Меню

Схема для прерывания тока



О ПРЕРЫВАТЕЛЯХ ТОКА*

О ПРЕРЫВАТЕЛЯХ ТОКА*

Чтобы разжечь пыл ревностных экспериментаторов, которые верят в революционность этого открытия, может быть, стоит предложить одно или два простых устройства для прерывания тока. Например, очень примитивное приспособление такого рода состоит из кочерги — да, обычной кочерги, соединенной гибким кабелем с одной из клемм генератора, и ванной, наполненной проводящей жидкостью, которая соединена подходящим способом, через первичную обмотку индукционной катушки, с другим полюсом генератора. Когда экспериментатор хочет получить Рентгеновское изображение, он доводит конец кочерги до белого каления, и, когда он резко погрузит его в ванную, он станет свидетелем удивительного явления, кипящая и бурлящая вода, быстрой включающая и прерывающая ток, и мощные сгенерированные лучи, которые сразу убедят его в огромной практической ценности этого открытия. Я мог бы кроме того добавить, что нагревать кочергу удобно с помощью машины для сварки.

Другой прибор, полностью автоматический, и вероятно подходящий для применения в пригородных районах, состоит из двух изолированных металлических пластин, поддерживаемых любым удобным способом, расположенных очень близко друг к другу. Эти пластины подсоединены через первичную обмотку индукционной катушки к выводам генератора, и зашунтированы двумя подвижными контактами, соединенных гибким кабелем. Эти два контакта оба прикреплены к ногам крупной, с собаку размером курицы, стоящей раздвинув ноги, как бы верхом, на пластинах. Когда к последним подается тепло, в ногах курицы порождаются мускулаторные сокращения, которая тем самым включает и выключает ток через индукционную катушки. Можно взять любое количество таких кур и контактов, подключенных последовательно или параллельно, и увеличить тем самым частоту импульсов до куда нужно. Таким способом можно получать сильные искры, для большинства целей подходящие, и работать с вакуумными трубками. Вы обнаружите, что данные приспособления оказываются весьма примечательным усовершенствованием по сравнению со старыми прерывателями тока, с которыми два главных редактора принялись несколько лет назад революционизировать системы электрического освещения. Главные редакторы теперь стали мудрее. Их стоит поздравить, и их читателей, научные общества и профессионалов, всех их надо поздравить, — и «все хорошо, что хорошо кончается». Наблюдательный экспериментатор не преминет заметить, что большие искры пугают кур, у которых из-за это начинаются еще более интенсивные спазмы и мускулаторные сокращения, что в свою очередь еще больше усиливает искры, которые, в свою очередь, вызывают еще более сильный страх у кур и увеличивают скорость прерываний; на самом деле, это, как сказал Киплинг:

Но возвращаясь, со всей серьезностью, к описанному «электролитическому прерывателю», это прибор, с которым я очень близко познакомился, проведя с таким обширные эксперименты два или три года назад. Это было одно из устройств, которые я изобрел в попытках получить эко- номичное приспособление такого рода. Название на самом деле не соответствует, постольку по- скольку может применяться любая жидкость, проводящая или сделанная таковой любым способом, например, растворением кислоты или щелочи, или путем нагревания. Я даже обна- ружил, что можно при определенных условиях работать и со ртутью. Устройство чрезвычайно просто, но огромная потеря энергии, сопровождающая его работу, и определенные другие не- достатки делают его полностью непригодным для любой стоящей, практической цели, и уж раз эти обстоятельства затронуты, для тех, в которых требуется малое количество энергии, гораз- до лучшие результаты получаются от соответствующим образом сконструированного механиче- ского прерывателя цепи. Экспериментаторов очень часто сбивает с толку, когда они обнаруживают, что индукционная катушка дает более длинные искры, когда это устройство вставляется вместо обычного прерывателя, но дело в том, что это происходит главным образом из-за того, что прерыватель не сделан как надо. Из совокупной энергии, идущей с клемм, едва ли можно получать и одну четверть от того количества, которое правильно сконструированный прерыватель дает во вторичной цепи, и хотя я собирал много разных улучшенных видов, я об- наружил, что существенно увеличить экономию невозможно. Но два усовершенствования, тем не менее, которые как я выяснил в то время, делать необходимо, я могу упомянуть для пользы тех, кто применяет это устройство. Ка к легко можно заметить, маленький контакт окружен га- зовым пузырем, в котором и образуются, обычно нерегулярным образом, включения и выклю- чения, жидкостью, которая устремляется к контакту в какой-нибудь точке. Сила, движущая жидкость, — это, как очевидно, давление столба жидкости, и увеличение любым способом дав- ления жидкости жидкость будет устремляться к контакту с большей скоростью и частота таким образом вырастет. Другое необходимое улучшение состояло в том, чтобы принять меры, пре- пятствующие выходу кислоты или щелочи в атмосферу, что всегда в той или иной мере проис- ходит, даже если столб жидкости достаточно высок. Во время моих ранних экспериментов с этим устройством я так заинтересовался этим, что пренебрег этой предосторожностью, и я за- метил, что кислота оказала разъедающее воздействие на все оборудование в моей лаборатории. Экспериментатор легко выполнить оба этих усовершенствования взяв длинную стеклянную трубу, скажем, от шести до восьми футов длиной, и разместив прерывающее устройство вбли- зи дна трубы, с отводом для периодического долива жидкости. Высокий столб не даст испаре- ниям просачиваться в атмосферу комнаты, а увеличенное давление заметно повысит эффективность работы. Если столб жидкости будет, скажем, в девять раз выше, то сила, тол- кающая жидкость к контакту, будет в девять раз больше, и эта сила может, при тех же услови- ях, двигать жидкость в три раза быстрее, откуда частота вырастет в том же отношении, а на самом деле в большем отношении, поскольку газовый пузырь, будучи сжат, станет меньше, и жидкости придется проделывать меньший путь. Электрод, конечно же, должен быть очень мал, чтобы процесс был регулярным, и использовать платину не обязательно. Давление, при этом, можно увеличить и другими путями, и я получал некоторые интересные результаты в экспери- ментах этого рода. Ка к указывалось выше, это устройство очень неэкономичное, и хотя в не- которых случаях использовать его можно, я считаю, что практическая ценность его невелика или отсутствует. Мн е будет приятно убедиться в обратном, но я не думаю, что ошибаюсь. Мои основные причины для этого утверждения таковы, что есть много других способов, которыми можно получать лучшие результаты при помощи столь же, если не более, простых устройств. Одно я могу упомянуть здесь, оно основано на другом принципе, который несравненно более эффективен, но более эффективно и при этом в целом проще. Он о состоит из тонкой струи про- водящей жидкости, которую заставляют вытекать с нужной скоростью из насадки, соединен- ной с одним полюсом генератора, через первичную цепь индукционной катушки, на другой контакт генератора, находящийся на небольшом расстоянии. Это устройство дает разряды с за- мечательной быстротой, и частота получается в разумных пределах почти любая. Я длительное время пользовался этим устройством, соединяя его с обычными катушками и с катушкой моего собственного вида, и получал результаты во всех отношениях намного превосходящие те, что можно получить с тем типом устройства, который обсуждался до этого.

Читайте также:  Тест электрический ток постоянный или переменный

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

ТЕСЛА ОТВЕЧАЕТ Д-РУ ЛУИСУ ДАНКАНУ, ОБЪЯСНЯЯ СВОЙ МОТОР ПЕРЕМЕННОГО ТОКА

ТЕСЛА ОТВЕЧАЕТ Д-РУ ЛУИСУ ДАНКАНУ, ОБЪЯСНЯЯ СВОЙ МОТОР ПЕРЕМЕННОГО ТОКА Редактору Electrical Review:В Вашем издании за прошлую неделю я обратил внимание на то, что М-р Данкан ссылается на мою систему моторов переменного тока.Поскольку я вижу, что Д-р Данкан еще не знаком с

2. Химические источники тока

2. Химические источники тока ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной

Источник

Простой прерыватель тока в нагрузке

Иногда требуется периодически включать (или выключать) подключенную к источнику питания нагрузку, например лампу аварийной сигнализации в автомобиле, звуковую сирену и т. д.

ПРОСТОЙ ПРЕРЫВАТЕЛЬ ТОКА В НАГРУЗКЕ

ПРОСТОЙ ПРЕРЫВАТЕЛЬ ТОКА В НАГРУЗКЕ

Приведенная на рис. 6.4 схема может так же найти применение в различных игрушках и автоматических устройствах, где требуется обеспечивать прерывистый режим работы. Устройство может также использоваться и как вибратор, для перемешивания раствора.

Схема работает от источника с напряжением от 2,4 до 5 В. При использовании реле К1 на напряжение 9 В рабочее напряжение может быть увеличено до 13 В. В этом случае в цепь базы транзистора VT2 необходимо установить резистор 56. 100 Ом.

Схема является несимметричным мультивибратором, где время включения реле (период) зависит от номиналов элементов С1 и R2. Резистором R1 период может меняться в диапазоне от 0,5 до 12 секунд, при этом реле включается примерно на 0,5 секунды.

Чтобы обеспечить работу схемы при низковольтном питании, реле К1 выполнено на основе любого открытого реле с катушкой, намотанной проводом ПЭВ диаметром 0,33 мм. Намотка выполняется до заполнения всего каркаса катушки.

Источник

Прерыватели постоянного тока, описание, принцип действия

Прерыватели постоянного тока, описание, принцип действия

В рамках настоящего пункта рассматриваются устройства силовой электроники, предназначенные для включения или выключения нагрузки в цепи постоянного тока. С их помощью можно также регулировать среднее (или действующее) значение напряжения, изменяя соотношение между длительностью импульсов напряжения на нагрузке и длительностью пауз (т. е. осуществлять импульсное регулирование).

Преобразователи постоянного напряжения одного уровня в постоянное напряжение другого уровня, обеспечивающие регулирование постоянного напряжения на нагрузке, рассматриваются в другом подразделе.

Ранее основой мощных прерывателей постоянного тока служили незапираемые тиристоры. Такие прерыватели отличались сложностью схем.
В настоящее время для коммутаций в цепях постоянного тока широко используют полевые транзисторы, IGBT, запираемые тиристоры (Gate tuогТ thyristor — GTO), тиристоры с полевым управлением (MOScontrol thyristor — МСТ, для включения и выключения которых используются встроенные полевые транзисторы), а также, в некоторых случаях, биполярные транзисторы.

Современные силовые полупроводниковые приборы способны коммутировать ток в тысячи ампер и выдерживать напряжение в тысячи вольт.

По существу прерыватели постоянного тока представляют собой электронные ключи (к примеру, транзисторные), дополненные системами управления и элементами, обеспечивающими защиту силовых приборов.

Прерыватель на основе IGBT.

Обратимся к отечественному прерывателю (твердотельному реле) постоянного тока с малым временем срабатывания 5П59.10Ч3116012 (напряжение изоляции 4000 В, коммутируемое напряжение 0…1200 В, коммутируемый ток 160 А, остаточное напряжение во включенном состоянии 3 В, время включения не более 5 мкс, частота коммутации нагрузки до 10 Гц).

Для питания входной цепи рассматриваемого твердотельного реле необходимо использовать источник с напряжением Unum гальванически связанный с входной цепью (питание по входу).

Для защиты от перенапряжений, возникающих при отключении нагрузки, имеющей индуктивность, используется внешний диод D. При выключении IGBT ток нагрузки замыкается через диод (в остальное время диод находится под обратным напряжением и не влияет на работу схемы).

prerinatel toka

Рассмотрим рекомендуемую схему включения (рис. 4.19) отечественного прерывателя (твердотельного реле) постоянного тока (напряжение изоляции 4000 В, коммутируемое напряжение 0…600 В, коммутируемый ток 120 А, остаточное напряжение во включенном состоянии 2,5 В).Реле имеет встроенный диод Dlt который обеспечивает, совместно с внешним диодом Х)3, защиту IGBT от перенапряжений.

Читайте также:  Цепи переменного тока тестовый вопрос

Особенностью рассматриваемого реле является также использование источника питания с напряжением Unumi гальванически связанного с силовой цепью (питание по выходу).

Двуполярный прерыватель постоянного тока па полевых транзисторах.

Двуполярные прерыватели обеспечивают протекание положительного тока в двух направлениях. Они также способны коммутировать переменный ток.

Обратимся к рекомендуемой схеме включения (рис. 4.20) отечественного двуполярного прерывателя (биполярного твердотельного реле) 5П19.10П1 124 (напряжение изоляции 4000 В, коммутируемое напряжение —400…+400 В, коммутируемый ток 12 А, сопротивление во включенном состоянии 0,5 Ом).

При анализе схемы нужно учитывать, что структура каждого из полевых транзисторов Г, и Т2 содержит шунтирующий диод, как показано пунктиром (структуры силовых полевых транзисторов рассмотрены выше). Пунктир использован потому, что в подобных схемах диоды часто не показывают (но их наличие подразумевают).

Ток нагрузки при любой полярности входного напряжения протекает через один открытый транзистор и диод другого транзистора.

Для защиты транзисторов от перенапряжений применяется вариант с тор.

Управление реле осуществляется с помощью токового сигнала im.

Источник

Схема прерывателя тока для различных нагрузок, таймер (CD4060)

Приведены принципиальные схемы простых в изготовлении блоков для прерывания тока и регулировки мощности.

Прерыватель тока

Устройство представляет собой бесконтактный прерыватель тока в нагрузке, питающейся напряжением 12-18V, при токе не более 10А. Частоту прерывания можно плавно регулировать в двух пределах «х1» — от 0,2Гц до 2 Гц и «х2» — от 0,4 Гц до 4 Гц.

Схема отличается точным равенством интервалов выключенного и включенного состояния нагрузки. Схема (рис.1) состоит из мощного ключа на р-канальных полевых транзисторах VТ1 и VТ2, включенных параллельно, и источника управляющих импульсов на микросхеме D1.

Конечно, можно было источник управляющих импульсов сделать на основе мультивибратора на логических элементах, например, микросхемы К561ЛА7, но в таком случае, чтобы обеспечить симметричность выходных импульсов потребуется еще одна микросхема — D-триггер или счетчик.

В данном же случае, в одной микросхеме есть как мультивибратор, так и счетчик. К тому же, счетчик 14-разрядный, поэтому мультивибратор может работать на значительно более высокой частоте, чем частота прерывания нагрузки, что благоприятно сказывается на стабильности частоты заданной RC-цепью.

Частота мультивибратора задается RC-цепью C1-R2-R3. Плавная регулировка частоты осуществляется переменным резистором R2. Частота импульсов делится счетчиком.

В положении переключателя S1 «х1» коэффициент деления составляет 16384, а в положении «х1» -8192. Далее импульсы с выхода счетчика через переключатель S1 поступают на ключ на мощных полевых транзисторах VТ1 и VТ2.

Принципиальная схема прерывателя тока

Рис. 1. Принципиальная схема прерывателя тока.

Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением. Резистор R4 несет две функции, во-первых, он снижает ток заряда емкости затвора полевых транзисторов, снижая этим пиковую нагрузку на выход микросхемы, а во-вторых, он совместно со стабилитроном VD2 ограничивает напряжение на затворах VТ1 и VТ2 чтобы оно не превышало 12V.

Максимальное напряжение питания микросхемы D1 составляет 15V, а напряжение питания данного устройства может достигать 18V и даже больше. Чтобы ИМС D1 не вышла из строя в этом случае, напряжение на ней ограничивается стабилитроном VD1 и резистором R5. А диод VD3 защищает конденсатор С2 от разрядки в том случае, если при включении нагрузки ключом на VТ1 и VТ2 будет наблюдаться провал в напряжении питания.

Регулятор мощности

Очень заманчиво в полевых условиях в качестве источника света использовать прожектор или светильник сделанный на базе автомобильной фары. Еще лучше, если яркость этого осветительного прибора можно будет регулировать плавно в очень широких пределах.

Ток потребления стандартной лампы автомобильной фары мощностью 65 W составляет 5,5А. А ток 100W лампы уже более 8А. Конечно, можно сделать линейный регулятор на очень мощном транзисторе с огромным радиатором. но куда более эффективным будет регулятор с широтно-импульсным способом регулировки мощности.

В отличие от линейного его выходные транзисторы всегда будут либо закрыты полностью либо открыты полностью, а это значит что сопротивление их каналов в открытом состоянии будет минимальное и, следовательно, мощность на них падать тоже будет минимальная. Отсюда и большой КПД, и более легкий температурный режим.

Схема (рис.2) в части выходного каскада и питания аналогична схеме прерывателя тока (рис.1). Различие в схеме управления. Здесь на микросхеме типа К561ЛА7 сделан мультивибратор, скважность выходных импульсов которого можно в очень широких пределах регулировать с помощью переменного резистора R1.

Частота импульсов неизменная и составляет около 400 Гц. Регулируя переменный резистор R1 изменяем соотношение длительностей положительных и отрицательных полуволн за счет различия сопротивлений R -составляющих частотозадающей RC-цепи, коммутируемых диодами VD4 и VD5.

Практически регулировать мощность можно от 90% до 10% от максимального значения. Собственно мультивибратор выполнен на элементах D1.1 и D1.2. С выхода элемента D1.2 импульсы поступают на усилитель мощности, сделанный на оставшихся двух элементах микросхемы D1 — D1.3 и D1.4.

Принципиальная схема прерывателя тока для нагрузки с регулировкой

Рис. 2. Принципиальная схема прерывателя тока для нагрузки с регулировкой.

Эти элементы соединены параллельно. С их выходов импульсы через резистор R4 поступают на затворы полевых транзисторов. В данной схеме сопротивление R4 уменьшено, чтобы обеспечить больше скорость открывания транзисторов и этим самым снизить их нагрев в момент переходного процесса между закрытым и открытым состоянием. В связи с этим увеличивать напряжение питания схемы выше 15V не рекомендуется, так как это приведет к повышенной нагрузке на выходы элементов D1.3 и D1.4 микросхемы D1.

Читайте также:  Плотность тока рассчитывается по формуле

Регулятор мощности с прерывателем

Если объединить эти два устройства получится схема (рис.З), с помощью которой можно будет не только прерывать ток в нагрузке постоянного тока, но и регулировать мощность этой нагрузки. Например, регулировать яркость и частоту мигания сигнального прожектора. В этом случае две управляющие схемы из схемы прерывателя (рис.1) и схемы регулятора мощности (рис.2) объединяются.

Причем первая схема управляет второй. Происходит это следующим образом. Усилитель мощности на элементах D1.3 и D1.4 выполнен на двух соединенных параллельно элементах микросхемы К561ЛА7, то есть, это элементы «2И-Не». Если на один из входов такого элемента подать логический ноль, то на выходе элемента устанавливается логическая единица независимо от того какой логический уровень будет на его втором входе.

Схема же выходного ключа выполнена на полевых транзисторах VT1 и VT2. Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением, то есть, логическим нулем. А при подаче на их затворы логической единицы они закрываются.

Принципиальная схема регулятора мощности с прерывателем

Рис. 3. Принципиальная схема регулятора мощности с прерывателем.

Таким образом, выделяем по одному из входов элементов D1.3 и D1.4, соединяем их вместе и через переключатель S1 подаем на них управляющие импульсы от генератора прерывания, выполненного на микросхеме D2. Теперь при единице на выходе S1 нагрузка включается, а при нуле — выключается.

Чтобы можно устройством пользоваться как в режиме прерывания, так и без прерывания, переключатель S1 сделан на три положения. В положении «О» прерывания не будет, и нагрузка будет работать постоянно.

В этом положении выводы 9 и 13 элементов D1.3 и D1.4 соединяются через переключатель S1 с плюсовым полюсом питания микросхемы, то есть, на них подается логическая единица. В этом режиме прерыватель отключен, и работает только регулятор мощности. Мощность регулируется резистором R1, частота прерывания — резистором R6, режим работы — переключателем S1.

Детали

Включенные параллельно транзисторы VT2, VT3 типа IRF9540 можно заменить на IR9Z34, КП785А, КП784А. Микросхему CD4060B заменить можно любым аналогом «хх4060». Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011, либо любым аналогом «хх4011».

Стабилитрон КС515А можно заменить на КС215Ж, КС508Б, 1N4744A, TZMC-15. Стабилитрон КС213Ж можно заменить на КС213Б, 1N4743A, BZX/BZV55C-13.

В качестве светодиода HL1 можно использовать любой из серий АП307, КИПМ15, КИПД21, КИПД35, L1503, L383 или другой индикаторный. Принципе, можно вообще отказаться от него, просто тогда не будет индикации включенного состояния нагрузки. При работе с током нагрузки до 10 А полевые транзисторы нужно установить на общий теплоотвод с площадью охлаждающей поверхности не менее 70 см2.

Карнаухов ГЛ. РК-2015-08.

Литература: 1. Бутов А.Л. «Прерыватель тока для автомобиля» РК-2004-02.

Источник

Мощный прерыватель тока нагрузки на полевом транзисторе

В статье описание устройства, которое при последовательном включении с нагрузкой обеспечивают периодическое прерывание тока через нее .

DD1.6 остается низкий уровень, при этом транзистор VT1 закрыт, а нагрузка обесточена.

Времязадающая цепь генератора состоит из элементов R3, R4. Сб. При указанных на схеме номиналах частота управляющих импульсов равна примерно 100 Гц при скважности около 1 4. Подбирая эти элементы, можно изменять частоту генерации от 0,005 Гц до десятков килогерц.

Коммутирующий элемент — полевой транзистор IRFP2907 (VT1) в корпусе ТО-247АС способен работать при напряжении сток-исток 75 В и токе стока до 209 А. Рассеиваемая корпусом мощность достигает 470 Вт (с теплоотводом, разумеется). Транзистор обладает чрезвычайно низким сопротивлением открытого канала — всего 0,0045 Ом, что обеспечивает малое падение напряжения на канале. Теплоотвод также необходим при высокой частоте переключения (максимальная температура кристалла — 175 °С).

Главная же особенность рассматриваемого прерывателя — его универсальность по питающему напряжению, допускающая применение в самых разных конструкциях без каких-либо переделок, например, для регулирования температуры паяльника питанием его импульсным током (при этом можно заменить транзистор VT1 более слаботочным), для управления самодельной декоративной подсветкой новогодних елок, работой ламп указателя поворотов автомобиля, управления двигателями постоянного тока в прерывистом режиме и т. д

Устройство собрано проволочным монтажом на технологической плате размерами 40×35 мм (рис. 3). Резисторы R1 и R2 — С5-5. Остальные резисторы и конденсаторы — любые.

Максимальное напряжение питания прерывателя ограничено на уровне 75 В — максимальным напряжением сток-исток транзистора IRFP2907 Однако при испытании устройство успешно работало при напряжении до 100 В Для надежной работы при напряжении питания, большем 75 В транзистор IRFP2907 можно заменить на IRFP150N, IRFP260N, IRFP3710. Это n-канальные полевые транзисторы в корпусе ТО-247 с большим допустимым напряжением сток-исток, но меньшим током стока.

В устройстве использован преобразователь напряжения МАХ680 в корпусе DIP8, требующий для работы четыре конденсатора обвязки, но можно применить МАХ681 в корпусе DIP14. которому вообще не нужны внешние элементы. Микросхемы DD1 и DA1 на плате установлены в панели.

Следует отметить, что при напряжении питания прерывателя более 50 В на резисторах R1 и R2 выделяется чрезмерно большая мощность и чтобы предотвратить перегревание, их следует принудительно охлаждать вентилятором. Стабилитрон VD1 придется установить на теплоотвод.

Описанный прерыватель тока успешно работает уже два года при испытаниях электронных блоков на безотказность.

Автор: М. Калинцев, г. Клин Московской обл.

Источник