Меню

Сила тока в квадратном контуре



5.7. Контур с током в магнитном поле

Пусть контур с током помещен в магнитное поле, причем он может вращаться вокруг вертикальной оси OO’ (рис. 5.30-1). Силы Ампера, действующие на стороны контура длиной l, перпендикулярны к ним и к магнитному полю и поэтому направлены вертикально: они лишь деформируют контур, стремясь растянуть его. Стороны, имеющие длину a, перпендикулярны B, так что на каждую из них действует сила F = BIa. Эти силы стремятся повернуть контур таким образом, чтобы его плоскость стала ортогональной B.

Рис. 5.30. Силы, действующие на контур с током в магнитном поле:
1 — вид сбоку; 2 — вид сверху (масштаб увеличен)

Видео 5.7. Контур с током в однородном магнитном поле.

Момент пары сил (рис. 5.30-2) равен

где — плечо пары сил, а — угол между вектором B и стороной l.

Величина, численно равная произведению силы тока I, протекающего в контуре, на площадь контура S = al называется магнитным моментом Pm плоского контура стоком

Таким образом, мы можем записать момент пары сил в виде

Магнитный момент контура с током — векторная величина. Направление Рm совпадает с положительным направлением нормали к плоскости контура, которое определяется правилом винта: если рукоятка вращается по направлению тока в контуре, то поступательное движение винта показывает направление вектора Pm . Введем в формулу (15.36) угол a между векторами Pm и B. Справедливо соотношение

то есть момент сил , действующий на виток с током в однородном магнитном поле, равен векторному произведению магнитного момента витка на вектор индукции магнитного поля (рис. 5.31). При величина момента сил максимальна

Рис. 5.31. Силы, действующие на прямоугольный контур с током в магнитном поле.
Магнитное поле вертикально, а магнитный момент перпендикулярен плоскости контура

Опять-таки прозрачна аналогия с электростатикой: говоря об электрическом диполе, мы получили выражение для момента сил, действующих на него со стороны электрического поля в виде

где — электрический дипольный момент.

В системе СИ единицей измерения магнитного момента контура является ампер на квадратный метр (А · м 2 )

Видео 5.10. «Сознательные катушки»: отталкивание и притяжение параллельных токов и поворот магнитного момента по магнитному полю.

Пример. По тонкому проводу в виде кольца радиусом 30 см течет ток 100 A. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с магнитной индукцией 20 мТл (рис. 5.32). Найти силу, растягивающую кольцо.

Рис. 5.32. Силы, растягивающие кольцо с током в магнитном поле

Решение. Пусть магнитное поле направлено от нас за плоскость рис. 5.32 (показано крестиками), а ток идет по часовой стрелке. Выделим элемент длины dl, видный из центра под углом На этот элемент действует сила Ампера направленная по радиусу кольца. Кроме того, из-за растяжения кольца на концы элемента действуют силы натяжения F, которые и требуется найти в задаче. Проекция этих сила на радиальное направление равна

Приравнивая эту проекцию силе Ампера, находим

Источник

Физика

Рамка с током (рис. 9.16) обладает магнитным моментом .Рис. 9.16

Модуль магнитного момента контура с током равен произведению силы тока в контуре на площадь, ограниченную этим контуром, —

где I — сила тока в контуре; S — площадь, ограниченная этим контуром.

Направление вектора магнитного момента P → m связано с направлением тока правилом правого винта : поступательное движение правого винта совпадает с направлением магнитного момента при вращении рукоятки винта по направлению тока в контуре.

В Международной системе единиц магнитный момент контура с током измеряется в амперах, умноженных на квадратные метры (1 А ⋅ м 2 ).

Магнитное поле оказывает ориентирующее действие на помещенную в него рамку с током, т.е. в магнитном поле на рамку с током действует механический вращающий момент .

Величина механического вращающего момента , действующего на рамку с током, помещенную в магнитное поле, равна произведению

где P m — модуль магнитного момента рамки с током, P m = IS ; I — сила тока в рамке; S — площадь рамки; B — модуль вектора магнитной индукции поля; α — угол между векторами P → m и B → .

Направление механического вращающего момента M → определяется правилом правого винта.

В Международной системе единиц механический вращающий момент, действующий на контур с током в магнитном поле, измеряется в ньютонах, умноженных на метр, или в джоулях (1 Н ⋅ м = 1 Дж).

Величина механического вращающего момента зависит от взаимной ориентации рамки и поля, т.е. от взаимного расположения в пространстве векторов P → m и B → :

  • если плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента взаимно параллельны ( P → m || B → ), то механический вращающий момент на рамку с током не действует :
  • если плоскость рамки параллельна полю, т.е. векторы магнитной индукции и магнитного момента взаимно-перпендикулярны ( P → m ⊥ B → ), то механический вращающий момент, действующий на рамку с током, имеет максимальное значение :

где B — модуль вектора магнитной индукции поля; I — сила тока в рамке; S — площадь рамки.

Равновесие рамки с током в магнитном поле имеет место в том случае, когда плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента параллельны ( P → m | | B → ). В этом случае механический вращающий момент на рамку с током не действует: M = 0.

Равновесие рамки с током в магнитном поле является:

  • устойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен нулю (рис. 9.17): α = 0;Рис. 9.17
  • неустойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен 180° (рис. 9.18): α = 180°.Рис. 9.18

Пример 9. Замкнутый проводящий контур имеет форму квадрата. По контуру протекает электрический ток. Контур растягивают таким образом, что сторона квадрата увеличивается в 1,50 раза, а сила тока в нем остается неизменной. Во сколько раз возрастает при этом числовое значение магнитного момента контура?

Решение. Величина магнитного момента контура с током определяется произведением силы тока и площади, ограниченной этим контуром:

  • в первом случае (до деформации контура)

где I — сила тока в контуре; S 1 — площадь квадрата, ограниченная контуром, до растяжения, S 1 = a 2 ; a — сторона квадрата до деформации контура;

  • во втором случае (после деформации контура)

где S 2 — площадь, ограниченная контуром, после растяжения, S 2 = b 2 ; b — сторона квадрата после деформации контура.

Искомой величиной является отношение

P 2 P 1 = I S 2 I S 1 = S 2 S 1 = b 2 a 2 = ( b a ) 2 .

По условию задачи

Читайте также:  Что обозначает ток 200

следовательно, записанное отношение составляет

P 2 P 1 = ( 1,5 a a ) 2 = 2,25 .

Величина магнитного момента контура с током при заданной деформации возрастет в 2,25 раза.

Источник

Сила индукционного тока возникающего в замкнутом контуре прямо пропорциональна

Закон электромагнитной индукции

теория по физике 🧲 магнетизм

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.

Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна Δ Φ Δ t . . . Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как ε i .

Согласно закону Ома для замкнутой цепи:

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Определение знака ЭДС индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль → n к контуру образует правый винт с направлением обхода.

Пусть магнитная индукция → B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Φ > 0 и Δ Φ Δ t . . > 0 . Согласно правилу Ленца индукционный ток создает магнитный поток Φ ‘ 0 . Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что ε i и Δ Φ Δ t . . имеют разные знаки:

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10 –2 Ом за 2 с изменился на 1,2∙10 –2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

ЭДС индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью → v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции → B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

F L = | q | v B sin . α

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

A = F L l = | q | v B l sin . α

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника → v . Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

ε i = A | q | . . = v B l sin . α

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью → v в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна ε i и остается неизменной, если скорость движения → v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

Φ = B S cos . ( 90 ° − α ) = B S sin . α

угол 90 ° − α представляет собой угол между векторами → B и нормалью → n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

За время ∆t площадь контура меняется на Δ S = − l v Δ t . Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:

Δ Φ = − B v l Δ t sin . α

ε i = − Δ Φ Δ t . . = B v l sin . α

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору → B , то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

8 мТл = 8∙10 –3 Тл

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

Читайте также:  Мощность электрического тока в микроволновой печи 1

ε i = B v l sin . α = 8 · 10 − 3 · 4 · 0 , 5 · 1 = 16 · 10 − 3 ( В )

В заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Электромагнитная индукция.

1831 г. — М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, — появление, возникновение).

Электромагнитная индукция

Индукционный ток в катушке возникает при

перемещении постоянного магнита относительно катушки;

при перемещении электромагнита относительно катушки;

при перемещении сердечника относительно электромагнита, вставленного в катушку;

при регулировании тока в цепи электромагнита;

при замыкании и размыкании цепи

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции).

Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, назы­вается электромагнитной индукцией.

Или: явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией.

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции)

Закон электромагнитной индукции

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление): При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление). e не зависит от свойств контура: Закон электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Закон электромагнитной индукции

Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

Правило Ленца

Возникновение индукционного тока — следствие закона сохранения энергии!

В случае 1: При приближении магнита, увеличении тока, замыкании цепи: ; Магнитный поток Ф ­ → ΔФ>0 .Чтобы компенсировать это изменение (увеличение) внешнего поля, необходимо магнитное поле, направленное в сторону, противоположную внешнему полю: , где — т.н. индукционное магнитное поле.

В случае 2: при удалении магнита, уменьшении тока, размыкании цепи: . Магнитный поток ФΔФ . Чтобы компенсировать это изменение (уменьшение), необходимо магнитное поле, сонаправленное с внешним полем: .

Источником магнитного поля является ток. Поэтому:

Возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им поток магнитной индукции через площадь, ограниченную контуром, стремится компенсиро­вать то изменение потока магнитной индукции, которое вызывает данный ток (правило Ленца).

Ток в контуре имеет отрицательное направление (),еслипротивоположно (т.е. ΔΦ>0). Ток в контуре имеет положительное направление (), если совпа­дает с , (т.е. ΔΦ ).

Поэтому с учетом правила Ленца (знака) выражение для закона электромагнитной индукции записывается: .

Данная формула справедлива для СИ (коэффициент пропорциональности равен 1). В других системах единиц коэффициент другой.

Если контур (например, катушка) состоит из нескольких витков, то Если контур (например, катушка) состоит из нескольких витков,,

где n – количество витков. Все предыдущие формулы справедливы в случае линейного (равномерного) изменения магнитного потока. В произвольном случае закон записывается через производную: , где e – мгновенное значение ЭДС индукции.

Закон электромагнитной индукции.

М. Фарадеем было установлено, что сила индукционного тока пропорциональна скорости из­менения магнитного потока через поверхность, ограниченную контуром:

Закон электромагнитной индукции

Возникновение тока в замкнутом контуре означает наличие сторонних сил, работа которых по перемещению единичного заряда в контуре называется электродвижущей силой (ЭДС). Это означает, что при изменении потока через поверхность, ограниченную замкнутым контуром, в кон­туре возникает ЭДС ɛi которую называют ЭДС индукции. Согласно закону Ома для замкнутой цепи, . Следовательно, ЭДС индукции пропорциональна ΔФ/Δt, поскольку сопротивление R не зависит от изменения магнитного потока.

Закон электромагнитной индукции формулируется так:

ЭДС индукции ɛi в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Закон электромагнитной индукции

Применение правила Ленца к замкнутому контуру с положительной нормалью приводит к выражению:

Закон электромагнитной индукции

Формула ( ) выражает основной закон электромагнитной индук­ции .

Закон электромагнитной индукции

На рисунке внешнее магнитное поле индукции В возрастает со вре­менем и направлено вдоль положительной нормали к контуру с током. Индуцированный ток противоположен выбранному направлению обхода в соответствии с индуцированным магнитным полем В’.

Закон электромагнитной индукции

Описанные выше опыты свидетельствуют о том, что электромагнит­ная индукция — это возникновение электрического поля и электрического тока при изменении во времени магнитного поля или при движении проводника в магнитном поле. Эти два типа эффектов электромагнитной индукции отличаются физической природой процессов, отвечающих за их возникновение. Первый тип обусловлен наведением вихревого элект­рического поля переменным магнитным полем, второй — действием сил Лоренца на движущиеся заряды в стационарном магнитном поле. В обоих случаях выполняется основной закон индукции, выраженный формулой ().

Сила индукционного тока возникающего в замкнутом контуре прямо пропорциональна

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного поток через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Э лектрический ток , вызванный этой ЭДС, называется индукционным током.

Зако́н электромагни́тной инду́кции Фараде́я является основным законом электродинамики, касающимся принципов работы трансформаторов,дросселей, многих видов электродвигателей и генераторов. Закон гласит:

  • Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.

или другими словами:

  • Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.

\mathcal \over dt data-lazy-src=

Закон электромагнитной индукции

теория по физике 🧲 магнетизм

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.

Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна Δ Φ Δ t . . . Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

Читайте также:  Как создать телефоны в тока бока

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как ε i .

Согласно закону Ома для замкнутой цепи:

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Определение знака ЭДС индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль → n к контуру образует правый винт с направлением обхода.

Пусть магнитная индукция → B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Φ > 0 и Δ Φ Δ t . . > 0 . Согласно правилу Ленца индукционный ток создает магнитный поток Φ ‘ 0 . Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что ε i и Δ Φ Δ t . . имеют разные знаки:

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10 –2 Ом за 2 с изменился на 1,2∙10 –2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

ЭДС индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью → v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции → B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

F L = | q | v B sin . α

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

A = F L l = | q | v B l sin . α

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника → v . Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

ε i = A | q | . . = v B l sin . α

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью → v в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна ε i и остается неизменной, если скорость движения → v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

Φ = B S cos . ( 90 ° − α ) = B S sin . α

угол 90 ° − α представляет собой угол между векторами → B и нормалью → n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

За время ∆t площадь контура меняется на Δ S = − l v Δ t . Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:

Δ Φ = − B v l Δ t sin . α

ε i = − Δ Φ Δ t . . = B v l sin . α

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору → B , то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

8 мТл = 8∙10 –3 Тл

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

ε i = B v l sin . α = 8 · 10 − 3 · 4 · 0 , 5 · 1 = 16 · 10 − 3 ( В )

В заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Источник