомат

Это более удобный способ, поскольку он не требует внесения изменений в имеющуюся электросеть. Особенно хорошо он зарекомендовал себя в частных домах.

Для подключения сделайте следующее.

  • Отключите вводной автомат централизованной системы электрораспределения. Проще говоря, обесточьте дом.
  • Установите в щитке новый 4-х полюсный автомат. Его выходные контакты соедините с домашней сетью.
  • Внимательно подключите к новому автомату кабель с генератора. Все провода присоединяются к соответствующим клеммам.

4-ый полюс нужен для нулевого провода.

Через рубильник

Основной недостаток предыдущей схемы – возможность попадания сетевого напряжения на генератор. Такое может случиться при невнимательном пользовании переключателями. Чтобы такого не произошло, генератор можно подключить через рубильник.

Такое подключение полностью исключает возможность замыкания. Рубильник имеет 3 контакта:

  • первый – питание потребителей от централизованной сети;
  • третий – питание от генератора;
  • центральный – сеть полностью обесточена.

Потребители подключаются к центральному контакту.

После рубильника обязательно устанавливаются предохранители, УЗО и другие средства защиты.

Такими способами подключаются основные генераторы.

Система автоматического включения

Основной недостаток этих всех методов – ручное управление. А иногда нужно, чтобы генератор запускался автоматически (особенно при аварийных ситуациях). В этих случаях применяется система автоматического включения.

В нее входят 2 пускателя с перекрестным включением и модуль управления. При пропадании электричества они отключают потребителей от централизованной системы и подключают к генератору.

Независимо от метода подключения никогда не забывайте заземлять корпус генератора. И главное: коммутационные устройства, выключатели и предохранители ставить в заземляющий провод запрещается. Это убережет от несчастных случаев и гарантирует безопасность работы прибора.

О том, какой купить генератор: однофазный или трехфазный, смотрите далее.

Источник