Меню

Схема от встречного тока



Определение амплитуды и формы напряжений в узловой точке и отраженной волны в линии с волновым сопротивлением , страница 2

ЭДС генератора Е, — 10 кВ,

Индуктивность генератора L, — 0,35*10 -3 Гн

Емкость схемы замещения С, — 0,4*10 -6 Ф

1. Составляется схема замещения с использованием метода наложения встречного тока (генератор тока).

2. Определяется напряжение на первом выключателе схемы методом встречного тока совместно с операторным методом.

В соответствии с условием задачи схема сети представлена на рис.3,а.

При отключении выключателями коротких замыканий в точках сети, в которых отсутствуют линии электропередачи и кабели между источником питания и местом короткого замыкания, расчетные схемы замещения могут быть представлены с сосредоточенными параметрами. Для расчета восстанавливающего напряжения генераторы, трансформаторы, реакторы в большинстве случаев могут быть замещены сосредоточенными индуктивностями и собственными емкостями. Распределенная емкость шин подстанции также может быть замещена сосредоточенной емкостью. При отключении трехфазных коротких замыканий переходное восстанавливающееся напряжение может быть рассчитано, исходя из схемы замещения отдельной фазы сети.

Если короткое замыкание произошло в точке 1 рис.3,а, то при условии равенства индуктивностей прямой и нулевой последовательностей части схемы слева от точки 1 при отключении трехфазного короткого замыкания восстанавливающееся напряжение на выключателе В1 может быть определено для каждой фазы отдельно, исходя из однофазной схемы замещения, приведенной на рис.4

На этой схеме индуктивность L эквивалентирует индуктивность генератора Г, а емкость С – емкость генератора.

Метод встречного ток основан на теореме Тевенена, согласно которой восстанавливающееся напряжение на контактах выключателя по величине и форме совпадает с напряжением, которое необходимо приложить к контактам, чтобы в цепи прошел ток, равный и противоположно направленный отключаемому при отсутствии ЭДС в генераторах. Процесс отключения выключателем тока короткого замыкания заменяется включением в ветвь замкнутого выключателя условного источника тока, который посылает ток , равный по величине отключаемому току, но противоположно направленный.

Напряжение на зажимах этого источника будет соответствовать восстанавливающемуся напряжению на контактах выключателя. Источники ЭДС при этом закорачиваются накоротко.

Следовательно, искомое по условию задачи переходное восстанавливающееся напряжение будет определяться с использованием метода встречного тока, исходя из расчетной схемы, представленной на рис.5. На этом рисунке i(t) источник встречного тока.

2. Расчет восстанавливающегося напряжения.

Полагаем, что сдвиг фаз между током и напряжением во время короткого замыкания равен 90 ◦ и гашение дуги происходит в момент перехода тока через нулевое значенеие.

Восстанавливающееся напряжение U(t) в схеме рис.5:

U(t)=i(t)*Z(t) (15)

или в оперативном изображении

U(p)=i(p)*Z(p) (16)

Где Z(p) операторное выражение переходного сопротивления цепи относительно контактов выключателя:

Операторное выражение отключаемого тока:

Выражение (18) получается, исходя из следующего допущения.

Пренебрегая потерями, ток короткого замыкания равен:

Считая, что за время переходного процесса ЭДС источника не успевает существенно измениться, получим , а его изображение

Таким образом, подставляя (17) и (18) в (16) получим:

Подставляя в (19) и (20) данные задачи определяем форму переходного восстанавливающегося напряжения. При этом достаточно выполнить расчеты до времени t=1000 мкс. По полученным данным необходимо построить кривую переходного восстанавливающегося напряжения. Из выражения определяется средняя скорость восстановления напряжения за полупериод собственных колебаний.

1. Бабушкин В.В., Ларионов В.П., Сергеев Ю.Г. Техника высоких напряжений. –М.: Энергоиздат, 1982.

2.Гончар В.С. Изоляция и перенапряжения в системах электроснабжения. Внур\тренние перенапряжения.: Учебное пособие. –Л: СЗПИ, 1987.

3. Техника высоких напряжений. Под редакцией Д.В. Резевига. –М.: Энергия, 1976.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Xl4015 блок питания с регулировкой тока

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Схемы защиты устройств от всплесков тока и напряжения

Аварийные «экстратоки» и «экстранапряжения» не идут на пользу ни одному электронному устройству. Необходимо вводить защитные цепи с автоматическим ограничением, снижением, отключением питания или, в крайнем случае, с визуальной/звуковой индикацией аварийного состояния.

Простейшим элементом защиты служит плавкий предохранитель. При его выборе надо ориентироваться на стандартные номинальные токи срабатывания:

• SМD-предохранители — 62; 125; 250; 375; 500; 750 мА, 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 5.0 А;

• обычные «стеклянные» предохранители — 50; 60; 80; 100; 160; 200; 250; 315; 500; 630; 800 мА, 1.0; 1.25; 1.6; 2.0; 3.15; 3.5; 4.0 А.

Схемы защиты устройств от всплесков тока и напряжения

Схемы защиты устройств от всплесков тока и напряжения

Схемы защиты устройств от всплесков тока и напряжения

Время срабатывания предохранителя зависит от величины протекающего тока. Судя по Табл. 6.9, ориентироваться на номинальный ток ПЛАВ нельзя, необходимо его многократное превышение, например, 4/ПЛАВ. На практике считается, что плавкая вставка с надписью «1А» гарантированно «сгорает» при токе 2.5 А.

Радиолюбители за неимением времени иногда изготавливают кустарные проволочные предохранители, называемые в обиходе «жучками». Если используется медный провод, то можно взять данные из Табл. 6.10. Разумеется, «жучки» после проведения эксперимента надо заменить нормальными предохранителями.

Следует отличать плавкие предохранители (fuse) от предохранительных резисторов (fusible resistor). Последние по конструкции напоминают обычные резисторы, но при перегорании не оставляют вокруг себя чёрного пятна металлизированной сажи, которая может закоротить другие цепи на печатной плате.

Ещё один важный элемент защиты — это варисторы (Табл. 6.11). В отличие от предохранителей, они устанавливаются не последовательно, а параллельно, т.е. защита осуществляется по напряжению, а не по току.

Если напряжение меньше порогового, то сопротивление варистора большое, и он практически не оказывают влияние на защищаемую цепь. Если порог достигнут, то сопротивление варистора быстро снижается. Это позволяет эффективно защищать аппаратуру от кратковременных импульсных помех.

На Рис. 6.20, а. к показаны схемы защиты питания от всплесков напряжения и коротких замыканий.

Схемы защиты устройств от всплесков тока и напряжения

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (начало):

а) защита от повышенного входного напряжения с порогом, определяемым стабилитроном VD1. Оптореле VU1 имеет нормально замкнутые контакты с током нагрузки не более 250 мА;

б) электронное отключение питания при пробое мощного регулирующего транзистора, находящегося внутри стабилизатора напряжения А1. Быстродействие определяется параметрами оптотиристора VU1. Излучатель HL1 красным цветом индицирует аварийное состояние. Резистор R3 устанавливает напряжение перехода транзистора VT1 в закрытое состояние;

в) «параллельная» защита цепи +5 В. При всплесках напряжения открывается тиристор VS1 и перегорает плавкая вставка FU1 (или самовосстанавливающийся предохранитель). Конденсатор C1устраняет ложные срабатывания тиристора. Мощный проволочный резистор R3защищает тиристор VS1 от «экстратоков». Пороговое напряжение стабилитрона VDI имеет разброс 3.1. 3.5 В, поэтому его точное значение устанавливается подстройкой резистора R1.

г) аналогично Рис. 6.20, в, но с заменой тиристорного ключа мощным параллельным стабилизатором напряжения на элементах VDI, VTI, R1. R3 и дополнительной защитой по входу при помощи варистора RV1. Порог срабатывания устанавливается резистором R1 на уровне примерно на 0.2. 0.4 В выше, чем напряжение питания +3. +5 В;

Схемы защиты устройств от всплесков тока и напряжения

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (окончание):

Читайте также:  Формулы силы тока в соленоиде

д) HL1 — это индикатор снижения напряжения питания с +5 до +4 В, что может свидетельствовать о предаварийном состоянии. Точный порог устанавливается резистором R3. Схема служит только для индикации неполадок. Устранение аварии производится оператором вручную;

е) защита от помех и перенапряжений в бортовой сети автомобиля (элементы R1, C1). Мигающий светодиод HL1 служит индикатором неверной полярности подачи питания;

ж) красный цвет светодиода HL1 индицирует обрыв предохранителя FU1, зелёный — нормальную работу. При оранжевом или жёлтом цвете следует выбрать другой тип диода VD1

з) защита от превышения тока в «минусовом» проводе. Резистором R3 добиваются триггер-ного режима работы. Резистором R1 устанавливают ток защиты в пределах 10. 600 мА. Для ориентира, если R2= 10 Ом, то ток срабатывания равен 85. 111 мА;

и) варисторная защита устройств, подключённых к телефонной линии. При большой амплитуде или случайной подаче сетевого напряжения 220 В перегорает плавкая вставка FU1;

к) стабилитрон VD2 защищает от всплесков входного напряжения. Ток ограничивается резистором R1, короткие импульсные помехи сглаживаются конденсатором C1.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Источник

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Орлов Анатолий Владимирович

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Соединение трансформаторов тока и обмоток реле в полную звезду

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Двухфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду
Однофазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
Соединение трансформаторов тока и обмоток реле в неполную звезду

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

Соединение трансформаторов тока и обмоток реле в неполную звезду

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Соединение трансформаторов тока и обмоток реле в неполную звезду Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.
Читайте также:  Скорость вращения якоря двигателя постоянного тока формула

Соединение трансформаторов тока в треугольник, а обмоток реле в звезду

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Соединение трансформаторов тока и обмоток реле в неполную звезду

 Включение реле на разность токов 2 – фаз (схема восьмерки)

Симметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ  Включение реле на разность токов 2 – фаз (схема восьмерки) Двухфазно КЗ АВ или ВС
 Включение реле на разность токов 2 – фаз (схема восьмерки) При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Соединение трансформаторов тока в фильтр токов нулевой последовательности

Соединение трансформаторов тока в фильтр токов нулевой последовательности

На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Последовательное соединение трансформаторов тока

 Последовательное соединение трансформаторов тока

На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Источник

контроль встречного напряжения

Игоррр

Просмотр профиля

Группа: Пользователи
Сообщений: 596
Регистрация: 27.9.2006
Из: Кубань, Россия
Пользователь №: 6932

Евгений

Просмотр профиля

Группа: Пользователи
Сообщений: 1265
Регистрация: 16.12.2003
Пользователь №: 550

Феодор

Просмотр профиля

Группа: Пользователи
Сообщений: 296
Регистрация: 18.12.2006
Пользователь №: 7923

Я сейчас продумываю подобную систему для себя. Чубайс заведён в дом, а генератор хочу поставить в гараж. Соответственно, переключателем не обойдёшься — гараж может питаться от Чубайса, а дом от генератора. Пока что предполагаю такое решение: критические нагрузки подключаются к отдельному щитку, от него уходит кабель в гараж. На вводе в щиток и на подсоединении генератора стоят реле и управляют друг другом так, чтобы предотвратить одновременное включение.

Буду рад услышать советы знатоков.

SergAn

Просмотр профиля

Группа: Пользователи
Сообщений: 552
Регистрация: 13.12.2006
Из: Н.Новгород
Пользователь №: 7881

Евгений

Просмотр профиля

Группа: Пользователи
Сообщений: 1265
Регистрация: 16.12.2003
Пользователь №: 550

Всю аварийную бронь (свет, котел, насосы) в размере не более 5 кВт выводишь на отдельный щит. Там ставишь перекидной рубильник. В случае пропажи питания переключаешь свою аварийную нагрузку на генератор. Все равно же придется вручную запускать генератор, поэтому автоматика переключения не нужна.
Сеть включилась — пошел вырубил генератор, переключил нагрузку на питание от сети. Если все таки хочется автоматики, то и это можно сделать.

Игоррр

Просмотр профиля

Группа: Пользователи
Сообщений: 596
Регистрация: 27.9.2006
Из: Кубань, Россия
Пользователь №: 6932

Что-то не понятно мне: Через что (посредством чего) питание от сети воздействует на расцепитель Автомата?
А «расцепитель автомата» — это, простите, какая деталь (я образование получил в 80-х г.г) — что-то не «вьезжаю без полбанки»
Два пускателя магнитных — это мне понятно («простейший АВР»): ВОЗДЕЙСТВИЕ осуществляется на катушку ПМ.
А у Вас — на что?
Вы мне ссылочку киньте на это изделие, плз.

SergAn

Просмотр профиля

Группа: Пользователи
Сообщений: 552
Регистрация: 13.12.2006
Из: Н.Новгород
Пользователь №: 7881

Это будет неудобно, т.к. после выключения автомата от расцепителя его нужно включать в ручную, если ,конечно, у него нет моторного привода . Гораздо проще поставить перекидной рубильник. Кроме того автомат с независимым расцепителем штука не очень распространенная.

Для ГОСТЯ
Автоматические выключатели бывают разных исполнений.
1. Без расцепителя — выключатель нагрузки.
2. С электромагнитным расцепителем — для защиты от КЗ
3. С тепловым (максимальным) расцепителем — для защиты от перегрузки.
4. С комбинированным расцепителем 2+3
5. С независимым расцепителем — для дистанционного отключения автомата
6. С расцепителем минимального напряжения — для отключения при понижении или пропадании напруги.
Расцепитель это такая штука в нутри автомата, которая воздействует на «слабое место» механизма свободного расцепления и освобождает взведенные пружины тем самым отключая автомат.
Независимый расцепитель это обычная электромагнитная катушка соленоид которой воздействует на механизм свободного расцепления при подаче напряжения.

Источник