Схема для измерения тока утечки конденсатора

Простой измеритель токов утечки конденсаторов и полупроводниковых ключей

Analog Devices AD8661 ADR391

Схема, показанная на Рисунке 1, состоит из повторителя напряжения на микросхеме IC1 и источника опорного напряжения IC2. IC1 – это выпускаемый Analog Devices операционный усилитель (ОУ) AD8661 с гарантированным входным током смещения менее 1 пА при типовом значении 0.3 пА, а в качестве ADR391 используется прецизионный источник опорного напряжения ADR391, также производимый компанией Analog Devices. Входное напряжение смещения ОУ, корректируемое на этапе производства, не превышает 100 мкВ, а типовое значение составляет 30 мкВ. Такие характеристики позволяют использовать этот усилитель для оценки саморазряда конденсаторов практически любых типов. Токи утечки полупроводниковых танталовых конденсаторов и конденсаторов с высококачественными органическими диэлектриками значительно превышают входной ток смещения повторителя напряжения IC1. Сначала тестируемый конденсатор (capacitor under test – CUT) заряжается до уровня опорного напряжения 2.5 В путем подключения точки А к выходу IC2. Затем, в какое-то удобное время, точка A отсоединяется от источника опорного напряжения, и цифровой вольтметр измеряет выходное напряжение повторителя. Измеряемый относительно начального значения спад напряжения VO должен находиться в пределах от 0.1 до 0.5 В. Ток утечки будет равен

C – емкость CUT,
tMEAS – время между отключением CUT от источника 2.5 В и моментом считывания при падении напряжения на VO.

Рисунок 1. С помощью этого простого устройства сначала подают опорное напряжение
на тестируемый конденсатор, а затем измеряют спад напряжения во времени
на выходе повторителя напряжения (а). Схема также может измерять ток утечки
обратносмещенного активного устройства (б).

Измеритель позволяет также определять токи утечки обратносмещенных диодов и различных коммутирующих приборов в выключенном состоянии, таких как полевые транзисторы с p-n переходом, MOSFET, биполярные транзисторы, тиристоры и IGBT. В этом случае CUT заменяется параллельным соединением тестируемого устройства (device under test – DUT) и дополнительного конденсатора CADD (Рисунок 1б). Процедура измерения и формула для оценки величины тока утечки остаются таким же, как для тока утечки конденсатора, но вместо емкости CUT в формулу (1) подставляется емкость CADD. При исследовании маломощных устройств в качестве CADD хорошо работает конденсатор с полистирольным диэлектриком емкостью 10 нФ. Однако для мощных устройств емкость CADD должна как минимум в 10 раз превышать паразитную емкость DUT при напряжении 0 В.

Кроме того, устройство на Рисунке 1б способно измерять сопротивления резисторов от десятков МОм примерно до 2 ТОм. Только теперь ток в формуле (1) – это ток, идущий через резистор RAGND, обусловленный приблизительно опорным напряжением. Сопротивление RAGND примерно равно

При всех измерениях спад напряжения VO не должен превышать примерно одной пятой опорного напряжения, чтобы экспоненциальный разряд можно было аппроксимировать линейным. Ток утечки кнопочного переключателя S1 на Рисунке 1а должен быть меньше 1 пА. Переключателем с малой утечкой могут служить скрученные изолированные провода, оканчивающиеся позолоченными контактами из фосфористой бронзы. Позолоченные металлические детали можно найти внутри любого высококачественного разъема. Кроме того, можно зажимать DUT или CUT между двумя позолоченными контактами, сделанными из аналогичных частей разъема. Для минимизации утечек схема была собрана навесным монтажом без использования печатной платы.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Γотовые и самодельные приборы для проверки конденсаторов

Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.

Что такое конденсатор

Конденсаторы

Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:

  • пикофарад обозначается pF или пФ;
  • нанофарад обозначается nF или нФ;
  • микрофарад обозначается mF или мФ.

Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.

Принцип работы

Цепь переменного тока

В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.

Цепь постоянного тока

В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.

Виды конденсаторов

Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:

  1. Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
  2. Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
  3. Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.

Виды конденсаторов

Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:

  1. Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.Керамические
  2. Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.Пленочные
  3. Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.Электролитические
  4. Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.Переменные
  5. Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
  6. Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.Пусковые

Определение параметров

Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.

Проверка емкости

Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.

  1. Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
  2. Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
  3. Оба щупа присоединяются к выводам.
Читайте также:  Найти мощность электрического тока задачи

Полученное значение является номиналом емкости.

Определение полярности

Определение полярности

Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:

  1. Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
  2. Современные радиодетали также имеют обозначение на корпусе знаком «+».
  3. SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.

Минус определяется также визуально:

Минус определяется также визуально

Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.

Минус определяется также визуально 2

Проверка мультиметром

Для определения полярности с помощью мультиметра, необходимо:

  1. Полностью разрядить деталь, закоротив ее выводы.
  2. Резистор присоединить к клемме «+» мультиметра.
  3. Второй конец резистора присоединить к выводу блока питания на 12 вольт.
  4. Резистор присоединить к выводу конденсатора.
  5. Минусовую жилу блока питания соединить со 2 выводом конденсатора.

Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.

Проверка исправности конденсаторов

Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.

Мультиметр

Мультиметр

Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.

Для проверки необходимо:

  1. Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
  2. Установить мультиметр в режим определения емкости «cX».
  3. Переключить прибор на определение максимального диапазона емкости.
  4. Щупы присоединить к ножкам или выводам конденсатора.
  5. Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.

Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.

Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.

Тестер

Тестер

Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.

  1. Для проверки необходимо установить тестер в режим сопротивления.
  2. Выпаять и разрядить проверяемый элемент.
  3. Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
  4. Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.

Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.

Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.

Проверка без выпаивания

Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.

Проверка без выпаивания

Первый способ

Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.

Второй способ

Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.

Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.

Третий способ

Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.

Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.

Конденсатор

Прибор своими руками

Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.

Схема сборки

Для прибора понадобятся следующие детали:

  1. Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
  2. Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
  3. Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
  4. VD1 подходит любой диод малой мощности, например, SOD 232.
  5. SA1 является любым переключателем на 5 положений.
  6. Мультиметр Х1.
  7. Батарея или блок питания до 12 вольт.

Принцип работы прибора заключается в следующем:

  1. Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
  2. Заряд для испытуемого элемента подается через диод VD1.
  3. Разрядниками заряда являются резисторы R10, 12, 15.
  4. Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
  5. Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
  6. Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.
Читайте также:  Источники тока из автомобильного генератора

При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.

Принципиальная схема на печатной плате:

Принципиальная схема на печатной плате

Основные неисправности конденсаторов

Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:

  1. Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
  2. Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
  3. Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.

Полезные советы

Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.

Перед проверкой стоит учитывать:

  1. Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
  2. Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
  3. Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
  4. Элементы емкостью менее 0.25 мкФ можно проверить только на замыкание.
  5. При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.

Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.

Видео по теме

Источник

Лабораторная по физике №5 — оцениваем ток утечки электролитических конденсаторов

Началось всё, как это часто и происходит, с прихода знакомого радиолюбителя с вопросом «А правда ли что параметры электролитических конденсаторов меняются во времени?». После уточнения того, какие конкретно параметры подразумеваются, решили, что интересно изменение тока утечки конденсатора связанное со временем. Более же конкретно задача выражалась словами – «вот конденсатор и он, будучи поставленным в цепь катодного смещения первого каскада усилителя, добавляет в музыку шумы и потрескивание. Можно узнать, что в нём происходит? Или даже посмотреть?».

Наверное, можно, но сначала

Немного отправной информации

Смотрим справочную литературу. Например, в «Справочнике по электрическим конденсаторам» под редакцией Четверткова И.И. и Смирнова В.Ф. (рис.1) и у Дэммера Дж.В.А. с Норденбергом Г.М. в книге «Конденсаторы постоянной и переменной ёмкости» (рис.2) находим места, посвящённые току утечки.

В справочнике «Конденсаторы» Горячевой Г.А. и Добромыслова Е.Р. говорится ещё и о том, что в процессе тренировки следует менять полярность подаваемого напряжения (рис.3).

Глядя на даты выхода в свет указанных источников, можно предположить, что эти рекомендации относятся к старым конденсаторам, сделанным в прошлом веке, а сейчас технологии производства уже, наверное, другие и всё не так критично, чтобы обращать на это внимание. Но, заглянув в справочные данные на достаточно современные алюминиевые электролитические конденсаторы EPCOS (рис.4), находим и там информацию о токе утечки, времени хранения, формовке (формировании) конденсаторов (см. приложение к тексту).

Итак, некоторая информация есть. Теперь вопрос в том, как построить эксперимент.

Так как дело это небыстрое, то можно использовать программу SpectraPLUS и звуковую карту с открытыми входами – это позволит делать замеры уровня постоянного напряжения на протяжении 1 часа и сохранять данные. Сама проверочная схема состоит из 3-х резисторов и показана на рисунке 5. Значение резистора R3 выбрано избыточно большим с целью уменьшения протекающего тока и «растягивания по времени» происходящих процессов. Конденсаторы подключаются зажимами «крокодил» — во-первых, это ускоряет замену, а во-вторых, если нет пайки, то нет и нагрева исследуемого элемента и не надо ждать, пока он остынет.

До установки конденсатора в схему, на выходе источника питания выставляется напряжение формовки, равное указанному на корпусе конденсатора напряжению. Затем источник питания выключается, конденсатор зажимается «крокодилами» и источник включается. В этот момент через конденсатор начинают бежать два тока – зарядный и ток утечки и на резисторе R2 «падает» напряжение, соответствующее сумме этих токов. Оно подаётся в звуковую карту и отображается в окне «Time Series» («Осциллограф») программы SpectraPLUS в виде некоторого уровня напряжения, меняющегося во времени. Максимальный подаваемый в карту уровень определяется отношением сопротивлений делителя R3/R2 и выбранным напряжением источника питания — при установке 16 В это будет около 0,23 В. По прошествии часа источник питания выключается и данные сохраняются в виде скриншотов графиков.

Наверное, стоит уточнить, что основная задача эксперимента заключается не в отформовке конденсаторов, а в наблюдении самого процесса и в нахождении отличий его протекания при установке разных конденсаторов (если, конечно, эти отличия существуют).

Кроме принесённого конденсатора, дома нашлось ещё немало других, когда-то стоявших в старых блоках питания компьютеров и материнских платах (рис.6). Их тоже можно «померить» — все они более двух-трёх лет не были под напряжением и если рекомендации по обязательной формовки после длительного бездействия считать верной, то на примере нескольких выбранных экземпляров мы после подачи напряжения на конденсатор должны будем увидеть изменения в токе утечки.

Эксперименты

Повторюсь, что время снятия графиков около 1 часа – это шкала «X» (около 3600 секунд). Указанные на шкале «Y» значения напряжений на самом деле следует делить в 10 раз — т.е. отметке «1,500 В» соответствует входное напряжение 150 мВ (это следует учитывать, если требуется посчитать протекающий через R2 ток).

Сначала были получены графики токов через конденсаторы на номинальное напряжение 16 В. Они показаны на рисунке 7. Сверху вниз – 3300×16 зелёный TEAPO, 3300×16 коричневый Su`scon, 2200×16 чёрный Fuhjyyu, 2200×16 чёрный VENT, 2200×16 чёрный SC (или CS), 1500×16 коричневый Elite. Видно, что вид графиков нельзя строго привязать к емкостному значению проверяемых конденсаторов – многое зависит от тока и попадаются экземпляры как с малым током утечки, так и с большим.

На рисунке 8 – токи конденсаторов на напряжение 10 В – 3900×10 зелёный TEAPO, 3300×10 чёрный OST IQ, 3300×10 коричневый LXJ, 2200×10 коричневый Su`scon. Привязать вид графиков к ёмкости тоже никак нельзя. Всплески у TEAPO – это результат процессов, происходящих в конденсаторе.

Читайте также:  Расчет магнитных полей кругового тока

Токи через конденсаторы на 6,3 В – на рисунке 9 (3300×6 синий OST, 2200×6 зелёный TEAPO, 2200×6 коричн Nichicon, 1500×6 зелёный SANYO, 1200×6 зелёный CHOYO, 1000×6 голубой TEAPO). Всплески у CHOYO – это тоже результат внутренних процессов и это как раз тот самый конденсатор, что был принесён знакомым радиолюбителем и, надо полагать, что именно эти процессы вызывают шумы и трески в усилителе.

Спустя некоторое время был проверен К50-35 4700х16 1994 года выпуска, пролежавший без дела более 20 лет. График оказался «неплохой» (рис.10), а дав постоять конденсатору под напряжением несколько часов, в результате получили график с достаточно малым током утечки (рис.11), что видно даже за первую минуту контроля.

Перед многочасовой формовки К50-35 на нём было проверено влияние температуры на ток утечки – конденсатор в течении 4 минут нагревался горячим воздухом из паяльного фена. На рисунке 12 это участок до вертикальной черты (с наведёнными помехами от нагревательного элемента, питающегося через симисторный регулятор). Затем, после прекращения обдува, ещё некоторое видно увеличение тока (связанное, скорее всего с внутренним прогревом конденсатора), а потом следует его уменьшение по мере охлаждения корпуса. Если усреднить шумы графика, то увеличение тока утечки можно оценить в 3-4 раза.

Также, следуя рекомендациям по формированию конденсаторов EPCOS, были сняты два измерения с бОльшим формовочным током (сопротивления резисторов R2 и R3 уменьшены до значений 15 Ом и 100 Ом соответственно). Графики (рис.13) получились разными по току и сходные с графиками, показанными выше, что говорит о принципиальной верности измерений, проведённых с малым током.

Про шумы

Во время снятия графиков напряжений одновременно проводился и анализ шумов этих напряжений. Так как применялась звуковая карта с большим собственным шумом и открытым входом, спектры получились не очень информативные (рис.14), но всё же показывающие понижение шумов на низких частотах по прошествии часовой формовки, даже если получить малый ток утечки не удавалось. Тёмные спектры сняты спустя 2 минуты после подачи напряжения, светлые спектры – в конце часа формовки.

Чтобы убедиться в том, что по уровню шумов можно оценивать «активность» тока утечки, у конденсатора К50-35 анализ спектра был проведён на менее шумящей карте (рис.15). Здесь тёмный спектр соответствует шуму конденсатора, прошедшего часовую формовку, а светлый – это шум после многочасового нахождения под напряжением.

Про ёмкость

Перед началом экспериментов ёмкости всех конденсаторов были измерены программой RLC-meter и все показания были близки к указанным на корпусах. После экспериментов замеры повторили и у большинства конденсаторов ёмкость имела примерно такое же значение, а у некоторых заметно подросла. Например, у К50-35 оказалась даже больше номинальной — 4740 мкФ (рис.16). Эквивалентное сопротивление, конечно, великовато, но учитывая, что конденсатору 25 лет, это можно считать нормальным, т.е. соответствующим возрасту, значением.

Подведение итогов

Итог простой — при более-менее ответственном подходе к конструированию радиоаппаратуры не следует пренебрегать формовкой (формированием/тренировкой) электролитических конденсаторов, как это и указано в технической литературе.

Также, наверное, следует внимательнее относится к аппаратуре, если она новая или долгое время простояла без работы. К примеру, если УНЧ полгода-год пролежал в кладовке или под столом, то следует дать ему постоять включенным некоторое время, прежде чем слушать. Возможно, что процесс формовки конденсаторов входит в то, что в аудиофильском мире называется словами «аппарат приигрывается».

Источник

Схемы на все случаи жизни

Измерение сопротивления изоляции производится методом измерения силы тока, проходящего через конденсатор, или методом саморазряда.

Определение сопротивления изоляции методом измерения силы тока, проходящего через конденсатор, должно производиться при напряжениях:

Номинальное напряжение испытываемого конденсатора Измерительное напряжение
Менее 100 В 10+1.5 В
От 100 до 500 В 100+15 В
500 В и выше 500+50 В

Отсчет величины сопротивления должен производиться через 60±5 сек. после установления на конденсаторе измерительного напряжения. Погрешность измерительного прибора не должна превышать ±20%.

При измерении сопротивления изоляции методом саморазряда заряженный от стабильного источника постоянного тока конденсатор до напряжения U1 выдерживают в нормальных условиях в течение 24 часов или другого времени, указанного в технических условиях. Величину сопротивления изоляции определяют в соответствии с выражением: Rиз=(0.434*t)/(C*lgU1-C*lgU2), где Rиз — сопротивление изоляции, Мом; U2 — величина остаточного после саморазряда напряжения, С — емкость конденсатора, мкф.

Измерение тока утечки производится при напряжении постоянного тока, равном номинальному.

Ток утечки и напряжение измеряют приборами класса точности не ниже 2,5. Отсчет величины тока утечки производят через 60±5 сек после подачи на конденсатор напряжения. Для некоторых типов конденсаторов перед измерением тока утечки техническими условиями предусмотрена выдержка конденсатора под номинальным напряжением в течение заданного времени.

Измерение собственной индуктивности конденсаторов производится резонансным методом (для индуктивностей более 0,2 мкГн) или методом определения периода затухающих колебаний разрядного устройства (для индуктивностей 0,002—0,2 мкГн). Собственную индуктивность при измерении резонансным методом (например, с помощью куметра) вычисляют по формуле: Lc=1/(4*π 2 *f 2 *C), где Lc — собственная индуктивность конденсатора, Гн; fo — резонансная частота, гц; С — емкость конденсатора, Ф.

При измерении индуктивности методом определения периода затухающих колебаний, заряженный конденсатор разряжают на катушку индуктивности и подсчитывают (например, при помощи осциллографа с послесвечением) средний период первых трех колебаний.

Собственную индуктивность конденсатора вычисляют по формуле: Lc=(25.3*T 2 /C)-L0, где Lc — собственная индуктивность конденсатора, мкГн; С — емкость конденсатора, мкф; Т — средний период, мксек; L0 — собственная индуктивность разрядного устройства, мкГн.

Источник

Схема для измерения тока утечки конденсатора

Текущее время: Пн апр 26, 2021 13:20:26

Часовой пояс: UTC + 3 часа

измеритель тока утечки конденсаторов

Страница 2 из 2 [ Сообщений: 40 ] На страницу Пред. 1 , 2

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

Последний раз редактировалось vova2010 Чт июн 16, 2011 21:11:22, всего редактировалось 1 раз.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector