Меню

Схема микросхема для измерения тока



Измерение тока потребления устройств при помощи токовых датчиков серии ZXCT

Измерение постоянного тока при помощи цифровых схем является широко распространенной задачей в практике разработчика. Для этого существует несколько решений. Самое популярное решение — при помощи шунта, который включен последовательно с нагрузкой. Ток, проходящий через сопротивление вызывает на нем падение напряжение, которое в случае использования цифровых схем подается на АЦП (аналого-цифровой преобразователь) для перевода в цифровое значение. При этом, сопротивление шунта должно быть заранее известным и очень точным. Также, оно должно быть по возможности минимальным, чтобы исключить его воздействие на нагрузку и уменьшить потери в виде нагрева.
Еще одно решение — измерение DC-тока бесконтактным методом при помощи измерения напряжённости магнитного поля, создаваемого проводником по которому течет ток, в полупроводниковом кристалле. Используется эффект Холла. Хорошо подходит для измерения больших токов, но обладает меньшей точностью и более высокой стоимостью.

В настоящее время электронная промышленность предлагает большое количество разнообразных интегральных схем, облегчающих жизнь разработчика, перед которым стоит задача измерения тока. Как правило, среди Российских радиолюбителей широко применяются решения с использованием операционных усилителей. Но в данной статье я хотел бы рассмотреть методы измерения постоянного тока и мощности при помощи токовых датчиков серии ZXCT фирмы Zetex Semiconductors (в настоящее время это Diodes Incorporated). Данные ИС компактны, достаточно дешевы и их без проблем можно купить в интернет-магазинах России и на eBay или AliExpress.
Пример лотов с ценами: ZXCT1009, ZXCT1021, ZXCT1030

На сегодняшний день компания Diodes Incorporated выпускает токовые датчики с 2-мя видами выходного сигнала: токовый выход и потенциальный выход. Номенклатура продукции насчитывает с десяток ИС (интегральных схем) с токовым выходом (номенклатура) и с десяток ИС с потенциальным выходом (номенклатура). Отличительной особенностью токовых датчиков ZXCT является использование минимума внешних элементов, отсутствует необходимость использования внешнего питания (кроме специализированных ИС), а также миниатюрные 3-х или 5-ти выводные корпуса SOT23/SOT25 (за исключением микросхем ZXCT1009 в корпусе SM-8 и ZXCT1030 в корпусе SO-8)

Рассмотрим подключение токовых датчиков ZXCT1008 и ZXCT1009:

Подключение токовых датчиков ZXCT1008 и ZXCT1009

Датчики для измерения постоянного тока бывают High Side и Low Side (а также универсальными). Это определяет схему включения датчика. High Side — это измерение тока до нагрузки (т.е. между питанием и нагрузкой), а Low Side — измерение тока после нагрузки (т.е. между нагрузкой и землей). ZXCT1008 и ZXCT1009 являются High Side токовыми датчиками. Как мы видим, используется всего 3 контакта ИС. Ток потребления микросхем чрезвычайно мал, поэтому погрешностью измерения ввиду протекания тока через резистор RG можно пренебречь.

В подключении ZXCT1010 и ZXCT1012 задействовано 4 вывода:

Схема подключения ZXCT1010 и ZXCT1012

В данных ИС предусмотрен вывод «земли» GND, чтобы убрать ток покоя с выхода, что дает более высокую точность измерения при низких значениях V sense (падение напряжения на шунте Rs) .

Заявленная погрешность измерений вышеприведенных ИС при V sense = 100мВ составляет 2.5%. Диапазон входного напряжения ( Sense Voltage) составляет 2500 мВ. Н апряжение питания: 2.5. 20 Вольт.

Рассмотрим подключение ИС с потенциальным выходом (ZXCT1021, ZXCT1022, ZXCT10 23 и др.) :

Схема подключения токового датчика с потенциальным выходом

Данные датчики бывают как минимум с 4-мя выводами, однако в отличии от датчиков с токовым выходом не требуют каких-либо внешних компонентов (естественно кроме шунта). Выходное напряжение, снимаемого с датчика рассчитывается по очень простой формуле: VOUT = k * RS * ILOAD , где k — коэффициент (10 или 100 в зависимости от ИС)

Расчеты

Как известно, падение напряжения на шунте вычислить очень просто: V sense = R S * I LOAD, где R S — сопротивления резистора (шунта), а I LOAD — ток нагрузки.

Для микросхем с токовым выходом, выходной ток ИС рассчитывается по следующей формуле: IOUT = Gt * Vsense, где Gt — электрическая проводимость, измеряемая в А/В или См (Сименсах). Величина эта фиксированная и составляет 0.01 См, однако для некоторых ИС серии ZXCT таких как ZXCT1011, ZXCT1020, ее можно задавать при помощи внешнего резистора.

Для микросхем в потенциальным выходом, выходное напряжение ИС рассчитывается следующим образом: V OUT = k * V sense, где k — постоянный коэффициент (10 или 100 в зависимости от ИС).

От теории к практике

К примеру, имеется микроконтроллер с АЦП и с диапазоном измеряемого напряжения 0. 5 Вольт. А также нагрузка с питанием 24 Вольта и током потребления 5-10 Ампер. Необходимо при помощи МК измерить ток потребления схемы.

Как правило, в схемах измерения тока при выборе шунта радиолюбитель исходит из того, что у него имеется под рукой, т.к. шунт должен быть малого сопротивления и высокой точности. Поэтому просчитаем разные варианты. Например будем использовать шунт сопротивлением 0.2 Ом, максимальное падение напряжения на шунте в этом случае составит V sense = 0.2 Ом * 10 А = 2 В, а тепловые потери мощности на шунте дадут PD = V sense * I LOAD = 2 В * 10 А = 20 Ватт, что является очень большим значением. Значит шунт на 0.2 Ома отбраковываем.
Попробуем рассчитать для шунта сопротивлением 0.01 Ом. Максимальное падение н апряжения на шунте: V sense = 0.01 Ом * 10 А = 0.1 В, а потери мощности PD = 0.1 В * 10 А = 1 Ватт, что является уже более приемлемым значением.
Далее, произведем расчет выходного тока: Iout = G t x Vsense
Для ИС с токовым выходом (на примере ZXCT1008 /ZXCT1009), G t = 0.01 А/В. Следовательно в нашем случае выходной ток ИС будет равен I out = 0.01 А/В * 0.1 В = 1 мА. Т.о. при максимальном токе нагрузки в 10 Ампер и сопротивлении шунта 0.01 Ом, на выходе токового датчика мы получим ток в 1 мА. Нам остается посчитать подходящее значение резистора RG, чтобы на входе АЦП получить нормальный диапазон входного напряжения.

Т.к. максимальное значение напряжения АЦП составляет 5 Вольт, то мы должны получить данное напряжение при максимальном токе нагрузки в 10 Ампер. Сопротивление рассчитывается очень просто: RG = Vout / I out= 5 В / 0.001 А = 5000 Ом (на схеме ниже ошибочно изображен RG 500 Ом, следует читать 5 кОм), где V out — требуемое выходное напряжение (в нашем случае 5 Вольт).

ZXCT-4.png

При данных номиналах схемы, для тока нагрузки в 5 Ампер мы получим выходное напряжение 2.5 Вольт, а для 1 А соответственно 0.5 Вольт.
Т.о. становиться очевидным все преимущество специализированных микросхем по сравнению с обычным шунтом: в данном варианте, меняя сопротивление RG мы можем подогнать нужное нам выходное напряжение с ИС под любой диапазон АЦП. Конечно это не все плюсы специализированных микросхем измерения тока. Промышленность выпускает множество самых разнообразных микросхем для измерения тока: бывают двунаправленные мониторы тока, а помимо токового и потенциального выходов, есть ИС с ШИМ, I 2 C, SPI выходами. И многие другие, мы же рассмотрели одни из самых простых и доступных микросхем мониторов тока.

От практики к реальному устройству

Необходимо измерять ток нагрузки величиной не более 2А, в диапазоне от 200 мА до 1.5 А. Напряжение питания нагрузки 12 Вольт. Для начала произведем небольшие расчеты. В качестве шунта, я использовал импортное сопротивление номиналом 0.1 Ом, точностью 1% и мощностью 1 Ватт. В качестве микросхемы я использовал ZXCT1010 (PDF).

Падение напряжения на шунте при максимальном токе нагрузки в 2А: V sense(max) = R S * I LOAD = 0.1 * 2 = 0.2 Вольт. Тепловые потери на шунте при нагрузке в 2А составят: P D = I 2 R = 2 2 *0.1 = 0.4 Ватт. Т.о. мы не выходим за рамки допустимого значения и плюс имеем некоторый запас.

Вход АЦП нашего микроконтроллера имеет максимально допустимое напряжение 5 Вольт, поэтому при максимальном токе нагрузки в 2А мы не должны превысить это значение.

Напомню формулу выходного тока: I out(max) = G t x Vsense(max), для ИС ZXCT1010 значение G t составляет 0.01. Следовательно I out(max) = 0.01 * 0.2 = 0.002 А.

Рассчитаем сопротивление при максимальном токе нагрузки в 2А: R G = V out / I out = 5 В / 0.002 А = 2500 Ом = 2.5 кОм. Ближайшее значение резистора, которое у меня было: 2.4 кОм, для данного значения выходное напряжение с ИС составит: V out = R G * I out = 2400 * 0.002 = 4.8 Вольт.

А при сопротивлении R G = 2.4 кОм и минимальном токе нагрузке в 200 мА, «снимаемое» с ИС напряжение V out = R G * ( G t * R S * I LOAD) = 2400 * (0.01 * 0.1 *0.2) = 0.48 Вольт. Т.о. при токе нагрузки в 200 мА, напряжение, подаваемое на АЦП будет 0.48 Вольт, а при токе нагрузки в 2 А соответственно 4.8 Вольт.

Хотя в моем устройстве напряжение питания нагрузки будет все время равняться 12 В, в реальной устройстве может встать задача измерения входного напряжения. Делается это намного проще — при помощи обыкновенного делителя напряжения. Чтобы получить 4 В выходного напряжения, с 12 В входного, воспользуемся калькулятором делителя напряжения, номиналы для делителя составят 1 кОм и 500 Ом. Один резистор лучше поставить подстроечный, многооборотный, чтобы в случае необходимости откалибровать схему.

Принципиальная схема подключение ZXCT1010

Схема подключается в разрыв нагрузки на High-side стороне, т.е. между питанием и нагрузкой. С выхода «voltage» снимается напряжения питания нагрузки, а с выхода «Current» снимается напряжение в виде значения тока нагрузки. Общий вывод соединяется с минусом питания и нагрузкой, а также GND пином контроллера.

Схема была собрана на макетной плате. Т.к. микросхема ZXCT1010 выпускается в корпусе SOT23-5, то на eBay были приобретены универсальные переходники, с одной стороны SOT в DIP8, а с другой SSOP8 в DIP8:

Переходник SOT to DIP8

После запайки микросхемы на переходник получается примерно так:

Вид ИС на переходнике

Arduino

В качестве подопытной платы для начала была применена плата Arduino Nano v3, в которой используется микроконтроллер ATmega328P. Для наглядности проекта, я подключил плату к дисплею Nokia 5110, который у меня был в корпусе из под другого проекта:

ZXCT-8.jpg

Подключение простое: вывод GND от Arduino подключаем к общему выводу схемы измерения. Вывод с делителя напряжения подключаем к аналоговому входу, который задается в программе (Voltage pin). Вывод с ИС токового датчика ZXCT подключаем к аналоговому входу Arduino (Current pin), который также задается в программе. В моем случае это пины А0 и соответственно А1 .

Подключение дисплея Nokia 5110 расписано в программе (в моем случае подключается в пинам 3-7, питание 3.3В и GND).

Собранное устройство в корпусе:

Собранное устройство в корпусе

В данном проекте я не использовал какие-либо схемы защиты, т.к. это тестовый проект на макетке. В реальном проекте рекомендуется задействовать защиту ИС и защиту выхода, например при помощи стабилитронов. Более подробно о способах защиты расписано в аппноуте «AN39 Current measurement applications handbook» глава «5.2 Transient protection» который вы можете скачать ниже в виде PDF.

Читайте также:  Электрический ток в разных средах таблица 8 класс

Библиотека для Nokia 5110 использована от Adafruit, которую можно взять на GitHub.

Немного о точности измерений. Как известно, для задания источника опорного напряжения в Arduino предусмотрена функция analogReference(), которая может принимать одно из следующих значений:

  • DEFAULT: опорное напряжение по умолчанию 5В (для 5В плат Arduino) или 3.3В ( для 3.3В плат Arduino ). Смотрите спецификацию вашей платы
  • INTERNAL: встроенный источник опорного напряжения, 1.1В в платах с МК ATmega168/ATmega328 и 2.56В в платах с МК ATmega8 (кроме Arduino Mega)
  • INTERNAL1V1: встроенный источник опорного напряжения 1.1В (только на Arduino Mega)
  • INTERNAL2V56: встроенный источник опорного напряжения 2.56В ( только на Arduino Mega)
  • EXTERNAL: внешний источник опорного напряжения. Подключается к пину AREF (диапазон от 0 до напряжения питания платы 3.3В или 5В).

Однако тут есть небольшая загвоздка в том, что если плата питается от USB, то на его выходе не всегда будет точно 5В. А если питается от внешнего источника питания, то внутренний преобразователь UA78M05 (который стоит в Arduino Nano v3) также не даст точно 5В. По даташиту (PDF) выходное напряжение будет «гулять» от 4.8 до 5.2 Вольт. Проведя некоторые эксперименты, при питании от USB, а затем при питании от внешнего аккумулятора 7.2 В, разница при измерении 12В напряжения на нагрузке составила 1 Вольт! Следовательно, лучше использовать встроенный ИОН 1.1В/2.56В, а еще лучше задействовать внешний стабилизированный ИОН, подключаемый к входу AREF.

Напряжение на нагрузке вычисляется в строке voltage = VoltageValue * (5.0 / 1023.0) * kVD, где — напряжение ИОН (т.к. используется DEFAULT, то у нас оно 5); kVD — коэффициент делителя напряжения, который дает нам он-лайн калькулятор. Либо можно рассчитать самому — просто поделив входное напряжение на выходное.

Ток нагрузки вычис ляется следующей формулой I LOAD = V out / ( G t * R S * R G )

В программе за это отвечает строка: current = (CurrentValue * (5.0 / 1023.0)) / kI, где напряжение ИОН 5В, а kI — «токовый коэффициент» снимаемый с делителя напряжения ИС, в нашем случае 2.4.

Все три параметра после расчетов выводится на дисплей Nokia 5110.

Источник

Схема микросхема для измерения тока

Измеритель тока, напряжения и мощности — INA226.

Автор: rai2011
Опубликовано 13.09.2018
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2018!»

Здравствуйте уважаемые коты. Хочу рассказать о проведённых экспериментах с микросхемой INA226 производства фирмы Texas Instruments.
Микросхема предназначена для измерения тока, напряжения и мощности в нагрузке постоянного тока. Общается INA226 с внешним миром по интерфейсу I2C.
Возможности микросхемы:
— измерение постоянного напряжения до 36 вольт;
— измерение тока, протекающего через нагрузку;
— вычисление мощности;
— отслеживание превышения или снижения заданного параметра (измеряемого напряжения, напряжения шунта, мощности) с выдачей сигнала на вывод Alert;
— 16 программируемых адресов для шины I2C;
— напряжение питания 2,7 – 5 V.

Для проведения «научных» экспериментов на просторах AliExpress был куплен модуль INA226:

В качестве микроконтроллера для общения с модулем использовалась самодельная отладочная плата на STM32F103C8T6. Для просмотра результатов использовался логический анализатор, купленный на том же AliExpress. На фото ниже представлена вся конструкция в сборе.

Расположение выводов микросхемы показана на рисунке ниже, назначение выводов приведено в таблице 1

Входные сигналы микросхемы имеют следующие параметры:
— напряжение на резисторе шунта не должно превышать 80mV;
— измеряемое напряжение на выводе VBUS не должно превышать 36V.
Теперь можно приступать к работе и собирать тестовую схему. Схема устройства представлена на рисунке. Для фильтрации шумов и помех при измерении напряжения шунта микросхему необходимо подключать согласно рекомендациям в даташите «Figure 21. Input Filtering». На моём модуле блокировочного конденсатора и резисторов нет. Для экспериментов была собрана сдедующая схема:

Микросхема INA226 поставляется девственно чистой, т.е. кроме регистра конфигурации и регистров ID остальные регистры содержат нули. Набор регистров и их функции приведены в таблице 4.

(1) Type: R = только чтение, R/W = чтение/запись

Согласно даташиту, перед началом работы нам необходимо запрограммировать калибровочный регистр (Calibration Register) и регистр конфигурации (Configuration Register). Калибровочный регистр программируется согласно разделу даташита «7.5 Programming». По формуле 2 даташита рассчитываем разрешение регистра тока A/bit.

где:
Maximum Expected Current – максимально измеряемый ток
Current_LSB – разрешение регистра тока A/bit.

На модуле стоит резистор шунта 0,01 Ом. Отсюда следует, что при максимальном напряжении на шунте 80mV, измеряемый то будет 8А.

I = 0,08 / 0,01 = 8А

Вычисляем разрешение регистра тока:

Current_LSB = 8/215 = 0,000244140625 A/bit.

Для проведения дальнейших расчётов такое число не очень удобно, поэтому мы округлим его до 0,000500 A/bit или 500 μА/ bit. Согласно формулы 1 даташита, рассчитываем значение калибровочного регистра.

где:
Current_LSB – разрешение регистра тока A/bit;
RSHUNT – сопротивление резистора шунта (Ом);
CAL – значение калибровочного регистра.

CAL = 0,00512/(0,000250*0,01) = 1024

Значение калибровочного регистра будет 1024 в десятичном коде или 400H в шестнадцатеричном коде. Записываем данное значение в регистр калибровки.
Далее идёт регистр конфигурации. Назначение битов приведено ниже.

Параметры регистра конфигурации определяют режимы работы устройства. Этот регистр контролирует установки времени преобразования для измерений напряжения шунта и шины, также использование режима усреднения.
Регистр конфигурации можно прочитать в любое независимо от установок прибора или идущего преобразования. Запись в регистр конфигурации останавливает любое преобразование до завершения записи, приводя к новому преобразованию, начинающемуся на основе нового содержания регистра конфигурации (00h). Эта остановка предотвращает любую неопределенность в условиях, используемых для следующего завершенного преобразования.

(1)Затененная строка — значения по умолчанию.

(1)Затененная строка — значения по умолчанию.

(1)Затененная строка — значения по умолчанию.

(1)Затененная строка — значения по умолчанию.

Я оставил данный регистр без изменения. Каждый может настроить его на свой вкус.

Далее приступаем к измерениям тока, напряжения и мощности. Для проведения измерений нам необходимо знать разрешение каждого регистра, т.е. регистров напряжения шунта (Shunt Voltage Register), тока (Current Register), напряжения (Bus Voltage Register) и мощности (Power Register).
Разрешение регистра тока мы вычисли, оно составляет — 500 μА/bit, разрешение регистров напряжения шунта (Shunt Voltage Register) и напряжения (Bus Voltage Register) жёстко запрограммированы и составляют соответственно 2,5 μV/ bit и 1,25 mV/ bit.
Разрешение регистра мощности имеет жёстко запрограммированную зависимость от разрешения регистра тока равную 25, т.е. разрешение регистра мощности в 25 раз больше разрешения регистра тока. В нашем случае это составит 0,0005*25 = 0,0125 W/bit или 12,5 mW/bit.
Сравнивать будем с током и напряжением, измеренными тестером DT9208.
Для наглядности сведём все данные в таблицу:

В таблицах 10 и 11 в качестве нагрузки служил светодиод, включенный через сопротивление при напряжении питания 3,3 вольта. В таблицах 12 и 13 в качестве нагрузки использована лампа накаливания на 24 вольта 60 ватт, при напряжении питания 12,2 вольта.
Как вы уже, наверное, заметили, в таблицах 10 и 12 значение тока не совпадает с током, измеренным тестером. Это может быть вызвано, например, погрешностью сопротивления шунта. Для повышения точности измерений необходимо произвести корректировку калибровочного регистра как указано в разделе «7.5.2.1 Calibration Register and Scaling» даташита. По формуле 5 этого раздела вычисляем новое значение калибровочного регистра.

где:
Cal – текущее значение калибровочного регистра в десятичной форме;
MeasShuntCurrent – значение тока, измеренное образцовым ампермет-ром, делённое на разрешение регистра тока;
INA226_Current – текущее значение регистра тока INA226 в десятич-ном виде;
trunc — означает, что от результата берётся только целая часть.
Таким образом, получаем:

Corrected_Full_Scale_Cal = (1024*14)/17 = 843,294

Отбрасываем от результата дробную часть, и получаем 843 или 34Вh в шестнадцатеричном коде. Записываем в микросхему новое значение калибровочного регистра и получаем более точные значения тока и мощности. Смотрите таблицы 11 и 13.
Конечно, для корректировки необходимо использовать более точные приборы.

Несколько слов о работе по шине I2C. Рассматривать работу шины я не вижу смысла, в интернете полно таких описаний, поэтому перейдём к делу. Как было сказано выше, микросхема INA226 имеет возможность выставить один из 16 адресов, т. е. одним микроконтроллером можно опрашивать 16 микросхем. Адреса определяются соединением адресных входов с соответствующими выводами микросхемы, как указано в разделе даташита.

Конструкция моего модуля предусматривает соединение адресных входов с плюсом питания, поэтому адрес модуля 8Ah.

Так как шина I 2 C работает только с однобайтовыми данными, то для чтения/записи двухбайтовых регистров необходимо следовать следующим рекомендациям.

Для чтения данных из микросхемы необходимо отправить адрес регистра, который необходимо прочитать, затем по очереди считать два байта данных. Первым идёт старший байт регистра, вторым младший.

Для записи данных в регистр микросхемы необходимо отправить адрес регистра, в который мы хотим записать данные, затем по очереди отправить два байта данных. Первым отправляется старший байт.

Судя по всему в микросхеме нет автоматического инкремента адреса для чтения регистров, поэтому при чтении регистров необходимо указывать адрес.

Теперь немного о программе. Программа микроконтроллера построена следующим образом:

— инициализация I 2 C;

— функция старта для записи в регистр;

— функция старта для чтения регистра;

— в главном цикле происходит чтение регистров тока, напряжения, мощ-ности и регистра шунта.

Содержание регистров отслеживается с помощью логического анализатора.

Здесь не рассматривается работа микросхемы с функцией Alert, регистры Mask/Enable Register и Alert Limit Register. Я думаю, не составит труда разобрать это самостоятельно.

Небольшой вывод. Микросхема INA226 обеспечивает хорошую точность измерения. Позволяет работать в нескольких режимах, в зависимости от необходимости. Широкий диапазон напряжений питания (подходит под все существующие микроконтроллеры). Микросхема хорошо подходит для работы со стандартными шунтами на 75 mV (т.е. предел измеряемого тока определяется ёмкостью регистра тока и его разрешением). Если применить делитель напряжения можно так же расширить диапазон измеряемого напряжения.

Исходник программы, прошивка и описание регистров находятся в архиве. Надеюсь, моя статья кому-нибудь пригодится. Прошу не рассматривать статью как рекламу товара.

Источник

Микросхемы для измерения тока со встроенным шунтом

Применение токоизмерительных микросхем с внешним шунтирующим резистором не способно обеспечить прецизионную точность измерения. Чтобы решить эту проблему, компания Texas Instruments выпускает токоизмерительные микросхемы со встроенным шунтом: INA250 – интегральный преобразователь тока в напряжение, и INA260, конвертирующую измеренный сигнал в цифровой код с возможностью его передачи по интерфейсам I²C и SMBus™.

Полупроводниковые интегральные измерители тока широко применяются в различном оборудовании, позволяя непосредственно контролировать протекающий по цепи ток. Принцип их действия аналогичен используемому в традиционных измерительных приборах методу с вычислением тока по напряжению, измеренному на резисторе. Он включается в разрыв цепи, называется шунтом и имеет достаточно малое сопротивление, чтобы не влиять на работу оборудования, и достаточно высокую предельную мощность, чтобы пропускать через него максимально возможный рабочий ток нагрузки. Значение тока вычисляется согласно закону Ома по величине напряжения на резисторе известного номинала.

Читайте также:  Тепловое действие электрического тока используется в генераторах трансформаторах

Интегральные измерители тока используются для контроля режимов работы различного оборудования в промышленности и на транспорте, в телекоммуникационных системах, источниках питания серверов и в инверторах солнечных батарей. Интегральные измерители тока со встроенным шунтом позволяют решать подобные задачи с повышенной точностью и меньшими затратами.

Микросхемы TI со встроенным шунтом для измерения тока

В обширном ассортименте продукции компании Texas Instruments (TI) нашлось место и для измерителей тока со встроенным шунтом. Представляем два типа подобных микросхем, каждая из которых предназначена для решения различных специфических задач. Используя встроенный шунт, микросхемы INA250 и INA260 позволяют измерять двунаправленный ток нагрузки со стороны шины питания или шины заземления.

Интеграция в микросхемы прецизионного резистора для контроля тока обеспечивает высокую точность измерения, сравнимую с калиброванной, и минимальную зависимость характеристик от колебаний температуры. Кроме того, обе микросхемы используют оптимизированное 4-точечное подключение токоизмерительного шунта (схема Кельвина).

INA250

Микросхема INA250 является токоизмерительным усилителем с выходным напряжением, пропорциональным измеряемому току. Прецизионный встроенный резисторный шунт позволяет с высокой точностью измерять ток при синфазном напряжении, которое может изменяться от 0 до 36 В независимо от величины напряжения питания микросхемы.

Семейство INA250 доступно с четырьмя типами шкалы выходного напряжения: 200 мВ/A, 500 мВ/A, 800 мВ/A и 2 В/A. Все микросхемы рассчитаны на номинальный ток до 15 А (10 А – при максимальной температуре 125°C). Однополярное напряжение питания для INA250 составляет 2,7…36 В, а максимальный потребляемый ток достигает 300 мкА. Микросхема работает в расширенном температурном диапазоне -40…125°C и выпускается в 16-выводном корпусе типа TSSOP.

Основные характеристики INA250

  • Встроенный прецизионный резисторный шунт
    • сопротивление шунта: 2 мОм
    • допустимая погрешность сопротивления шунта: 0,1% (макс.);
    • номинальный измеряемый ток: до 15 A при температуре -40…85°C;
    • температурный коэффициент: 10 ppm/°C в диапазоне 0…125°C.
  • Повышенная точность измерения:
    • погрешность коэффициента усиления (шунт и усилитель): 0,3% (макс.);
    • ток смещения: 50 мА (макс., для INA250A2).
  • Четыре коэффициента усиления
    • INA250A1: 200 мВ/A;
    • INA250A2: 500 мВ/A;
    • INA250A3: 800 мВ/A;
    • INA250A4: 2 В/A.
  • Широкий диапазон синфазного сигнала: -0,1…36 В
  • Рабочий диапазон температур: -40…125°C

INA260

Микросхема INA260 предназначена для контроля тока, мощности и напряжения с использованием встроенного шунтирующего резистора высокой точности. Цифровой выход этого интегрального монитора обеспечивает совместимость с шинами I²C и SMBus™.

Микросхема обеспечивает высокую точность измерений тока и мощности в сочетании с возможностью обнаружения превышения тока в режиме синфазных напряжений, уровень которых может изменяться от 0 до 36 В независимо от напряжения питания. У INA260 можно задать до 16 адресов для работы нескольких микросхем на единой шине I²C. Цифровой интерфейс позволяет программировать критические уровни тока, время преобразования и усреднение аналого-цифрового преобразователя (ЦАП). Для упрощения использования измерителя внутренний множитель обеспечивает прямые отсчеты тока в амперах и мощности в ваттах.

Выполненный в 16-ти выводном корпусе TSSOP интегральный измеритель INA260 работает от источника питания напряжением 2,7…5,5 В при среднем потребляемом токе 310 мкА в диапазоне рабочих температур -40…125°C.

Основные характеристики INA260

  • Интегрированный резисторный шунт высокой точности
    • сопротивление шунта: 2 мОм;
    • эквивалентная погрешность: не более 0,1%;
    • номинальный ток: до 15 A при температуре -40…85°C;
    • температурный коэффициент: 10 ppm/°C (0…125°C).
  • Измеряемое шинное напряжение: 0…36 В
  • Измерение в цепи между источником питания и нагрузкой или между нагрузкой и общим проводом
  • Считываемые данные о токе, напряжении и мощности
  • Повышенная точность
    • системная погрешность усиления: 0,15% (макс.);
    • ток смещения: 5 мА (макс.).
  • Настраиваемые функции усреднения
  • 16 программируемых адресов
  • Напряжение питания: 2,7…5,5 В;
  • Корпус типа TSSOP, 16 выводов.

Датчики тока с интегрированным резистором упрощают разработку печатной платы

Наиболее распространенным методом для измерения протекающего в цепи тока является определение его величины через измеренное значение напряжения на шунтирующем или токоизмерительном резисторе. Для достижения высокой точности измерения необходимо оценить характеристики и подобрать используемые в процессе измерения резистор и усилитель.

При этом чрезвычайно большое значение для сохранения точности измерения имеет также правильная трассировка цепей между токоизмерительным резистором и усилителем тока на печатной плате.

На рисунке 1 представлена типичная принципиальная схема токоизмерительного усилителя с цепями подключения шунтирующего резистора (Rsense) в качестве датчика.

Рис. 1. Измерение тока между источником питания и нагрузкой

Рис. 1. Измерение тока между источником питания и нагрузкой

При использовании токоизмерительного усилителя в разработке весьма важен выбор параметров шунтирующего резистора. В первую очередь выбираются номинальное сопротивление и мощность этого резистора. Номинал резистора подбирают, исходя из желаемого максимального падения напряжения на нем при максимальном ожидаемом токе, или же исходя из планируемой потери мощности на этом резисторе.

После выбора величины и мощности токоизмерительного резистора определяется допустимое отклонение от номинального значения его сопротивления, так как это напрямую повлияет на точность воспринимаемого напряжения и измеряемый ток.

Однако есть еще один параметр, на первый взгляд не вполне очевидный, о котором часто забывают – это температурный коэффициент резистора. Температурный коэффициент часто указывается в размерности миллионная доля на градус Цельсия (ppm/°C). Он важен, поскольку температура резистора будет расти за счет мощности, рассеиваемой при протекании большого тока через этот компонент. Часто бывает так, что в недорогих резисторах с классом точности менее 1% наблюдается изменение рабочих параметров под влиянием температуры.

Когда резистор выбран, для повышения точности измерений необходимо обратить особое внимание на трассировку дорожек печатной платы, ведущих к нему. Чтобы достигнуть высокой точности измерения тока, необходимо использовать схему Кельвина, основанную на четырех точках подключения к токоизмерительному резистору. Первые два соединения нужны для контроля протекающего тока, а два других – для контроля падения напряжения на резисторе. На рисунке 2 показаны различные варианты подключений для контроля тока, протекающего через резистор.

Рис. 2. Варианты подключения токоизмерительного резистора

Рис. 2. Варианты подключения токоизмерительного резистора

Одной из наиболее распространенных ошибок является подключение входов чувствительного по току усилителя к дорожкам печатной платы, показанное на рисунке 2а, вместо непосредственного подключения к резистору.

Другие допустимые варианты подключения к резистору для измерения тока представлены на рисунках 2б…г. Показанная на рисунке 2г компоновка использует независимое двухпроводное подключение для каждого вывода токоизмерительного резистора. Такой метод наиболее часто используется для резисторных шунтов с сопротивлением менее 0,5 мОм, когда паяное соединение способно серьезно изменить сопротивление шунта. Трудно сказать, какой метод компоновки точек подключения даст наилучшие результаты в окончательном варианте печатной платы, так как точность резистора во многом зависит от точки измерения, используемой при его производстве.

Если значение резистора было измерено с внутренней стороны контактных площадок, то наилучший результат измерения обеспечит компоновка, показанная на рисунке 2в. Если значение резистора было измерено на боковой стороне площадок – компоновка, показанная на рисунке 2б, даст наивысшую точность.

Сложность в выборе оптимальной компоновки печатной платы заключается в том, что производители шунтирующих резисторов далеко не всегда дают рекомендации по трассировке печатной платы для оптимизации точности измерения тока, не говоря уже о точках измерения сопротивления, используемых в производственном процессе.

Все эти сложности в значительной степени устраняются при использовании усилителя с интегрированным токоизмерительным резистором, как в случае микросхем INA250 и INA260. Соединения с токоизмерительным резистором уже оптимизированы для достижения наивысшей точности измерения независимо от температуры.

INA250 – это простой токоизмерительный усилитель с аналоговым выходом, в то время как INA260 является датчиком тока с цифровым I²C-интерфейсом, через который транслируются значения тока, мощности и напряжения.

Блок-схема INA250 вместе с соединениями для резистора показана на рисунке 3. Резистор в составе INA250 имеет внешние выводы, которые позволяют фильтровать напряжение на шунте или подключать его непосредственно к токочувствительному усилителю. Внутренние соединения шунтирующего резистора минимизируют проблемы, возникающие при трассировке печатной платы.

Рис. 3. Блок-схема INA250 с подключением внутреннего резистора

Рис. 3. Блок-схема INA250 с подключением внутреннего резистора

Коэффициент усиления усилителя оптимизирован для каждого резистора, так что общая системная погрешность усиления сравнима с вариантом использования токоизмерительного резистора с точностью 0,1% или выше. Технология интегрированного шунта, используемая в INA250 и INA260, позволяет пропускать рабочие токи до 15 А.

Выбор компонентов упрощается благодаря тому, что характеристики точности для INA250 и INA260 даны с учетом токоизмерительного резистора. У INA250 общая максимальная системная погрешность коэффициента усиления составляет 0,3% при комнатной температуре и 0,75% в температурном диапазоне -40…125°С.

Для микросхем без встроенного шунтирующего резистора расчет точности, то есть общей погрешности усиления системы, должен учитывать погрешность и дрейф коэффициента усиления, номинальное значение и нестабильность сопротивления резистора. В связи с этим могут возникать трудности при подборе компонентов, соответствующих заданным требованиям точности системы.

INA260 выдает измеренные значения в цифровом виде, при этом максимальная общая погрешность коэффициента усиления при комнатной температуре составляет 0,15%. Эта цифра уже включает в себя и учитывает разброс значений интегрированного резистора и погрешность коэффициента усиления прибора. Соединения с токоизмерительным резистором выполнены внутри корпуса и откалиброваны для каждого устройства, что устраняет различия в сопротивлении, обусловленные точкой подключения.

Интегрированный шунт позволяет обеспечить более высокую точность и снизить общую стоимость решения в разработках, где требуется прецизионная точность измерения тока. Для достижения в дискретном решении точности, обеспечиваемой в INA260, потребуется токоизмерительный усилитель с погрешностью коэффициента усиления менее 0,1% и резистор достаточно высокой точности – не менее 0,05%. В настоящее время резисторы повышенной мощности с погрешностью менее 0,1% продаются по достаточно высокой цене.

Читайте также:  Блоки питания источники тока для светодиодов

Еще одно преимущество интегрированного в INA260 резистора заключается в том, что его величина уже откалибрована, так что считываемые значения тока легко преобразуются в амперы. Другие цифровые измерители могут требовать программной обработки показаний с токоизмерительного резистора, или же она выполняется в основном процессоре системы.

Используемая в INA250 и INA260 технология интегрированного шунта обеспечивает высокую точность измерения тока, упрощает компоновку при проектировании печатной платы и выявление общей системной ошибки, и при этом может быть дешевле равноценных по точности дискретных решений.

При измерении с повышенной точностью больших токов, превышающих 15 А, могут быть подключены параллельно несколько микросхем INA250, как показано в техническом описании микросхемы, или могут быть использованы несколько INA260, показания которых суммируются в системном процессоре.

Если параллельное использование нескольких микросхем для контроля токов более 15 А нецелесообразно из-за увеличивающихся размеров платы, можно использовать другие микросхемы с аналоговым и цифровым выходом, например, INA210, INA226, INA233, с применением внешних шунтирующих резисторов.

Типовые варианты интегральных измерителей тока

На основе серийно производимых микросхем INA250 и INA260 компания TI разработала и предлагает ряд готовых типовых решений для демонстрации процесса измерений тока. Полностью собранные платы TIDA-00614 и TIDA-01608 были специально разработаны для тестирования и оценки производительности интегральных измерителей тока с встроенным шунтом в конкретных условиях. Но подчеркивая демонстрационный характер изделий, компания отмечает, что именно эти платы не продаются в готовом виде. Для знакомства с возможностями микросхем предусмотрены другие отладочные платы – INA260EVM и INA250EVM.

TIDA-00614 – двунаправленный измеритель тока с интегральным шунтом на 30 А

Эта плата (рисунок 4) позволяет точно измерять ток в диапазоне до 30 А на шине с синфазным напряжением до 36 В при температурах -40…85°С. Ток нагрузки делится примерно пополам между цепями двух шунтирующих резисторов. Соответствующее току первого канала напряжение с выхода усилителя (OUT) поступает на вход REF второго канала. Устройство суммирует выходные напряжения двух микросхем INA250A2 и генерирует общее выходное напряжение относительно вывода GND. Схема измерительной платы TIDA-00614 представлена на рисунке 5.

Рис. 4. Плата TIDA-00614

Рис. 4. Плата TIDA-00614

Особенности TIDA-00614

  • Компактная конструкция с хорошими температурными характеристиками
  • Устойчивое измерение тока до 30 А с помощью двух усилителей с параллельно подключенными интегрированными токоизмерительными шунтами
  • Возможность конфигурирования для полного и частичного, положительного и отрицательного диапазонов измерения двунаправленного тока
  • В комплект устройства входят документация, проектные данные и файлы макета платы.

Рис. 5. Электрическая схема токоизмерительной платы TIDA-00614

Рис. 5. Электрическая схема токоизмерительной платы TIDA-00614

TIDA-01608 – изолированный датчик тока с интегрированным резисторным шунтом и интерфейсом I²C

На рисунке 6 представлена собранная плата измерителя TIDA-01608, а на рисунке 7 – принципиальная схема устройства. Плата позволяет с высокой точностью измерять ток на шине с напряжением в сотни вольт и служит примером устройств, разрабатываемых для оборудования солнечной энергетики и серверных блоков питания с их потребностью в широком диапазоне входного напряжения высокого уровня. На плате TIDA-01608 размещены: микросхема INA260 с интегрированным резистивным шунтом для измерения тока, два двунаправленных буфера P82B96, упрощающие соединение I²C, цифровой изолятор ISOW7842, который обеспечивает гальваническую развязку измерительных и управляющих цепей. Измеряемое микросхемой INA260 синфазное напряжение ограничено уровнем 36 В, поэтому использование ISOW7842 позволяет разработчику решить задачу измерения тока в высоковольтных цепях.

Рис. 6. Плата TIDA-01608

Рис. 6. Плата TIDA-01608

Особенности TIDA-01608

  • Измерение тока высоковольтной шины (±1 кВ)
  • Изолированные цепи нагрузки с высоким напряжением
  • Совместимость с шиной I²C
  • Усиленная изоляция цифрового интерфейса I²C с микроконтроллером
  • Системная погрешность 1%

Рис. 7. Электрическая схема токоизмерительной платы TIDA-01608

Рис. 7. Электрическая схема токоизмерительной платы TIDA-01608

Заключение

Микросхема INA250 является интегральным преобразователем «ток-напряжение», а INA260 применяется в качестве конвертора измеряемого аналогового сигнала в цифровой код. Оба типа микросхем позволяют контролировать как ток, потребляемый нагрузкой от шины питания, так и ток, вытекающий из нагрузки в шину заземления.

Микросхемы со встроенным резистивным шунтом INA250 и INA260 обладают целым рядом преимуществ в сравнении с другими интегральными измерителями, использующими внешний шунт. INA250 и INA260 с встроенным прецизионным шунтом обеспечивают гарантированную точность измерения и позволяют сократить занимаемую на плате площадь, трудоемкость и стоимость реализации измерителя тока.

Источник

Схемы измерения тока

Почти каждый электронщик рано или поздно сталкивается с необходимостью измерять ток, например при проектировании лабораторного блока питания или зарядного устройства.

В этой статье мы рассмотрим наиболее популярные схемы их преимущества и недостатки.

Измерение тока в отрицательном полюсе нагрузки

Схема измерения тока в отрицательном полюсе нагрузки наиболее простая и широко распространенная. Данную схему можно встретить как в лабораторных блока питания, так и в схемах управления двигателями, схемах защит и пр.

Если не требуется высокая точность измерения тока, как правило, используется схема 1а, для более точного измерения тока, как правило, используется схема 1б.

Схема измерения тока

Схема измерения тока

В схеме 1б резистор R4 подключается к сигнальной аналоговой земле, резисторы R3 и R1 подключаются непосредственно к шунту. Сопротивление резисторов R1 и R3, R2 и R4 должно быть одинаковым.

  • простая реализация;
  • низкий уровень синфазного сигнала;
  • низкое выходное сопротивление;
  • широкий диапазон напряжений питания нагрузки;
  • низкая стоимость.

Недостаток у данной схемы один — токоизмерительный резистор (шунт) устанавливается в отрицательном полюсе нагрузки, что накладывает определенные ограничения.

Крутизна выходного сигнала схемы 1а определяется по формуле

(1) \begin<equation* data-lazy-src=

Схема измерения тока

Вариант 2б сложнее, но дает чуть более высокую точность, кроме того он может оказаться более удобным если в устройстве несколько измерительных каналов, в этом случае ОУ U1B формирует единое смещение на все каналы.

В схемах 2а и 2б резистор R5 необходимо подключать к источнику опорного напряжения, если он имеется.

Смещение выходного сигнала схемы 2а определяется по формуле

(3) \begin<equation* data-lazy-src=

Преимущества схемы 3а:

  • измерение тока в положительном полюсе нагрузки;
  • выходной сигнал от 0В.

Недостатки схемы 3а:

  • высокий уровень синфазного сигнала;
  • высокое выходное сопротивление.

Преимущества схемы 3б:

  • измерение тока в положительном полюсе нагрузки;
  • низкое выходное сопротивление.

Недостатки схемы 3б:

  • высокий уровень синфазного сигнала;
  • необходимость точного подбора резисторов;
  • необходимость смещения выходного сигнала при однополярном питании.

В схеме 3б аналогично схеме 1б, резисторы R1 и R3, R2 и R4 должны быть равны.

Крутизна выходного сигнала схемы 3а и 3б определяется по формуле

(5) \begin<equation* data-lazy-src=