Меню

Сигнал обратной связи по току



Классификация обратных связей в усилителях

рис. 2.9

Понятие «обратная связь» (ОС) широко используется как в технике, так и в других областях знаний. Обратной связью называют влияние некоторой выходной величины на некоторую входную, которая в свою очередь существенным образом влияет на выходную величину (определяет эту выходную величину). В усилителях, как правило, используется так называемая отрицательная обратная связь (ООС), которая и будет рассматриваться ниже. При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной, что входной сигнал уменьшается и соответственно приводит к уменьшению выходного сигнала.

Когда в 1928 г. была предпринята попытка запатентовать отрицательную обратную связь, то эксперты не увидели ее полезности и дали отрицательный ответ. И действительно, на первый взгляд, отрицательная обратная связь только уменьшает коэффициент усиления усилителя. Однако, как это часто бывает в технике вообще и в электронике в частности, один недостаток того или иного решения может значительно перевешиваться его достоинствами.

Отрицательная обратная связь, хотя и уменьшает коэффициент усиления, но исключительно благотворно влияет на многие параметры и характеристики усилителя. В частности, уменьшаются искажения сигнала, в значительно большем диапазоне частот коэффициент усиления оказывается не зависящим от частоты и т. д.

Различают следующих 4 вида обратных связей в усилителе (рис. 2.9):

  • последовательная по напряжению (а);
  • параллельная по напряжению (б);
  • последовательная по току (в);

рис. 2.9

  • параллельная по току (г).

На рис. 2.9 обозначено:

  • К — коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи;
  • β — коэффициент передачи цепи обратной связи.

Для определения вида обратной связи (ОС) нужно «закоротить» нагрузку. Если при этом сигнал обратной связи обращается в нуль, то это ОС по напряжению, если сигнал ОС не обращается в нуль — то это OC по току.

Источник

AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

  • Новости
  • Мои планы
  • For sale
  • FAQ
  • Задайте вопрос
  • Обо мне
  • Подписка на новости

Материалы раздела:

  • — Теория
    • Искажения первого периода синусоиды
    • Сравнительное прослушивание усилителей
    • Скин-эффект в аудио кабеле
    • Работа с осциллографом
    • Отрицательная обратная связь в усилителе
    • Насколько важно качество разводки печатных плат?
    • Регулирование выходного сопротивления усилителя посредством комбинированной отрицательной обратной связи
    • Биампинг в усилителе
    • Клиппинг (cliping) в усилителе
    • Применение корректора Линквица (Linkwitz transformator) для усиления басов
    • Компьютерное моделирование электронных схем
    • Распределение мощности в спектрах музыкальных сигналов
  • — Усилители
  • — Источники питания
  • — Акустические системы
  • — Другое

Отрицательная обратная связь в усилителе

Обратная связь – процесс передачи сигнала с выхода усилителя обратно на его вход, а также цепь, осуществляющая эту передачу.

Обратная связь (ОС) называется отрицательной (ООС, NFB), если выходной сигнал усилителя вычитается из входного. Для простоты будем рассматривать установившийся режим работы всей системы, причем усилитель работает в активном режиме (т.е. нормально усиливает сигнал без всяких там перегрузок).

Структурная схема усилителя, охваченного ООС, показана на рис.1.

Здесь некоторый «виртуальный» усилитель с коэффициентом усиления по напряжению Ku’ получается из исходного «реального» усилителя, имеющего коэффициент усиления Ku, и охваченного цепью ООС. На самом деле термин «виртуальный» не совсем корректен, но я буду пользоваться им, потому что с точки зрения внешних устройств, подключенных к системе в целом, она представляет собой усилитель с параметрами, отличающимися от параметров реального исходного усилителя без ООС.

С выхода реального усилителя напряжение передается на его вход через цепь ООС с коэффициентом передачи β:

Отрицательная обратная связь в усилителе

Обычно цепь ООС является пассивной, и β ≤ 1. Если цепь ООС усиливает, то это принципиально ничего не меняет, и все формулы в этом случае выводятся аналогично. Если β = 0, то это означает, что Uоос = 0 и обратная связь отсутствует. Обратите внимание, что совершенно безразлично, какую именно схему имеет цепь ООС. Главное – это насколько (во сколько раз) она ослабляет напряжение.

В данной системе присутствует два разных входных напряжения, и чтобы не путаться, я им дам различные наименования:

1. Напряжение, подаваемое на вход «виртуального» усилителя от источника сигнала. Его будем обозначать Uсигн.

2. Напряжение, приходящее на вход реального усилителя – Uвх.

Итак, выходное напряжение усилителя Uвых превращается цепью ООС в напряжение обратной связи Uоос и вычитается из входного напряжения. Результат – входное напряжение реального усилителя:

Отрицательная обратная связь в усилителе

Важный момент: Uоос всегда меньше Uсигн, поэтому Uвх всегда больше нуля.

Реальный усилитель усиливает свой входной сигнал в Ku раз:

Отрицательная обратная связь в усилителе

Преобразуем формулу (3):

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Но Uвых/Uсигн – это коэффициент усиления Ku’ «виртуального» усилителя, как он проявляется для внешнего мира, поэтому:

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Таким образом, мы получили формулу для вычисления коэффициента усиления для усилителя, охваченного ООС.

Теперь можно объяснить, почему Uоос Uсигн, рассмотрите самостоятельно. С точки зрения математики, исходное утверждение доказывается элементарно:

Отрицательная обратная связь в усилителе

Рассматривая физику процессов, следует помнить, что выходное напряжение усилителя появляется не само по себе, а является следствием его усиления и образуется из его входного напряжения: Uвых = Ku∙Uвх.

Итак, при охвате усилителя ООС, его коэффициент усиления уменьшается в (1+β∙Ku) раз. Но введение ООС изменяет и другие параметры усилителя.

1. Отрицательная обратная связь изменяет в (1+β∙Ku) раз входное и выходное сопротивления усилителя. При этом они могут как увеличиваться, так и уменьшаться в зависимости от способа соединения цепи ООС со входом и выходом усилителя – последовательно или параллельно. Способы подключения цепи ООС ко входу усилителя показаны на рис. 2, а к выходу усилителя – на рис. 3.

Эти формулы несложно вывести, но мы это делать не будем, а будем пользоваться готовыми. И объяснить их с точки зрения схемотехники также несложно. Например, на рис. 2а, напряжение на входе усилителя после замыкания цепи ООС возросло в (1+β∙Ku) раз: Uсигн = Uвх∙(1+β∙Ku), а входной ток остался прежним. Значит, по закону Ома (R=U/I) и сопротивление возросло в (1+β∙Ku) раз.

При последовательной по выходу ООС через ее цепь проходит выходной ток усилителя (ток нагрузки), поэтому ее часто называют обратной связью по току. Несколько примеров разных включений цепи ООС показано на рис. 4 и рис. 5. Цепь ООС является четырехполюсником, который обычно замыкается через «землю» цепи, явным образом это показано на рис. 4б.

2. Отрицательная обратная связь расширяет частотный диапазон усилителя. Нижняя fн и верхняя граничные частоты увеличиваются примерно в (1+β∙Ku), если усилитель имеет спад АЧХ 6 дБ/октаву. На самом деле, при охвате усилителя ООС могут происходить самые разные процессы, вплоть до превращения усилителя в генератор, но если все работает, то частотный диапазон обязательно расширяется. Это иллюстрируют АЧХ исходного усилителя (синяя) и усилителя, охваченного ООС (красная) на рис. 6. Там же показаны границы частотного диапазона без ООС и с ней. Напоминаю, что граничной частотой считается такая частота, где коэффициент усиления уменьшается в корень из двух (примерно 1,41) раз.

Отрицательная обратная связь в усилителе

Рис. 6. Расширение частотного диапазона при помощи ООС.

3. Введение ООС уменьшает нелинейные искажения усилителя (коэффициент гармоник) примерно в (1+β∙Ku) раз. Это происходит оттого, что ООС линеаризует систему и уменьшает ее ошибки. Изменяется и амплитудная характеристика усилителя (рис.7), на ней плавный переход к области насыщения превращается в довольно острый излом – ООС линеаризует этот участок и «пытается» вытянуть пропорциональное усиление даже там, где оно уже начинает уменьшаться.

На самом деле (1+β∙Ku) – это очень приблизительная оценка, поскольку для анализа нелинейных цепей используется уже совсем другая математика и там все очень сильно зависит от нелинейности усилителя. Но, тем не менее, искажения усилителя снижаются тем сильнее, чем глубже ООС, и в «простых» случаях формула (1+β∙Ku) работает достаточно хорошо.

Итак, мы видим, что охват усилителя отрицательной обратной связью изменяет ряд его основных параметров в (1+β∙Ku) раз. Проанализируем это выражение сначала чисто математически, не вникая пока в его физический смысл. Очевидно, что тут возможны три варианта:

а) β∙Ku > 1. Тут обратная связь очень глубока. Интересно, что для очень глубокой ООС формула (4) превращается вот во что:

Отрицательная обратная связь в усилителе

То есть, свойства усилителя (коэффициент усиления и АЧХ) определяются исключительно параметрами цепи ООС. При значении β∙Ku = 100, погрешность применения вместо формулы (4) упрощенной формулы (5) составляет 1%, такой погрешностью в большинстве случаев можно пренебречь. А в реальных схемах на операционных усилителях величина β∙Ku может достигать десятков тысяч, делая погрешность «упрощения формулы» практически незначимой.

Обратите внимание, что в формуле присутствует величина β∙Ku, как произведение. При этом одинаковое значение этого произведения можно получить как при большой величине Ku и маленьком β, так и при большом β и небольшом Ku, так что в данном смысле эти два параметра равнозначны. Термин «глубина обратной связи» часто ассоциируется с термином «коэффициент передачи цепи ООС», который обозначает величину β, а хорошо было бы ввести некоторое понятие, отражающее именно величину β∙Ku, как более важную для применения. Так сейчас и поступим, только не забывайте, что у нас β ≤ 1, так что понятие большое или маленькое β означает, например, такие значения: β = 0,1 или β = 0,0001.

Читайте также:  Резонанс токов в цепи переменного тока возможно при условии равенства проводимостей

Теперь давайте оценим степень влияния отрицательной обратной связи, исходя из физического смысла и электроники. Обратимся к рис. 1. Внутри усилителя присутствует два напряжения: Uвх и Uоос. Очевидно, что степень влияния ООС на усилитель зависит от соотношения этих напряжений. Если Uоос > Uвх, то главную роль во входном сигнале «реального» усилителя играет именно ООС (т.к. Uсигн = Uоос + Uвх и значит входной сигнал «виртуального» усилителя практически равен Uоос). С другой стороны, Uоос получается из напряжения Uвх, после усиления его усилителем и ослабления цепью ООС. Как оно получается? Мысленно разомкнем петлю обратной связи в точке А (разрывать цепь электрически можно не всегда – иногда от этого изменяется величина β), рис. 8.

Со стороны точки приложения сигнала ООС (это точка А), входной сигнал проходит два элемента – усилитель и цепь ООС. Общий коэффициент передачи последовательно соединенных устройств равен произведению их коэффициентов передачи: Ku∙β. Эта величина является коэффициентом усиления сигнала в петле обратной связи и называется петлевым усилением:

Отрицательная обратная связь в усилителе

С другой стороны:

Отрицательная обратная связь в усилителе

Это то самое взаимоотношение между напряжением ООС и входным напряжением «реального» усилителя, которое показывает степень влияния обратной связи. Кроме того, оно полностью соответствует выражению, которое мы вывели, математически анализируя формулу коэффициента усиления усилителя с замкнутой ООС. Так что глубину обратной связи характеризует именно петлевое усиление, и именно его имеют ввиду, когда говорят о глубине ООС. Хотя иногда под глубиной ООС подразумевают коэффициент передачи цепи обратной связи β – в случаях, когда Ku велико, и величину A = β∙Ku определяет в основном β.

Таким образом, именно петлевое усиление определяет свойства усилителя, которые он проявляет для внешнего мира. Именно на эту величину изменяются коэффициент усиления, входное и выходное сопротивления, граничные частоты и коэффициент гармоник.

В некоторых случаях вычисление петлевого усиления по формуле (6) может быть затруднено, тогда можно найти его из изменения коэффициента усиления усилителя при охвате его ООС:

Отрицательная обратная связь в усилителе

Последнее выражение достаточно точно, при А≥100. Проще всего определять таким способом петлевое усиление по логарифмической АЧХ усилителя (диаграмме Боде). На рис. 9 петлевое усиление А = 100 – 60 = 40 дБ, т.е. 100 раз. На самом деле А = 100 – 1 = 99 раз (39,9 дБ), но этим зачастую можно пренебречь, поэтому обычно в таких случаях говорят, что петлевое усиление равно ровно 40 дБ.

расширение диапазона частот

Рис. 9. Определение глубины ООС по АЧХ.

Пока что я ничего не говорил о свойствах и схеме самой цепи ООС. На самом деле, значение ее коэффициента передачи не обязательно являются константой. Эта цепь может быть частотнозависимой, тогда величина β меняется с частотой. Такое свойственно современным усилителям сигналов, когда для постоянного тока стремятся получить стопроцентную обратную связь (β=1), дающую максимальную стабильность режима работы усилителя, а для переменного тока глубину ООС выбирают такой, чтобы Ku’ для него (усиливаемого сигнала) был равен 10…1000 (β≈0,1…0,001). На самом деле при снижении частоты f ниже определенного значения, β начинает расти, доходя до единицы при f = 0, т.е. на постоянном токе. Но это все происходит ниже рабочего диапазона частот усилителя, поэтому в таких случаях глубину ООС принято оценивать двумя значениями: для постоянного тока, и для переменного тока (в рабочем диапазоне частот).

Если вернуться к формуле (5) для коэффициента усиления с замкнутой цепью ООС, то видно, что при достаточно большом значении петлевого усиления, свойства усилителя – это обратная величина от свойств цепи обратной связи. Такая ситуация лучше всего получается, если усилитель имеет очень большой коэффициент усиления без ООС – десятки-сотни тысяч и миллионы. Для работы в таких условиях созданы специальные микросхемы, называемые операционными усилителями (ОУ).

Понятие операционного усилителя появилось во второй половине ХХ века, когда получили широкое распространение аналоговые электронно-вычислительные машины (АВМ). Принцип их применения был основан на том, что подбиралась соответствующая электрическая цепь, описываемая теми же уравнениями, что и исследуемый неэлектрический процесс. Измеряя напряжения и токи в цепи, получали значения параметров исследуемого процесса. Для АВМ требовались блоки (функциональные узлы), выполняющие определенные математические операции: масштабирование (усиление), сложение, вычитание, интегрирование, дифференцирование и др. Довольно быстро пришли к выводу, что вместо того, чтобы разрабатывать каждый такой блок по-отдельности, проще получить их все из одинаковых усилителей, охваченных цепью ООС – так и появились ОУ. В настоящее время возможности цифровых вычислительных машин настолько велики, что моделирование (и управление) проще и точнее выполнять на них, и АВМ практически исчезли, а операционные усилители остались – они оказались очень удобными для применения, ведь из них можно получить практически любое устройство, всего лишь охватив их соответствующей ООС.

Так что получить, например, усилитель с нужной АЧХ достаточно просто, достаточно охватить его ООС, имеющей АЧХ «зеркальной» к требуемой (рис. 10).

Отрицательная обратная связь в усилителе

Рис. 10. Частотнозависимая ООС.

Схемы, реализующие данные АЧХ показаны на рис. 11.

Однако, конструируя схемы на операционных усилителях, следует помнить, что их огромный коэффициент усиления сохраняется только на очень низких частотах, а потом начинает падать со скоростью 20 дБ/декада. У большинства ОУ широкого применения спад АЧХ начинается с частоты порядка 10 Гц. Поэтому на частотах в десятки килогерц Ku может быть довольно мал, и при попытке получить на такой частоте большое усиление, глубина обратной связи (петлевое усиление) может оказаться слишком маленьким. При этом возрастет погрешность выполняемой функции, и повышаются нелинейные искажения. На рис. 12 показаны АЧХ усилителя (см. рис. 10 и рис. 11) без ООС и с ООС. На частотах 20 Гц, 1 кГц и 20 кГц глубина ООС (петлевое усиление) составляет 39 дБ, 24 дБ и 11 дБ соответственно. Вполне можно считать, что на частоте 20 кГц обратная связь имеет очень низкую глубину и практически не улучшает параметров усилителя.

Отрицательная обратная связь в усилителе

Рис. 12. Зависимость глубины ООС от частоты.

В заключение хотелось бы отметить, что это только элементарная теория обратной связи. Здесь, например, не учтен тот факт, что на переменном токе и коэффициент усиления «реального» усилителя, и коэффициент передачи цепи обратной связи обычно величины комплексные (петлевое усиление также является комплекным). Поэтому формула (4) верна только для модулей, а «на все случаи жизни» ее надо записывать так:

Отрицательная обратная связь в усилителе

При этом цепь ООС может изменять не только амплитуду сигнала, но и его фазу. Причем, если сдвиг фаз в петле ООС станет равным 180 градусам, то сигнал обратной связи будет не вычитаться из сигнала источника, а прибавляться к нему, и обратная связь из отрицательной превратится в положительную. Но это уже совсем другая история…

Главная цель этого материала – дать понимание основ обратной связи для дальнейшего углубленного ее изучения, тем более что физика и математика процессов показана совершенно правильно.

Готовлю продолжение о секретах применения отрицательной обратной связи.

Источник

ElectronicsBlog

Обучающие статьи по электронике

Обратная связь. Часть 1. Виды обратной связи

Как я уже говорил в одном из предыдущих постов я начал публиковать цикл статей об операционных усилителях. В прошлой статье я рассмотрел две основные схемы включения (инвертирующую и неинвертирующую) и некоторые схемы с применением операционных усилителей. В данной статье я буду рассматривать такую тему как обратная связь.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Зачем нужна обратная связь

В отличие от идеальных операционных усилителей (ОУ), имеющих равномерную АЧХ, то есть их коэффициент усиления не изменяется в зависимости от частоты входного сигнала, реальные ОУ имеют коэффициент усиления, который с ростом частоты усиливаемого сигнала уменьшается. Кроме того в ОУ с увеличением частоты сигнала происходит фазовый сдвиг между входным и выходным сигналом, вследствие этого на некоторых частотах усиливаемого сигнала происходит самовозбуждение схемы, то есть усилитель превращается в генератор. Это всё приводит к уменьшению качественных показателей электронных схем.

Читайте также:  Силовой трансформатор тока предназначен

Одним из наиболее распространённых и эффективных способов влияния на качественные параметры электронных схем с ОУ является применение обратной связи (ОС). Стоит отметить, что ОС широко применяется не только с ОУ, но и со многими другими электронными схемами, поэтому всё, что будет сказано про использование ОС с ОУ, относится и ко всем другим схемам с ОС.

Обратная связь определяется, как связь выходной цепи усилителя с его входной цепью, то есть когда усиленный сигнал с выхода усилителя передается на его вход через цепи, которые специально вводятся для этой цели (внешняя ОС) или через цепи, которые имеются в усилителе для выполнения других функций (внутренняя ОС). На рисунке ниже показана структурная схема усилителя с обратной связью

Структурная схема усилителя с обратной связью

Структурная схема усилителя с обратной связью.

На рисунке выше показана структурная схема усилителя с коэффициентом усиления К, который охвачен внешней цепью ОС с коэффициентом передачи β. Стрелки на схеме показывают направление прохождения сигнала. Таким образом, часть усиленного сигнала с выхода усилителя поступает через цепь ОС на вход усилителя, где складывается с внешним сигналом. В результате на входе усилителя возникает суммарный входной сигнал, который может быть больше или меньше внешнего сигнала.

Виды обратной связи

Если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается больше амплитуды внешнего сигнала, то данная цепь ОС называется положительной обратной связью (ПОС), а в случае если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается меньше амплитуды внешнего сигнала, то такая ОС называется отрицательной обратной связью (ООС).

Путём введения ОС удаётся достаточно сильно изменить процесс работы и свойства усилителя, которые определяются как свойством усилителя, так и свойством цепи ОС. На свойства цепи ОС существенное влияние оказывает её вид, то есть принцип её действия, зависящий в общем случае от полярности и фазы напряжения ОС, а также способа её соединения с входными и выходными цепями усилителя.

Различают четыре вида обратных связей:

  1. параллельная обратная связь по напряжению.
  2. параллельная обратная связь по току.
  3. последовательная обратная связь по напряжению.
  4. последовательная обратная связь по току.

Кроме того существует также смешанная обратная связь, но из-за сложности в изготовлении и настройке данный вид обратной связи большого распространения не получил.

Рассмотрим, как образуется каждый вид обратной связи.

Параллельная обратная связь по напряжению

Параллельная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выход цепи ОС – параллельно входу усилителя.

Структурная схема параллельной обратной связи по напряжению

Структурная схема параллельной обратной связи по напряжению.

Таким образом, входное напряжение цепи ОС UСВ равно выходному напряжению на нагрузке UН, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.

То есть данная ОС образуется при параллельном соединении входа и выхода усилителя через цепь ОС. Данный вид ОС характеризуется тем, что действие ОС уменьшается при уменьшении сопротивления нагрузки и источника сигнала, а при коротком замыкании входа или выхода действие данного вида ОС прекращается.

Параллельная обратная связь по току

Параллельная обратная связь по току образуется подключением входа цепи ОС параллельно резистору RT, а выход цепи ОС подключён параллельно входу усилителя.

Структурная схема параллельной обратной связи по току

Структурная схема параллельной обратной связи по току.

Данный вид ОС характеризуется следующими параметрами: входное напряжение ОС UOC пропорционально выходному току усилителя протекающего через резисторы RT и RH, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.

Действие данного вида ОС уменьшается при уменьшении сопротивления источника сигнала, входного сопротивления усилителя, а также при уменьшении сопротивления резистора RT или увеличении сопротивления нагрузки. То есть при коротком замыкании на входе схемы и отсутствии нагрузки данная ОС не действует.

Последовательная обратная связь по напряжению

Последовательная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выхода цепи ОС – последовательно с входом усилителя.

Структурная схема усилителя с последовательной цепью ОС по напряжению

Структурная схема усилителя с последовательной цепью ОС по напряжению.

В последовательной обратной связи по напряжению входное напряжение UСВ равно выходному напряжению на нагрузке UН. В тоже время сумма выходного напряжения цепи ОС UОС и напряжения источника сигнала UСИГ равна входному напряжению усилителя UВХ.

Таким образом, последовательная ОС по напряжению уменьшает своё действие при увеличении сопротивлению источника сигнала и уменьшении сопротивления нагрузки и выходного сопротивления усилителя. В случае, когда на выходе короткое замыкание, а также в режиме холостого хода на входе данный вид ОС перестаёт действовать.

Последовательная обратная связь по току

Последовательная обратная связь по току образуется путём подключения входа цепи ОС параллельно резистору RT, а выход цепи ОС подключен последовательно с источником сигнала и входом усилителя.

Структурная схема усилителя с последовательной обратной связью по току

Структурная схема усилителя с последовательной обратной связью по току.

Последовательная обратная связь по току имеет следующие характеристики. Входное напряжение цепи ОС UCB пропорционально выходному току усилителя ICB, который протекает через резисторы RH, RT и RВЫХ, а выходное напряжение цепи ОС UОС совместно с напряжением источника сигнала UСИГ составляет входное напряжение усилителя UВХ.

Из вышеизложенного следует, что при уменьшении сопротивлений RH, RT и RВЫХ, а также при увеличении входного сопротивления усилителя и источника сигнала действие последовательной ОС по току уменьшается. А при отсутствии нагрузки и холостом ходу на входе схемы данный вид ОС сводится к нулю.

Данная статья не может вместить все сведении об обратной связи, поэтому в ней рассмотрены только схемы различных видов обратных связей. О влиянии ОС на параметры усилительных устройств будет рассказано в следующей статье.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник

Сигнал обратной связи по току

Основы схемотехники

4. Обратная связь и её влияние на параметры усилителя.

4. Обратная связь и её влияние на параметры усилителя.

4.1. Основные понятия и виды обратной связи в усилителях.

Обратной связью называют связь между электрическими цепями, при которой часть энергии выходного сигнала передаётся на вход, т.е. из цепи с более высоком уровнем сигнала в цепи с более низким его уровнем. Обратная связь значительно влияет на свойства и характеристики усилителя, поэтому её часто вводят в усилитель (схему устройства) для изменения его свойств в нужном направление. Такая обратная связь называется внешней . Обратная связь может возникнуть и самопроизвольно, например, из-за физических особенностей усилительного элемента. Такая обратная связь называется внутренней обратной связью . Обратная связь возникающая из-за паразитных связей (емкостных, индуктивных и др.) называется паразитной .

Цепь обратной связи вместе с частью схемы усилителя, к которой она подключена, образует замкнутый контур, называемый петлёй обратной связи, рис. 4.1.

Рис. 4.1. Обратная связь в усилителе К – коэффициент усиления усилителя Β – коэффициент передачи цепи обратной связи.

При проектировании и конструировании радиоэлектронных схем принимают меры для ослабления или ликвидации внутренних и паразитных обратных связей. Если в усилителе имеется одна петля обратной связи, то связь называют однопетлёвой, если петель обратной связи несколько, связь называют многопетлёвой, рис. 4.2а и 4.2б.

Рис. 4.2. – Виды обратной связи

б) Двухпетлёвая с независимыми петлями.

Отметим, если в петле обратной связи, охватывающей весь усилитель, имеются петли обратной связи, охватывающие отдельные каскады или части усилителя, их называют местными петлями обратной связи.

Существуют различные способы снятия энергии с выхода схемы и подачи её на вход схемы рис. 4.3 и 4.4. Если энергию сигнала снимают с выхода схемы параллельно нагрузке, рис. 4.3а, связь называется обратной связью по напряжению (или параллельной по выходу), т.к. при этом напряжение обратной связи прямо пропорционально выходному напряжению усилителя U ВЫХ .

Рис. 4.3. – Способы снятия сигнала обратной связи:

а) обратной связи по напряжению (параллельная обратная связь);

б) обратной связи по току (последовательная обратная связь);

в) смешанная (комбинированная) обратная связь

Если же сигнал обратной связи снимают с выхода последовательно с нагрузкой, рис.4.3б, связь называют обратной связью по току (или последовательной по выходу). В этом случае напряжение обратной связи прямо пропорционально току I ВЫХ . В групповых усилителях многоканальных телекоммуникационных систем используется комбинация отмеченных выше способов, рис. 4.3а и 4.3б. Эта схема носит название комбинированной обратной связи по выходу, рис. 4.3в. Напряжение обратной связи в схеме 4.3в пропорционально двум составляющим: выходному напряжению U СВ.Н и выходному току U СВ.Т . Из рис. 4.3в легко видеть, что она представляет из себя мостовую схему.

Читайте также:  Направление движения электронов в цепи постоянного тока

По способу введения сигнала обратной связи во входную цепь усилителя различают:

  • последовательную обратную связь, рис. 4.4а
  • параллельную обратную связь, рис. 4.4б
  • комбинированную обратную связь, рис. 4.4в

Рис. 4.4 – Способы введения сигнала обратной связи

а) последовательная по входу обратная связь

б) параллельная по входу обратная связь

в) мостовая (комбинированная) по входу обратная связь

Из рис. 4.4в видно, что эта мостовая схема. Более подробные сведения можно найти в учебнике [1].

4.2. Влияние обратной связи на коэффициент усиления по напряжению.

Для оценки влияния обратной связи на коэффициент усиления по напряжению, рассмотрим последовательный способ введения сигнала во входную цепь, рис. 4.5:

Рис. 4.5. Влияние обратной связи на коэффициент усиления

Предположим, что входное сопротивление усиливается Z ВХ = ∞ (бесконечно велико). Как видно из рис. 4.5:

U ВХ.ИСТ – U ВХ.ОС + U СВ = 0; (4.1)

Здесь U ВХ.ОС – результирующий сигнал на входе усилителя. Из уравнения (4.1) следует:

U ВХ.ОС = U ВХ.ИСТ + U СВ ;

Выходное напряжение усилителя равно:

U ВЫХ.ОС = К · U ВХ.ОС ; (4.2)

Как видно из уравнения (4.2) К не изменяется; но по отношению к сигналу источника U ВХ.ИСТ , коэффициент усиления становится другим:

U ВЫХ.ОС = К ОС · U ВХ.ИСТ ; (4.3)

Левые части уравнений (4.2) и (4.3) равны, значит равны и правые. Тогда можно записать:

т.е. коэффициент усиления при введении обратной связи изменяется пропорционально изменению входного сигнала. Величину F называют возвратной разностью .

U ВХ.ИСТ = U ВХ.ОС – U СВ ;

И с учетом (4.4), получим после подстановки:

Комплексную величину Т называют возвратным отношением:

Таким образом, петлевой коэффициент усиления Т равен произведению коэффициентов передачи петли обратной связи.

Модуль величины | Т | показывает изменение сигнала при прохождении через цепь обратной связи. Если | F | > 1, то обратную связи называют отрицательной (ООС); если же | F | уменьшается :

а при ПОС – возрастает :

В групповых усилителях МЭС применяют комбинированную глубокую ООС (F>>1); тогда из уравнения (4.6) следует:

т.е. свойства усилителя с ООС определяются в основном цепью четырёхполюсника обратной связи. Это обстоятельство находит широкое применение на практике.

4.3. Влияние отрицательной обратной связи на нестабильность усиления.

При работе усилителя его коэффициент усиления может изменяться вследствие изменения параметров усилительных элементов и деталей схемы. Кроме того, значительное влияние на коэффициенты усиления оказывают: старение усилительных элементов, деталей схемы, изменение температуры, влажности и др. Эти причины называются дестабилизирующими факторами.

Количественно изменение коэффициента усиления под влиянием дестабилизирующих факторов оценивают величину без обратной связи:

где dK –дифференциал коэффициента усиления усилителя. Нестабильность усиления усилителя с обратной связью dq СВ определяется:

Подставляя в (4.10) выражение для К ОС и продифференцировав – получаем для ООС:

Следовательно, ООС стабилизирует коэффициент усиления усилителя, уменьшая его нестабильность. При глубокой ООС (F>>1)

4.4. Влияние ООС на нелинейные искажения и помехи.

В усилительных устройствах всегда возникают нелинейные искажения; кроме того, имеются помехи. Введение ООС уменьшает нелинейные искажения и помехи в глубину ООС раз [1]:

Следовательно, ООС уменьшает, а ПОС увеличивает помехи и искажения, возникающие в части усилителя, охваченный обратной связью.

В современных групповых усилителях требуется высокое затухание нелинейности (до 80 ÷ 90 дБ и выше). Достижение столь высоких значений невозможно без применения глубокой ООС.

4.5. Влияние ООС на выходное и входное сопротивления усилителя.

Обратная связь изменяет выходное и входное сопротивления цепи, к которой оно подключен. Рассмотрим общий случай, т.е. комбинированного подключения четырёхполюсника обратной связи вначале к выходной цепи усилителя, а затем – входной цепи.

Выходное сопротивление усилителя без обратной связи равно:

где U ВЫХ.ХХ – напряжение холостого хода, а I ВЫХ.КЗ – ток короткого замыкания.

Выходное сопротивление усилителя с обратной связью равно:

здесь F ВЫХ.КЗ глубина ООС на выходе усилителя в режиме короткого замыкания; F ВЫХ.ХХ – глубина ООС на выходе усилителя в режиме холостого хода.

Формула (4.11) называется формулой Блекмана для выходной цепи. Из неё следуют частные случаи:

1) В схеме отсутствует ООС по напряжению; тогда F ВЫХ.ХХ = 1, а Z ВЫХ.ОС равно:

Z ВЫХ.ОС = Z ВЫХ. · F ВЫХ.КЗ ;

Т.е при последовательном подключение четырёхполюсника обратной связи к выходу усилителя, его выходное сопротивление возрастает.

2) В схеме отсутствует ООС по току; тогда F ВЫХ.КЗ = 1, а Z ВЫХ.ОС равно: Z ВЫХ.ОС = ;

Т.е при параллельном подключение четырёхполюсника обратной связи к выходу усилителя, его выходное сопротивление уменьшается.

Подбирая F ВЫХ.ХХ и F ВЫХ.КЗ можно всегда согласовать Z ВЫХ. с нагрузкой. Это обстоятельство широко используется на практике.

Аналогично определяется входное сопротивление усилителя:

Формула (4.12) называется формулой Блекмана для входной цепи. Аналогично, последовательное подключении цепи обратной связи ко входу усилителя увеличивает сопротивление:

Z ВХ.ОС = Z ВХ. · F ВХ.КЗ ;

А при параллельном – уменьшает: ;

Регулировка глубины обратной связи в схемах групповых усилителей осуществляется элементами групповой схемы. Обычно для этих целей используется несимметричная дифференциальная схема [1].

4.6. Влияние ООС на амплитудно-частотную характеристику усилителя.

Обратная связь, изменяя коэффициент усиления усилителя, изменяет его частотную, фазовую и переходную характеристики. Применительно к ООС, которая обычно используется в усилителе, различают частотно-независимую и частотно-зависимую обратные связи.

В случае частотно-независимой ООС можно получить коэффициент частотных искажений в виде [1]:

где М – коэффициент частотных искажений усилителя без обратной связи. При этом полоса частот усилителя расширяется, а коэффициент усиления усилителя, как было отмечено выше, уменьшается в глубину ООС раз.

В другом случае, частотно-зависимой ООС, можно получить желаемую АЧХ (ФЧХ и переходную характеристику), если применить глубокую ООС и зависимость β(f). Это свойство широко используется в групповых усилителях, в конструировании усилителей и устройств с заданными параметрами. Например, в линейных усилителях систем передачи с частотным разделением каналов (ЧРК), требуется АЧХ подъёмом в области ВЧ, рис. 4.6:

Рис. 4.6. Влияние частотно-зависимой ООС на коэффициент усиления усилителя

Такую характеристику можно реализовать, если напряжение обратной связи будет уменьшаться с ростом частоты.

4.7. Устойчивость усилителей с обратной связью.

Усилители с ООС при определённых условиях могут самовозбуждаться, т.е. генерировать электрические колебания. Это свидетельствует о том, что усилитель прекращает свои функции по усилению электрических колебаний. При этом ООС превращается в ПОС. это происходит обычно за пределами рабочего диапазона частот из-за фазовых сдвигов в усилителе и в цепи обратной связи. Фаза как аргумент вектора петлевого коэффициента передачи Т изменяется:

Т = – β·К ·е j∆ φ βК ;

где величина ∆ φ βК определяется как сумма фазовых сдвигов в усилителе и в четырёхполюснике обратной связи:

∆ φ βК = ∆ φ К + ∆ φ β ; (4.13)

Уравнение (4.13) определяет дополнительный фазовый сдвиг к 180º между векторными источниками сигнала U ВХ.ИСТ и U ВХ.СВ ., т.е. (180º + ∆ φ βК ). Причиной изменения фазы являются реактивные элементы схемы, а на высоких частотах дополнительно инерционность работы усилительных элементов.

При ООС и ПОС величина Т является действительной:

F ООС = 1 + Т ООС > 1;

F ПОС = 1 – Т ПОС ПОС ПОС = 1;

и коэффициент усиления с обратной связью будет иметь бесконечно большое значение:

Практически усилитель возбуждается на низких и высоких частотах при:

Т ПОС ≥ 1 и φ βК = 180º + ∆ φ βК

Для оценки устойчивости усилителя с обратной связью используются различные критерии. Наиболее приемлемым оказался критерий Найквиста, который заключается в следующем: “Если точка с координатами (–1;0) лежит внутри годографа вектора β К для диапазона частот от 0 до ∞, то система неустойчива, рис. 4.7а; если же точка (–1;0) лежит вне указанного годографа, система устойчива, рис. 4.7б”

Рис. 4.7. Диаграммы Найквиста для неустойчивого а) и устойчивого усилителей б) с обратной связью.

Для повышения устойчивости усилителей разработаны методы, суть которых сводится к следующему.

  1. В усилителе с обратной связью следует охватить как можно меньше число каскадов, т.к. это уменьшает сдвиг фаз петли обратной связи
  2. Применять в охваченных обратной связью каскадах схемы межкаскадовой связи, дающие малые фазовые сдвиги.
  3. При проектировании усилителей задаются допустимой степенью приближения годографа Т к критической точке; эта степень получала название запаса устойчивости усилителя . Различают запас устойчивости по модулю “X

и запас устойчивости по фазе “Y”;

π Y = π – arg T при | T X | = 1

Для групповых усилителей, имеющих глубокую ООС принимают запасы устойчивости: по модулю 3n дБ, а по фазе 0,175 рад (10n град.), где n – число усилительных каскадов.

Источник