Меню

Схема мощного ключа постоянного тока



Схема мощного ключа постоянного тока

включение MOSFET в качестве ключа

    Из-за того, что в открытом состоянии транзистор имеет очень малое сопротивление сток-исток, падение напряжения на нём мало. Именно поэтому имеет значение в какое «плечо» включать нагрузку. Например, для открытия полевого транзистора N-типа на затвор нужно подать положительное напряжение относительно истока — если при этом включить нагрузку в цепь истока, то напряжение на истоке будет равно:

Здесь Rотк. это сопротивление открытого транзистора. Так как данное сопротивление мало (десятки-сотни миллиом), если притянуть затвор к питанию, разница напряжений между затвором и истоком будет недостаточна для полного открытия транзистора даже при большом токе. Данное ограничение можно обойти используя разные источники для питания нагрузки и для управления затвором, но нужно чётко понимать как это работает.

  • Одна из особенностей подключения MOSFET транзистора к цифровым схемам — это необходимость подачи достаточного напряжения затвор-исток. В даташитах на транзистор пороговое напряжение затвор-исток (gate-source), при котором он начинает открываться называется gate threshold voltage (VGS). для полного открытия таким транзисторам надо подать на затвор довольно большое напряжение. Обычно это около 10 вольт, а микроконтроллер чаще всего может выдать максимум 5В. Есть несколько вариантов решения данной проблемы:
    • На биполярных транзисторах соорудить цепочку, подающую питание с высоковольтной цепи на затвор.
    • Применить специальную микросхему-драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117. Надо только не забывать, что есть драйверы как верхнего так и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и коммутирующего транзистора. Для того, чтобы открыть N-канальный транзистор в верхнем плече, ему на затвор нужно подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Этим и отличается драйвер нижнего плеча от драйвера верхнего плеча.

    Микросхемы-драйверы MOSFET транзисторов

  • Также возможно просто использовать транзистор с малым отпирающим напряжением (т.н. logic level транзисторы). Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
  • Никогда не оставляйте затвор «болтаться» в воздухе — так как транзистор управляется «полем», на затворе могут наводиться помехи от окружающих электро-магнитных полей, поэтому желательно всегда притягивать его через большое сопротивление либо к питанию, либо к земле, в зависимости от схемы. Сказанное верно, даже если вы используете микроконтроллер для управления транзистором — это поможет избежать неопределённых состояний, когда управляющее устройство, например, перезагружается.

    Наличие емкости на затворе создаёт бросок «зарядного» тока при открытии, поэтому для его ограничения рекомендуется ставить небольшой резистор в цепь затвора. Ограничив ток резистором вы также увеличите время открытия транзистора.

    Для шунтирования импульса тока, образующегося при отключении индуктивной нагрузки, добавляют быстрый защитный диод (TVS-диод), включённый параллельно истоку-стоку. Если имеется однонаправленный супрессор используется обратное включение, хотя допустимо также использовать двунаправленные TVS-диоды. Также, если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (индукционные нагреватели, импульсные источники питания и т.п.), то в цепь стока встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.

    Если вы планируете использовать полевой транзистор в качестве быстрого высокочастотного ключа и\или для коммутации мощной или индуктивной нагрузки, необходимо использовать т.н. снабберные цепи — часть схемы, замыкающая токи переходных процессов на себя, уменьшая паразитный нагрев транзистора. Снаббер также защищает от самооткрывания транзистора при превышении скорости нарастания напряжения на выводах сток-исток.

    Источник

    Mощный ключ постоянного тока на полевом транзисторе

    Ключи на полевых транзисторах широко используются для коммутации различных нагрузок, как маломощных с низким питающим напряжением, так и потребляющих десятки ампер от сети в сотни вольт. В связи с этим возникает необходимость защиты, как самого ключа, так и схемы его управления от аварийных ситуаций.

    Читайте также:  Что такое ток покоя для дфз

    На сайте уже были статьи, посвященные транзисторным ключам, например, «Транзисторный ключ переменного тока». Этот ключ предназначен для коммутации активной нагрузки в цепи переменного тока. Он имеет оптическую развязку с управляющей схемой, и его схема содержит два КМОП транзистора. Еще одна статья, это «Транзисторный ключ с оптической разрядкой», ключ так же имеет оптическую развязку, собран на биполярных транзисторах и имеет защиту самого ключа от коротких замыканий в цепи нагрузки.

    На рисунке 1 приведена схема ключа постоянного тока на КМОП транзисторе с гальванической развязкой и защитой от превышения тока нагрузки.

    Ключ для управления мощной нагрузкой с защитой по току

    Гальваническая развязка между схемой управления и самим ключом осуществляется с помощью транзисторного оптрона U1. В качестве этого оптрона можно применить PC817, TLP521, РС120 и т.д.

    Аналоги оптронов

    В качестве переключающего транзистора используется полевой транзистор с n-каналом. Его тип зависит от нужного вам максимального тока и рабочего напряжения нагрузки. Подобрать необходимый транзистор можно из таблицы, размещенной в статье «Полевые транзисторы International Rectifier.»

    Работа схемы ключа

    В исходном состоянии, когда на входе оптрона отсутствует напряжение управления, светодиод не включен, транзистор оптрона закрыт. При таких условия ключевой транзистор VT3 будет открыт, так как на его затворе будет присутствовать положительное напряжение, поступающее с +Uпит через резистор R2. Стабилитрон VD1 необходим в тех случаях, если напряжение пинания Uпит более 20В. Двадцать вольт, это максимально допустимое напряжение затвор-исток большинства полевых транзисторов. Естественно, что если Uпит менее двадцати вольт, то этот стабилитрон из схемы можно исключить. Транзисторы VT1 и VT2, это не что иное, как аналог тиристора. Пока ток нагрузки находится в нужных пределах, эти транзисторы закрыты и не оказывают на работу ключа никакого значения. Как только ток, протекающий через ключевой транзистор VT3 и Rдт – датчик тока, будет возрастать, будет увеличиваться и падение напряжения на датчике тока Rдт. А это приведет к возникновению открывающего тока через переход база – эмиттер n-p-n транзистора VT1. Это приведет к возникновению тока коллектора этого транзистора, часть которого начнет протекать через переход база – эмиттер p-n-p транзистора VT2. Значит, начнет открываться и транзистор VT2. Большая часть тока коллектора этого транзистора начнет протекать через переход база-эмиттер, уже открывающегося транзистора VT1. Таким образом, возникает лавинообразный процесс открывания обоих транзисторов, обеспечивающий быстрое закрывание ключевого транзистора, путем шунтирования его затвора с истоком. В таком состояния схема может находиться сколько угодно долго. Вывести ее в рабочее состояние можно выключением напряжения питания или замыканием на короткое время эмиттеров транзисторов VT1 и VT2, при условии, что была устранена причина возникновения аварии. Так обеспечивается защита ключевого транзистора. Величину тока срабатывания защиты устанавливают с помощью резистора Rдт. Чем меньше величина этого резистора, чем выше значение тока срабатывания защиты.

    Номинал этого резистора можно приблизительно рассчитать по формуле:
    Rдт = 0,65/Iз ; где Iз – величина тока защиты. 0,65 – это приблизительно пороговое напряжение открывания биполярных кремниевых транзисторов.

    Например, при токе защиты 6,5А, величина резистора датчика тока будет примерно равна 0,65/6,5 = 0,1 Ом. Здесь не учитывается падение напряжения на резисторе R4.

    Источник

    Ключ для управления мощной нагрузкой постоянного тока с помощью низкого напряжения

    Этот силовой ключ позволяет управлять мощной нагрузкой постоянного тока при подаче на вход положительного низкого напряжения от 3 Вольт. Подавать на вход управляющий сигнал можно или с выхода ARDUINO или с выхода датчиков у которых на выходе появляется положительный сигнал высокого уровня с небольшим напряжением – 3.3 Вольта, например с инфракрасных датчиков движения “HC-SR505” или “HC-SR501”.

    Ключ выполнен на мощном полевом транзисторе (MOSFET) GE88L02, также можно использовать IRLR8113 (datasheet – «IRLR8113», «88l02»).

    Ключ для управления мощной нагрузкой постоянного тока с помощью низкого напряжения

    Принципиальная схема ключа, который управляется малым напряжением (3 В).

    Если нет требования сработки ключа от 3 вольт, то можно использовать готовый силовой ключ управляемый от 5 вольт.

    Подключение полевого транзистора к Arduino:

    • “вход” – подключить к цифровому выходу Arduino
    • “общий” (минус) – подключить к общему проводу Arduino (к “GND”)
    Читайте также:  Пусковой ток при включении холодильника

    Подключение нагрузки к силовому ключу:

    • “питание + 12 В” – подключить к плюсовому выводу 12 вольтовой нагрузки (верхний вывод светодиода на схеме)
    • “D” (Сток транзистора) – подключить к минусовой выводу 12 вольтовой нагрузки (нижний вывод светодиода на схеме)

    В качестве нагрузки (на схеме показана в виде светодиода), которой управляет ключ, можно использовать светодиодные светильники (ленты), электродвигатели, электрозамки и другие устройства на 12 Вольт постоянного тока.

    Преимущества:

    • ключ управляется низким напряжением (срабатывание от 3 Вольт)
    • бесшумная работа
    • нет механических частей
    • можно использовать ШИМ (PWM)

    Добавить комментарий Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Источник

    Транзисторный ключ

    Программирование микроконтроллеров Курсы

    С развитием электронной импульсной техники транзисторный ключ в том или ином виде применяются практически в любом электронном устройстве. Более того, преимущественно количество микросхем состоят из десятков, сотен и миллионов транзисторных ключей. А в цифровой технике вообще не обходятся без них. В обще современный мир электроники не мыслим без рассмотренного в данной статье устройства.

    Здесь мы научимся выполнять расчет транзисторного ключа на биполярном транзисторе (БТ). Одно из распространённых их применений – согласование микроконтроллера с относительно мощной нагрузкой: мощными светодиодами, семисегментными индикаторами, шаговыми двигателями и т.п.

    Основная задача любого транзисторного ключа состоит в коммутации мощной нагрузки по команде маломощного сигнала.

    Электронные ключи глубоко проникли и укоренились в области автоматики, вытеснив механические электромагнитные реле. В отличие от электромагнитного реле транзисторный ключ лишен подвижных механических элементов, что значительно увеличивает ресурс, быстродействие и надежность устройства. Скорость включения и отключения, то есть частота работы несравнимо выше с реле.

    Однако и электромагнитные реле обладают полезными свойствами. Падение напряжения на замкнутых контактах реле значительно меньше, чем на полупроводниковых элементах, находящихся в открытом состоянии. Кроме того реле имеет гальваническую развязку высоковольтных цепей с низковольтными.

    Как работает транзисторный ключ

    В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).

    Типы полупроводниковых структур биполярных транзисторов

    Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.

    Обозначение биполярных транзисторов в схемах

    С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.

    Схема замещения транзистора диодами

    Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.

    Схема включения транзисторов

    Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор RК. Обратите внимание, положительный потенциал UКЭ посредством RК подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную.

    Резистор в цепи коллектора RК служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.

    Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор RБ. Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.

    Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока. Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.

    Схема транзисторного ключа

    Входная статическая характеристика

    Биполярный транзистор может работать в двух принципиально разных режимах – в режиме усилителя и в режиме ключа. Работа БТ в усилительном режиме уже подробно рассмотрена с примерами расчетов в нескольких статьях. Очень рекомендую ознакомиться с ними. Ключевой режим работы БТ рассматривается в данной статье.

    Как и электрический ключ, транзисторный ключ может (и должен) находится только в одном из двух состояний – включенном (открытом) и выключенном (закрытом), что отображено на участках нагрузочной прямой, расположенной на входной статической характеристике биполярного транзистора. На участке 3-4 БТ закрыт, а на его выводах потенциалы UКЭ. Коллекторный ток IК близок к нулю. При этом ток в цепи базы IК также отсутствует, собственно по этой причине БТ и закрыт. Область на входной статической характеристике, отвечающая закрытому состоянию называется областью отсечки.

    Входная статическая характеристика биполярного транзистора

    Второе состояние – БТ полностью открыт, что показано на участке 1-2. Как видно из характеристики, ток IК имеет некое значение, которое зависит от величин UКЭ и RК. В цепи база-эмиттер также протекает ток IБ, величина которого достаточна для полного открытия биполярного транзистора.

    Читайте также:  Philips 42pft5609 60 уменьшить ток подсветки

    Падение напряжения на pn-переходе коллектор-эмиттер в зависимости от серии транзистора и его мощности находится в пределах от сотых до десятых вольта. Такая рабочая область БТ, в которой он полностью открыт, называется областью насыщения.

    В третьей области полупроводниковый ключ занимает среднее положение между открыто-закрыто, то есть он приоткрыт или призакрыт. Такая область, используется для транзистора, работающего усилителем, называется активной областью.

    Расчет транзисторного ключа

    Расчет транзисторного ключа на биполярном транзисторе выполним на примере подключения светодиода к источнику питания 9 В, то есть к кроне. В качестве управляющего сигнала подойдет обычная батарейка 1,5 В. Для примера, возьмем БТ n-p-n структуры серии 2222A. Хотя подойдет любой другой, например 2N2222, PN2222, BC547 или советский МП111Б и т.п.

    Расчет транзисторного ключа на биполярном транзисторе

    Рассматриваемую схему транзисторного ключа довольно просто собрать на макетной плате и произвести соответствующие измерения с помощью мультиметра, тем самым оценить точность наших расчетов.

    Далее все расчеты сводятся к определению сопротивлений резистора коллектора RК и базы RБ. Хотя более логично, особенно при подключении мощной нагрузки, сначала подобрать транзистор по току и напряжению, а затем рассчитывать параметры резисторов. Однако в нашем и большинстве других случаев ток нагрузки относительно не большей и U источника питания невысокое, поэтому подходит практически любой маломощный БТ.

    Все исходные данные сведены в таблицу.

    Исходные данные для расчета транзисторного ключа

    Порядок расчета

    Расчет начнем с определения сопротивления резистора RК, который предназначен для ограничения величины тока IК, протекающего через светодиод VD. RК находится по закону Ома:

    Формула сопротивления резистора коллектора

    Величина IК равна IVD = 0,01 А. Найдем падение напряжения на резисторе:

    Падение напряжения на сопротивлении коллектора

    Значение UКЭ нам известно, оно равно 9 В, ΔUVD также известно и равно 2 В. А падение напряжения на переходе коллектор-эмиттер для большинства современных маломощных БТ составляет до 0,1 В. Поэтому примем с запасом ΔUКЭ = 0,1 В. Теперь подставим все значения в выше представленную формулу:

    Расчет падения напряжения на резисторе коллектора

    Находим сопротивление RК:

    Расчет сопротивления коллекторного резистора

    Ближайший стандартный номинал резистора 680 Ом и 750 Ом. Выбираем резистор большего номинала RК = 750 Ом. При этом ток, протекающий через светодиод IVD в цепи коллектора, несколько снизится. Пересчитаем его величину:

    Ток светодиода в цепи коллектора

    Теперь осталось определить сопротивление резистора в цепи базы RБ:

    Расчет сопротивления в цепи базы транзистора

    Формула содержит сразу две неизвестны – ΔURб и IБ. Найдем сначала падение напряжения на резисторе ΔURб:

    Падение напряжения на резисторе базы транзистора

    UБЭ нам известно – 1,5 В. А падение напряжения на переходе база-эмиттер в среднем принимают 0,6 В, отсюда:

    Расчет падения напряжения на сопротивлении резистора базы транзистора

    Для определения тока базы IБ необходимо знать IК, который мы ранее пересчитали (IК = 0,0092 А), и коэффициент усиления биполярного транзистора по току, обозначаемы буквой β (бэта). Коэффициент β всегда приводится в справочниках или даташитах, но гораздо удобнее и точнее определить его с помощью мультиметра. Используемый нами 2222A имеет β = 231 единицу.

    Коэффициент усиления по току биполярного транзистора 2222A

    Расчет сопротивления резистора базы транзистора

    Из таблицы стандартных номиналов резисторов выбираем ближайший меньший номинал (для гарантированного открытия БТ) 22 кОм.

    Для более точного выбора параметров вместо постоянных резисторов в цепи включают переменные резисторы, включенные по схеме, приведенной ниж е.

    Транзисторный ключ | Схема транзисторного ключа

    Таким образом, мы выполнили расчет транзисторного ключа, то есть определили RК и RБ по заданным исходным данным. Более полный расчет включает определение мощности рассеивания указанных резисторов, но ввиду незначительной нагрузки в нашем примере, подойдут резисторы с минимальной мощность рассеивания.

    Источник