Меню

Сила взаимодействия проводника с током перпендикулярно плоскости чертежа



6.5. Взаимодействие двух проводников с током

Применим закон Ампера для вычисления силы взаимодействия двух длинных прямолинейных проводников с токами I1 и I2, находящихся на расстоянии d друг от друга (рис. 6.26).

Рис. 6.26. Силовое взаимодействие прямолинейных токов:
1 — параллельные токи; 2 — антипараллельные токи

Проводник с током I1 создает кольцевое магнитное поле, величина которого в месте нахождения второго проводника равна

Это поле направлено «от нас» ортогонально плоскости рисунка. Элемент второго проводника испытывает со стороны этого поля действие силы Ампера

Подставляя (6.23) в (6.24), получим

При параллельных токах сила F21 направлена к первому проводнику (притяжение), при антипараллельных — в обратную сторону (отталкивание).

Аналогично на элемент проводника 1 действует магнитное поле, создаваемое проводником с током I2 в точке пространства с элементом с силой F12. Рассуждая таким же образом, находим, что F12 = –F21, то есть в этом случае выполняется третий закон Ньютона.

Итак, сила взаимодействия двух прямолинейных бесконечно длинных параллельных проводников, рассчитанная на элемент длины проводника, пропорциональна произведению сил токов I1 и I2 протекающих в этих проводниках, и обратно пропорциональна расстоянию между ними. В электростатике по аналогичному закону взаимодействуют две длинные заряженные нити.

На рис. 6.27 представлен опыт, демонстрирующий притяжение параллельных токов и отталкивание антипараллельных. Для этого используются две алюминиевые ленты, подвешенные вертикально рядом друг с другом в слабо натянутом состоянии. При пропускании через них параллельных постоянных токов силой около 10 А ленты притягиваются. а при изменении направления одного из токов на противоположное — отталкиваются.

Рис. 6.27. Силовое взаимодействие длинных прямолинейных проводников с током

На основании формулы (6.25) устанавливается единица силы тока — ампер, являющаяся одной из основных единиц в СИ.

Ампер — это сила неизменяюшегося тока, который, протекая по двум длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м, вызывает между ними силу взаимодействия 2×10 –7 Н на каждый метр длины провода.

Пример. По двум тонким проводам, изогнутым в виде одинаковых колец радиусом R = 10 см, текут одинаковые токи I = 10 А в каждом. Плоскости колец параллельны, а центры лежат на ортогональной к ним прямой. Расстояние между центрами равно d = 1 мм. Найти силы взаимодействия колец.

Решение. В этой задаче не должно смущать, что мы знаем лишь закон взаимодействия длинных прямолинейных проводников. Поскольку расстояние между кольцами много меньше их радиуса, взаимодействующие элементы колец «не замечают» их кривизны. Поэтому сила взаимодействия дается выражением (6.25), куда вместо надо подставить длину окружности колец Получаем тогда

Источник

Учебно-методический комплекс по дисциплине (стр. 10 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11

Учебные дисциплины Учебно-методические комплексы Методы Методички

1) – вверх, – вниз 3) – вниз, – вверх

2) – вверх, – вверх 4) – вниз, – вниз

2. На рисунке указаны траектории заряженных частиц, имеющих одинаковую скорость и влетающих в однородное магнитное поле, перпендикулярное плоскости чертежа. При этом для частицы 1

3. Сила взаимодействия отрезка проводника с током, расположенного перпендикулярно в плоскости чертежа и находящегося в однородном магнитном поле

1) направлена вниз

2) направлена вправо

3) направлена вверх

4) направлена влево

4. Виток с магнитным моментом свободно установился в однородном магнитном поле с индукцией . Если виток повернуть на угол 30о вокруг оси, лежащей в плоскости витка, то на него будет действовать вращающий момент, равный

5. Небольшая рамка с током I помещена в неоднородное магнитное поле с индукцией . Плоскость рамки перпендикулярна плоскости чертежа, но НЕ перпендикулярна линиям индукции. Вектор магнитного момента направлен

1) вправо 4) вниз 7) вправо — вниз

2) влево 5) вправо – вверх 8) влево — вниз

3) вверх 6) влево – вверх

6. Дана система проводников с токами. Ток I 3 дает вклад в циркуляцию вектора вдоль контура L со знаком

3) не дает вклада

7. На рисунке представлена зависимость магнитного потока, пронизывающего некоторый замкнутый контур, от времени. В каком интервале ЭДС индукции в контуре положительна и по величине максимальна?

1) А 2) В 3) С 4) D 5) Е

8. Прямоугольная проволочная рамка расположена в одной плоскости с прямолинейным длинным проводником, по которому течет ток I . В рамке возникнет индукционный ток при поступательном перемещении рамки

C ) вдоль оси OZ , перпендикулярной плоскости XY

1) только А 2) только В 3) А и В 4) А и С 5) В и С 6) А и В, С

9. Магнитное поле создано двумя параллельными длинными проводниками с токами I 1 = I и I 2 =2 I , расположенными перпендикулярно плоскости чертежа. Значение магнитной индукции результирующего поля в т. А равно

Читайте также:  С помощью каких формул можно найти работу электрического тока

1) 2) 3) 4) 5) 0

10. Протон влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции и начинает двигаться по окружности. При увеличении кинетической энергии протона ( u с ) в 4 раза радиус окружности

1) уменьшится в 2 раза 3) увеличится в 2 раза 5) не изменится

2) уменьшится в 4 раза 4) увеличится в 4 раза

11. Поле создано длинным проводником с током I 1 . Если отрезок проводника с током I 2 лежит в одной плоскости с длинным проводником, то сила Ампера

1) направлена влево 3) направлена к нам

2) направлена вправо 4) направлена от нас

12. Плоская рамка площадью S с током I расположена в однородном магнитном поле с индукцией В так, что угол между плоскостью рамки и направлением поля составляет 30 ° . Рамку повернули вокруг оси, проходящей через т. О и перпендикулярной плоскости рисунка, по часовой стрелке на угол, равный 60 ° . Работа СИЛ ПОЛЯ по повороту рамки равна

13. Небольшая рамка с током I помещена в неоднородное магнитное поле с индукцией . Плоскость рамки перпендикулярна плоскости чертежа, но НЕ перпендикулярна линиям индукции. Под действием поля рамка

1) повернется против часовой стрелки и сместится вправо

2) повернется против часовой стрелки и сместится влево

3) повернется по часовой стрелке и сместится вправо

4) повернется по часовой стрелке и сместится влево

14. Дана система проводников с токами. Циркуляция вектора вдоль контура L равна

15. На рисунке представлена зависимость ЭДС индукции в контуре от времени. Магнитный поток сквозь площадку, ограниченную контуром, уменьшается со временем по линейному закону в интервале

1) А

16. Прямоугольная проволочная рамка расположена в одной плоскости с прямолинейным длинным проводником, по которому течет ток I . Индукционный ток в рамке будет направлен по часовой стрелке при ее поступательном перемещении в направлении

Источник

Сила взаимодействия проводника с током перпендикулярно плоскости чертежа

Взаимодействие проводников с током

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δ , достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока , длине Δ этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

.

Эта сила называется силой Ампера . Она достигает максимального по модулю значения max, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:

Это соотношение принято называть законом Ампера .

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно . Большой лабораторный электромагнит может создать поле не более .

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 1.16.2).

Если угол α между направлениями вектора и тока в проводнике отличен от , то для определения направления силы Ампера более удобно пользоваться правилом буравчика : воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 1.16.2). Правило буравчика часто называют правилом правого винта .

Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δ каждого из проводников, прямо пропорционален силам тока 1 и 2 в проводниках, длине отрезка Δ и обратно пропорционален расстоянию между ними:

В Международной системе единиц СИ коэффициент пропорциональности принято записывать в виде:

где μ – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

μ = 4π·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис. 1.16.3).

Рис. 1.16.4 поясняет закон взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную на каждый метр длины.

Источник

Контрольная работа по физике Электромагнитные явления 8 класс

Контрольная работа по физике Электромагнитные явления для учащихся 8 класса с ответами. Тест включает в себя 4 варианта, в каждом по 8 заданий.

1 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 1 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Магнитное поле возникает вокруг движущихся зарядов.
Б. Магнитное поле возникает вокруг неподвижных зарядов.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. На каком рисунке правильно изображена картина маг­нитных линий магнитного поля длинного проводника с постоянным током, направленным перпендикулярно плоскости чертежа на нас?

Контрольная работа по физике Электромагнитные явления 1 вариант 3 задание

4. При увеличении силы тока в катушке магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Южный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. Квадратная рамка расположена в магнитном поле в плоскости магнитных линий так, как показано на ри­сунке. Направление тока в рамке показано стрелками. Как направлена сила, действующая на сторону аb рам­ки со стороны магнитного поля?

Контрольная работа по физике Электромагнитные явления 1 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 1 вариант 6 задание Ответы

7. Установите соответствие между научными открытиями и именами учёных, которым эти открытия принадле­жат. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Впервые обнаружил взаимодействие проводника с током и магнитной стрелки
Б) Построил первый электромобиль
В) Первым объяснил природу намагниченности железа

1) А. Ампер
2) М. Фарадей
3) Х. Эрстед
4) В. Якоби
5) Д. Джоуль

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите плотность материала проводника, если его объём 0,4 см 3 , а магнитная сила равна 0,034 Н.

2 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 2 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Магнитное поле можно обнаружить по действию на движущийся заряд.
Б. Магнитное поле можно обнаружить по действию на неподвижный заряд.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. Что представляют собой магнитные линии магнитного поля тока?

1) Линии, исходящие от проводника и уходящие в бесконечность
2) Замкнутые кривые, охватывающие проводник
3) Кривые, расположенные около проводника
4) Линии, исходящие от проводника и заканчиваю­щиеся на другом проводнике

4. При внесении железного сердечника в катушку с током магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса показывает на географический Северный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. В однородном магнитном поле находится рамка, по которой начинает течь ток. Сила, действующая на нижнюю сторону рамки, направлена

Контрольная работа по физике Электромагнитные явления 2 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 2 вариант 6 задание Ответы

7. Установите соответствие между физическими явления­ми и техническими устройствами, в которых эти явле­ния используются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Читайте также:  Электрические токи в океане

А) Взаимодействие магнитной стрелки и постоянных магнитов
Б) Действие магнитного по­ля на проводник с током
В) Взаимодействие электромагнита с железными опилками

1) Электродвигатель
2) Компас
3) Звонок
4) Радиоприёмник
5) Магнитный сепаратор

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите объём проводника, если он изготовлен из латуни и магнитная сила равна 0,034 Н. Плотность ла­туни 8500 кг/м 3 .

3 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 3 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Вокруг электрических зарядов существует электри­ческое поле.
Б. Вокруг неподвижных зарядов существует магнитное поле.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. На каком рисунке правильно изображена картина маг­нитных линий магнитного поля длинного проводника с постоянным током, направленным перпендикулярно плоскости чертежа от нас?

Контрольная работа по физике Электромагнитные явления 2 вариант 3 задание

4. При уменьшении силы тока в катушке магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Северный полюс.
Б. Вблизи географического Северного полюса располагается северный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. Квадратная рамка расположена в магнитном поле в плоскости магнитных линий так, как показано на ри­сунке. Направление тока в рамке показано стрелками. Как направлена сила, действующая на сторону dc рам­ки со стороны магнитного поля?

Контрольная работа по физике Электромагнитные явления 3 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 3 вариант 6 задание Ответы

7. Установите соответствие между научными открытиями и учёными, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Впервые обнаружил взаимодействие проводника с током и магнитной стрелки
Б) Построил первый электродвигатель
В) Первым объяснил природу намагниченности железа

1) Х. Эрстед
2) Д. Джоуль
3) В. Якоби
4) М. Фарадей
5) А. Ампер

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите величину магнитной силы, если объём про­водника 0,4 см 3 , а плотность материала проводника 8500 кг/м 3 .

4 вариант

1. К магнитной стрелке (северный полюс затемнён, см. ри­сунок), которая может поворачиваться вокруг верти­кальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка

Контрольная работа по физике Электромагнитные явления 4 вариант 1 задание

1) повернётся на 180°
2) повернётся на 90° по часовой стрелке
3) повернётся на 90° против часовой стрелки
4) останется в прежнем положении

2. Какое утверждение верно?

А. Вокруг движущихся зарядов существует магнитное поле.
Б. Вокруг неподвижных зарядов существует электри­ческое поле.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

3. Что произойдёт с направлением магнитных линий маг­нитного поля прямолинейного тока при изменении на­правления тока?

1) Направление линий останется прежним
2) Направление линий изменится на противо­положное
3) Нельзя дать однозначного ответа
4) Зависит от величины тока

4. При удалении железного сердечника из катушки с то­ком магнитное поле

1) не изменяется
2) ослабевает
3) исчезает
4) усиливается

5. Какое утверждение верно?

А. Северный конец магнитной стрелки компаса пока­зывает на географический Южный полюс.
Б. Вблизи географического Северного полюса располагается южный магнитный полюс Земли.

1) А
2) Б
3) А и Б
4) Ни А, ни Б

6. В однородном магнитном поле находится рамка, по ко­торой начинает течь ток. Сила, дейст­вующая на верхнюю сторону рамки, направлена

Контрольная работа по физике Электромагнитные явления 4 вариант 6 задание
Контрольная работа по физике Электромагнитные явления 4 вариант 6 задание Ответы

7. Установите соответствие между физическими явления­ми и техническими устройствами, в которых эти явле­ния используются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

А) Взаимодействие магнитной стрелки и постоянных маг­нитов
Б) Действие магнит­ного поля на про­водник с током
В) Взаимодействие электромагнита с железными опил­ками

1) Радиоприёмник
2) Звонок
3) Электродвигатель
4) Магнитный сепаратор
5) Компас

8. Магнитная сила, действующая на горизонтально распо­ложенный проводник, уравновешивает силу тяжести. Определите плотность материала проводника, если его объём 0,2 см 3 , а магнитная сила равна 0,021 Н.

Ответы на контрольную работу по физике Электромагнитные явления
1 вариант
1-4
2-1
3-4
4-4
5-2
6-2
7-341
8. 8500 кг/м 3
2 вариант
1-1
2-1
3-2
4-4
5-3
6-4
7-215
8. 0,4 см 3
3 вариант
1-1
2-1
3-3
4-2
5-1
6-1
7-135
8. 0,034 Н
4 вариант
1-4
2-3
3-2
4-2
5-2
6-3
7-534
8. 10 500 кг/м 3

Источник