Меню

Симисторное управление переменным током



Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Структурная схема симистора

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Симистор с креплением под радиатор

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),
Читайте также:  Ток тюменский образовательный канал школа 5

Источник

Что такое симистор и как с его помощью управлять нагрузкой

Для управления мощными нагрузками в цепях переменного тока часто используются электромагнитные реле. Контактные группы этих приборов служат дополнительным источником ненадежности из-за склонности к обгоранию, привариванию. Также недостатком выглядит возможность искрения при коммутации, что в некоторых случаях требует дополнительных мер безопасности. Поэтому предпочтительнее выглядят электронные ключи. Один из вариантов такого ключа выполняется на симисторах.

Внешний вид тиристора симметричного низкочастотного штыревого исполнения ТС122-25-12.

Что такое симистор и для чего нужен

В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:

  • отсутствие контактной группы;
  • отсутствие вращающихся и движущихся механических элементов;
  • небольшая масса и габариты;
  • длительный ресурс, независящий от количества циклов включения-выключения;
  • невысокая стоимость;
  • высокое быстродействие и бесшумная работа.

Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).

Структура триака.

На самом деле симистор не является в буквальном смысле двумя тринисторами, помещенными в один корпус.

Вольта-амперная характеристика симистора.

Вся система реализована на одном кристалле с различными зонами p- и n- проводимостей, и эта структура не симметрична (хотя вольт-амперная характеристика триака имеет симметрию относительно начала координат и представляет собой отзеркаленную ВАХ тринистора). И в этом состоит принципиальное отличие симистора от двух тринисторов, каждый из которых должен управляться положительным, по отношению к катоду, током.

У симистора по отношению к направлению пропускаемого тока анода и катода нет, но по отношению к управляющему электроду эти выводы неравнозначны. В литературе встречаются термины «условный катод» (МТ1, А1) и «условный анод» (МТ2, А2). Ими удобно пользоваться для описания работы триака.

При подаче полуволны любой полярности, прибор сначала заперт (красный участок ВАХ). Также, как и у тринистора, отпирание триака может произойти при превышении порогового уровня напряжения при любой полярности волны синусоиды (синий участок). В электронных ключах это явление (динисторный эффект), скорее, вредное. Его надо избегать при выборе режима работы. Открывание триака происходит подачей тока в управляющий электрод. Чем больше ток, тем раньше откроется ключ (красный штриховой участок). Этот ток создается приложением напряжения между управляющим электродом и условным катодом. Это напряжение должно быть или отрицательным, или совпадать по знаку с напряжением, приложенным между МТ1 и МТ2.

При определенном значении тока, симистор открывается сразу и ведет себя как обычный диод – вплоть до запирания (зеленый штриховой и сплошной участки). Совершенствование технологий ведет к уменьшению потреблённого тока для полного отпирания симистора. У современных модификаций он составляет до 60 мА и ниже. Но увлекаться снижением тока в реальной схеме не следует – это может привести к нестабильному открыванию триака.

Закрывание, как и у обычного тринистора, происходит при снижении тока до определенного предела (почти до нуля). В цепи переменного тока это происходит при очередном прохождении через ноль, после чего потребуется снова подать управляющий импульс. В цепях постоянного тока управляемое запирание симистора требует громоздких технических решений.

Особенности и ограничения

Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).

Опасность от превышения скорости нарастания тока при коммутации нагрузки связана с конечным временем отпирания симистора. В момент, когда триак ещё не закрылся, может оказаться, что к нему приложено большое напряжение и одновременно через силовой тракт протекает достаточно большой сквозной ток. Это может привести к выделению на приборе большой тепловой мощности, и кристалл может перегреться. Для устранения этого дефекта надо по возможности компенсировать реактивность потребителя последовательным включением в цепь реактивности примерно той же величины, но противоположного знака.

Также надо иметь в виду, что в открытом состоянии на симисторе падает около 1-2 В. Но так как область применения – мощные высоковольтные ключи, это свойство на практическое применение триаков не влияет. Потеря 1-2 вольт в 220-вольтовой цепи сравнима с погрешностью измерения напряжения.

Примеры использования

Основная область использования триака – ключ в цепях переменного тока. Принципиальных ограничений для применения симистора в качестве ключа постоянного тока нет, но и смысла в этом нет. В этом случае проще использовать более дешевый и распространенный тринистор.

Как и любой ключ, симистор включается в цепь последовательно с нагрузкой. Включением и выключением триака управляется подача напряжения на потребителя.

Схема включения симистора в качестве ключа в цепях переменного тока.

Также симистор можно применять в качестве регулятора напряжения на нагрузках, которым не важна форма напряжения (например, лампы накаливания или термоэлектронагреватели). В этом случае схема управления выглядит так.

Схема использования симистора, в качестве регулятора напряжения.

Здесь на резисторах R1, R2 и конденсаторе С1 организована фазовращающая цепь. Регулировкой сопротивления добиваются сдвига начала импульса относительно перехода сетевого напряжения через ноль. За формирование импульса отвечает динистор с напряжением открывания около 30 вольт. При достижении этого уровня он открывается и пропускает ток на управляющий электрод триака. Очевидно, что этот ток совпадает по направлению с током через силовой тракт симистора. Некоторые производители выпускают полупроводниковые приборы под названием Quadrac. У них в одном корпусе расположены симистор и динистор в цепи управляющего электрода.

Такая схема проста, но ток её потребления имеет резко несинусоидальную форму, при этом в питающей сети создаются помехи. Для их подавления надо использовать фильтры – хотя бы простейшие RC-цепочки.

Достоинства и недостатки

Достоинства симистора совпадают с плюсами тринистора, описанными выше. К ним надо лишь добавить возможность работы в цепях переменного тока и простое управление в таком режиме. Но имеются и минусы. В основном они касаются области применения, которая ограничена реактивной составляющей нагрузки. Предложенные выше меры защиты применить не всегда возможно. Также к недостаткам надо отнести:

  • повышенную чувствительность к шумам и помехам в цепи управляющего электрода, которая может вызвать ложные срабатывания;
  • необходимость отведения тепла от кристалла — обустройство радиаторов компенсирует небольшие габариты прибора, и для коммутации мощных нагрузок использование контакторов и реле становится предпочтительным;
  • лимитирование по рабочей частоте — оно не имеет значения при работе на промышленных частотах 50 или 100 Гц, но ограничивает применение в преобразователях напряжения.

Для грамотного применения симисторов необходимо знать не только принципы работы прибора, но и его недостатки, определяющие границы применения триаков. Только в этом случае разработанный прибор будет работать долго и надежно.

Что такое симистор и как с его помощью управлять нагрузкой

Как работает транзистор и где используется?

Что такое симистор и как с его помощью управлять нагрузкой

Что такое делитель напряжения и как его рассчитать?

Что такое симистор и как с его помощью управлять нагрузкой

Что такое биполярный транзистор и какие схемы включения существуют

Что такое симистор и как с его помощью управлять нагрузкой

Что такое диодный мост, принцип его работы и схема подключения

Что такое симистор и как с его помощью управлять нагрузкой

Принцип работы и основные характеристики стабилитрона

Что такое симистор и как с его помощью управлять нагрузкой

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Источник

Симистор принцип работы

Симисторы: принцип работы

Симистор — один из видов тиристоров, отличающийся от базового типа большим числом p-n переходови принципом работы.

Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Читайте также:  Контур охватывает два бесконечных проводника с одинаковыми токами

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током.

Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель.

Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания.

Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Источник

Что такое симистор, как он работает и для чего нужен

Симисторы — это полупроводниковые ключи, которые используют для коммутации цепей сетевого напряжения. Узнайте, как работает симистор и для чего он нужен в цепи.

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Что такое симистор, как он работает и для чего нужен

Внешний вид следующий:

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

Читайте также:  Как считать защиту по току

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Источник

Управление симистором: управление мощной нагрузкой на переменном токе

С целью коммутации нагрузок в цепях переменного тока удобно использовать симисторы, представляющие собой разновидность тиристора, однако отличающиеся от тиристора возможностью в открытом состоянии проводить ток обоих направлений.

Управление нагрузкой на переменном токе

Первые конструкции симисторов рассматривались уже в 1963 году, тогда например Мордовский научно-исследовательский электротехнический институт уже подал заявку на патент на симметричный тиристор (Патент SU 349356 A, Думаневич А.Н. и Евсеев Ю.А.), а General Electric занимались коммерческим внедрением того же изделия под названием «Triac» на западе.

Симистор

Тогда как у тиристора имеются четко определенные катод, анод и управляющий электрод, у симистора катод и анод в процессе его работы меняются местами, в зависимости от направления тока в текущий момент.

Безусловно, сигнал на управляющий электрод (затвор) симистора подается всегда относительно конкретного условного катода, но ток через открытый симистор может течь в любом направлении, и в этом смысле симистор в открытом состоянии можно рассматривать как два диода, включенные встречно-параллельно.

Симистор отличается пятислойной структурой полупроводника. Эквивалентно более точно его можно представить в виде двух триодных тиристоров, включённых встречно-параллельно, причем управляющий электрод, в отличие от тиристора, здесь только один.

Устройство симистора

Чтобы управлять мощной нагрузкой, симистор, подобно выключателю, включают в цепь нагрузки последовательно. И тогда: в закрытом состоянии симистор будет закрыт, нагрузка окажется обесточена, а при подаче отпирающего напряжения на управляющий электрод симистора, между основными электродами симистора появится проводимость — через нагрузку потечет ток. Причем ток может течь через открытый симистор в любом направлении, не то что у тиристора.

Для удержания симистора в открытом состоянии нет необходимости удерживать сигнал управления на управляющем электроде, достаточно подать сигнал, после чего ток установится и будет продолжать течь — в этом отличие симистора от транзистора. Когда же ток через симистор (через цепь нагрузки) станет ниже тока удержания (для переменного тока — в момент перехода тока через ноль), симистор закроется, и для его отпирания потребуется снова подать отпирающий сигнал на управляющий электрод.

Открытие и закрытие симистора

Полярность управляющего напряжения, подаваемого на управляющий электрод симистора, может либо быть отрицательной, либо совпадать с полярностью напряжения, приложенного к условному аноду. По этой причине популярно такое управление, когда сигнал управления подается прямо с условного анода через ограничительную цепь и выключатель, — просто задается ток достаточный для отпирания симистора.

Схема управления симистором

Из-за глубокой положительной обратной связи, например при индуктивной нагрузке, высокие скорости изменения напряжения или тока симистора могут привести к несвоевременному отпиранию симистора, и к большой мгновенной мощности, которая будет быстро рассеяна на кристалле, и окажется способна разрушить его. Для защиты от вредных выбросов, параллельно симистору в некоторых схемах ставят варистор, а для защиты от высоких значений dU/dt – применяют RC-снабберы.

Применение симистора вместо реле:

Симисторный регулятор мощности

Симисторные регуляторы мощности для управления различными мощными нагрузками в цепях переменного тока очень популярны сегодня. Такие регуляторы для ламп называются диммерами, а регуляторы для разных инструментов, для коллекторных двигателей — просто симисторными регуляторами. Схемы их довольно компактны и просты, ведь на управляющий электрод симистора достаточно периодически подавать 0,7 вольт при токе порядка 10 мА, что легко реализуется при помощи RC-цепочки, а в более сложном виде — на базе ШИМ-контроллера, на том же 555 таймере.

Источник