Меню

Сечение кабеля выберем по экономической плотности тока



Экономическая плотность тока, выбор сечения кабеля по экономической плотности тока

Что такое экономическая плотность тока Расходы, приходящиеся на эксплуатацию систем передачи электроэнергии подразделяются на несколько составляющих:

стоимость потерь в линиях и в трансформаторах;

текущие расходы на ремонт;

Стоимость потерь в линиях связана с двумя параметрами: с количеством ежегодных потерь и со стоимостью единицы потерянной электроэнергии. Количество потерь напрямую увязано с коэффициентом мощности нагрузки. Ведь при одной и той же активной потребляемой мощности, ток в линии оказывается обратно пропорционален коэффициенту мощности, следовательно мощность потерь будет обратно пропорциональна квадрату коэффициента мощности:

Потери энергии

Так, чтобы снизить активные потери в линиях, необходимо по возможности увеличить коэффициент мощности нагрузки. В частности, трансформаторы должны быть полностью загружены, а электродвигатели не должны работать без нагрузки. Часто для повышения коэффициента мощности трансформаторов и двигателей достаточно возле потребителя установить компенсирующие конденсаторы, установить систему компенсации реактивной мощности.

Что касается амортизационных отчислений, то они увязаны с изначальными капитальными затратами и со сроком службы линии. Здесь содержатся отчисления на улучшение с полным возмещением основных фондов, и на проведение капитального ремонта. Отчисления на амортизацию в процентах от изначальной стоимости линии определяются как проценты от первоначальной стоимости. И эта полная стоимость должна быть возвращена к концу ее срока службы. Амортизационные отчисления в процентах определяются следующей формулой:

Амортизационные расходы

Текущие расходы на ремонт

Как правило, эти расходы составляют минимальную долю от первоначальной стоимости линий. Что касается сельских сетей, то это всего несколько процентов от первоначальной стоимости.

Линейные обходчики, дежурные подстанций, инженеры-техники, административно-хозяйственные работники и т. д. — все нуждаются в зарплате. Так, к годовым эксплуатационным расходам прибавляется еще и эта составляющая. В итоге эксплуатационные расходы на передачу электроэнергии за год будут составлять:

Зарплата персонала

Экономическую эффективность можно оценить по расчетным приведенным затратам:

Расчет экономической эффективности

Роль сечения проводов

Еще на стадии проектирования необходимо добиться таких условий, чтобы данный показатель (расчетные приведенные затраты) оказался бы наименьшим. И здесь как раз очень важно оптимально выбрать сечение проводов.

Если сечение увеличить, то стоимость потерь электроэнергии снизится по гиперболе. Но стоимость непосредственно линии возрастет прямолинейно. То есть возрастут линейно и отчисления, зависящие от изначальных затрат.

Расходы связанные с обслуживанием и с зарплатами почти не связаны с сечением проводов, и их в расчет можно не брать. И в итоге, значение расчетных приведенных затрат без учета затрат на обслуживание, графически можно изобразить кривой, которая будет суммой затрат на потери электроэнергии и эксплуатационных расходов.

Минимальное значение на этой кривой как раз и будет соответствовать оптимальному, так называемому экономическому сечению провода линии.

Определение экономического сечения провода линии

Факт, что выбрано правильное экономическое сечение провода говорит о том, что линия спроектирована наиболее оптимально, и расчетные приведенные затраты в таких условиях будут наименьшими из возможных.

В процессе проектирования каждой линии необходимо вычислить экономическое сечение провода, рассмотрев различные варианты. Но на практике так поступают крайне редко. Минимум приведенного графика не является точным значением, график пологий, поэтому зачастую стараются выбрать проводник (кабели) наименьшего сечения, чтобы сэкономить.

Экономическая плотность тока для проводов из различных материалов

Согласно ПУЭ, экономическая плотность тока выбирается исходя из нескольких критериев: в зависимости от того, какой металл провода используется (медь или алюминий), какая будет изоляция (резина, пвх, комбинированная) и будет ли она вообще, сколько часов придется на максимум нагрузки, — выбирается экономическая плотность тока. Для этого есть таблица. А экономическое сечение, исходя из определенной плотности тока, можно легко найти по формуле:

Экономическое сечение

Так выбирают сечения для ЛЭП с напряжением от 35 до 220 кВ. Операции расчета несложны.

Для линии с несколькими разными нагрузками принимают в расчет тот факт, что на каждом участке линии должна быть своя экономическая плотность тока, и делают сечение либо одинаковым на всей линии, либо на каждом участке свое. Опять же для каждого участка используют формулу:

определение сечения для каждого участка

Потери мощности в линии с единственной нагрузкой определяются формулой:

Потери мощности в линии с единственной нагрузкой

Если линия имеет несколько нагрузок, а провод выбран всюду одного сечения, то потери мощности будут равны:

Потери мощности в линии с несколькими нагрузками

Для нахождения постоянного сечения для нескольких нагрузок, исходя из эквивалентного тока, сначала находят эквивалентный ток:

Эквивалентный ток

Затем вычисляют экономическое сечение, исходя из значения экономического тока:

Экономическое сечение

Проще всего возвести линию одного и того же сечения по всей длине, но тогда придется смириться с тем, что потери мощности и расходы материалов окажутся больше, чем при индивидуальном подборе сечений для каждого конкретного участка.

В сельских районах для воздушных линий с напряжением в 10 кВ, прибегают к одному из трех способов выбора сечения:

Исходя из экономической плотности тока;

По магистральному принципу построения сетей с напряжением 10 кВ, когда магистраль делают из сталеалюминиевых проводников сечением от 70 кв.мм, а к трансформаторным подстанциям 10/0,4 кВ — отпайки не менее AC35.

По принципу минимальных затрат, когда для каждого значения тока подбирается соответствующего сечения проводник, и приведенные затраты получаются минимальными из возможных.

По графикам зависимости общих приведенных затрат от расчетной мощности, изображенных для различных сечений на одном рисунке, выбирают оптимальный провод. Графики пересекаясь дают представление об ограниченном интервале экономических нагрузок.

Далее корректируют выбор в отношении механической прочности и с учетом нормируемых отклонений напряжения на стороне потребителей. Экономическая плотность тока для воздушных линий с напряжением 380 вольт в сельских электрических сетях традиционно должна укладываться в интервал от 0,5 до 0,7 А/кв.мм, и сечение провода выбирается исходя из этого требования. Далее проверяют допустимые потери по напряжению. Все участки линии делаются полнофазными, и сечение алюминиевых проводов не должно быть ниже 50 кв.мм.

Основные мероприятия по снижению потерь в электрических сетяхПотери мощности в сетях определяют с целью их снижения. Процесс снижения потерь — это оптимизация режима электрической сети. Их оптимизируют при эксплуатации и при проектировании сети. В условиях эксплуатации мероприятия по снижению потерь называются организационными (они не связаны с дополнительными капитальными вложениями), а при проектировании — в основном технические мероприятия, которые требуют дополнительных капитальных вложений. Организационные мероприятия по снижению потерь в электрических сетях .

Коэффициент мощности электроприводаКоэффициент мощности электропривода — отношение потребляемой электроприводом активной мощности к кажущейся. При синусоидальном напряжении и токе коэффициент мощности равен косинусу угла сдвига фаз между кривыми напряжения и тока (cos φ ). При постоянной активной мощности, потребляемой электроприводом, увеличение реактивной мощности и, соответственно, снижение коэффициента мощности вызывает увеличение полного тока в проводниках звеньев электрической системы. Это приводит к увеличению затрат черных и цветных металлов .

Передача электроэнергии по проводамЭлектрическая цепь состоит по меньшей мере из трех элементов: генератора, являющегося источником электрической энергии, приемника энергии и проводов, соединяющих генератор и приемник. Электрические станции зачастую расположены вдали от мест потребления электроэнергии. На десятки и даже сотни километров между электростанцией и местом потребления энергии протягивается воздушная линия передачи. Провода линии передачи укрепляются на столбах изоляторами, изготовленными из диэлектрика, чаще всего из фарфора .
Экономическая сущность компенсации реактивной мощностиДля технологических линий, отделений, цехов промышленных предприятий реактивные нагрузки, как правило, больше активных. Потребление реактивной мощности, превышающей экономичные значения, приводит к уменьшению пропускной способности всех элементов электрических сетей, дополнительным потерям напряжения и энергии. Следствия этого: необходимость увеличении мощности силовых трансформаторов, сечений токопроводящих элементов, повышение стоимости электроэнергии, снижение ее качества, уровня напряжения и производительности .

Методика определения потерь электроэнергииПотери, электроэнергии в линии, трансформаторе за учетный период (месяц, квартал, год) в производственных условиях с использованием результатов опытных замеров, рекомендуется определять по по формулам. Потери электроэнергии за выходные дни вычисляют отдельно. Характерные сутки учетного периода находят следующим образом: по записям в вахтенном журнале определяют расход электроэнергии за учетный период времени, по найденному за учетный период расходу находят среднесуточный расход электроэнергии, по вахтенному журналу находят сутки .

Коэффициенты для расчета электрических нагрузокЗадачей расчета электрических сетей является правильная оценка величин электрических нагрузок и выбор соответственно им таких наименьших из числа возможных сечений проводов, кабелей и шин, при которых были бы соблюдены нормированные условия в отношении: нагрева проводников, экономической плотности тока, электрической защиты отдельных участков сети, потерь напряжения в сети, механической прочности сети. Расчетными нагрузками для выбора сечений проводников являются: получасовой максимум — для выбора сечений по нагреву .

Потери энергии и кпд асинхронных двигателейВ электрическом двигателе при преобразовании одного вида энергии в другой часть энергии теряется в виде теплоты, рассеиваемой в различных частях двигателя. В электрических двигателях имеются потери энергии трех видов: потери в обмотках , потери в стали механические потери . Кроме того, имеются незначительные добавочные потери . Потери энергии в асинхронном двигателе рассмотрим при помощи его энергетической диаграммы .

Как определить экономически выгодные режимы использования трансформаторов двухтрансформаторных подстанцийВ статье рассматривается методика выбора экономичного режима эксплуатации двухтрансформаторной подстанции, включая в работу (в зависимости от нагрузки) один или два трансформатора. Число включенных трансформаторов определяется условием, обеспечивающим минимум потерь мощности в этих трансформаторах при работе их по заданному графику нагрузок .

Для подсчет потерь электроэнергии в двухобмоточном трансформаторе необходимы следующие исходные данные. Каталожные или паспортные: номинальная мощность трансформатора Sн, кВА, потери холостого хода трансформатора при номинальном напряжении dРхх, кВт, потери короткого замыкания трансформатора при номинальной нагрузке .

Важным направлением в экономии электроэнергии и рациональном ее использовании является повышение коэффициента мощности (cos ф). Коэффициент мощности — величина, показывающая, какую часть потребляемой полной мощности составляет активная. При одной и той же используемой мощности электроприемник с низким коэффициентом мощности потребляет больший ток, что вызывает увеличение нагрузки линий электропередач и трансформаторов. Это ведет к уменьшению.

Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а к. п. д. несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения. При повышении напряжения сверх номинального и номинальной частоте.

Читайте также:  Магнитный двигатель с переменным током

компенсация реактивной мощностиРеактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети. Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

Источник

Как рассчитать необходимое сечение провода по мощности нагрузки?

При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.

Для чего нужен расчет сечения кабеля

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Правильному подбору проводника посвящёна отдельная глава в ПУЭ: «Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны».

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( «Правила устройства электроустановок«). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно «Правилам устройства электроустановок«, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на ступень больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².

Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.

Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².

Выбираем по мощности

Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.

Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.

Таблица 1. Подбор сечения провода по мощности для кабеля с медными жилами

Сечение токопроводящей жилы, мм² Для кабеля с медными жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75.9
50 175 38.5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Таблица 2. Подбор сечения провода по мощности для кабеля с алюминиевыми жилами

Сечение токопроводящей жилы, мм² Для кабеля с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,2

Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.

В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:

  • высокая прочность;
  • упругость;
  • стойкость к окислению;
  • электропроводность больше, чем у алюминия.

Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.

Как рассчитать по току

Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ (ПУЭ-7 п.1.3.10-1.3.11 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ).

Таблица 3. Электрический ток для медных проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечение проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Для расчета алюминиевых проводов применяют таблицу.

Таблица 4. Электрический ток для алюминиевых проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечения проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.

Читайте также:  Векторная диаграмма токов конденсатор индуктивность

Расчет сечения кабеля по мощности и длине

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения — м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ — удельное сопротивление материала, l — длина проводника, S — площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

Открытая и закрытая прокладка проводов

В зависимости от размещения проводка делится на 2 вида:

  • закрытая;
  • открытая.

Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.

При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.

Как рассчитать необходимое сечение провода по мощности нагрузки?

Определение площади сечения проводника по его диаметру

Как рассчитать необходимое сечение провода по мощности нагрузки?

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Как рассчитать необходимое сечение провода по мощности нагрузки?

Какой провод лучше использовать для проводки в квартире и в частном деревянном доме?

Как рассчитать необходимое сечение провода по мощности нагрузки?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать необходимое сечение провода по мощности нагрузки?

Как перевести амперы в киловаты?

Как рассчитать необходимое сечение провода по мощности нагрузки?

Способы вычисления потребления электроэнергии бытовыми приборами

Источник

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны

Выбор сечения проводников по экономической плотности тока

1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение S, мм 2 , определяется из соотношения ¶

Формула экономически целесообразного соотношения сечения проводников по плотности тока

где I — расчетный ток в час максимума энергосистемы, А; Jэк — нормированное значение экономической плотности тока, А/мм², для заданных условий работы, выбираемое по табл. 1.3.36. ¶

Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т. е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается. ¶

1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов. ¶

1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количество линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36. ¶

Таблица 1.3.36. Экономическая плотность тока

Экономическая плотность тока, А/мм, при числе часов использования максимума нагрузки в год

более 1000 до 3000

более 3000 до 5000

Неизолированные провода и шины:

Кабели с бумажной и провода с резиновой и поливинилхлоридной изоляцией с жилами:

Кабели с резиновой и пластмассовой изоляцией с жилами:

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии. ¶

Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов. ¶

1.3.28. Проверке по экономической плотности тока не подлежат: ¶

  • сети промышленных предприятий и сооружений напряжением до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;
  • ответвления к отдельным электроприемникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий;
  • сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений;
  • проводники, идущие к резисторам, пусковым реостатам и т. п.;
  • сети временных сооружений, а также устройства со сроком службы 3-5 лет.

1.3.29. При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27): ¶

1. При максимуме нагрузки в ночное время экономическая плотность тока увеличивается на 40%. ¶

2. Для изолированных проводников сечением 16 мм 2 и менее экономическая плотность тока увеличивается на 40%. ¶

3. Для линий одинакового сечения с n ответвляющимися нагрузками экономическая плотность тока в начале линии может быть увеличена в ky раз, причем ky определяется из выражения ¶

Формула определения увеличения экономической плотности тока для линий одинакового сечения с n ответвляющимися нагрузками

4. При выборе сечений проводников для питания n однотипных, взаиморезервируемых электроприемников (например, насосов водоснабжения, преобразовательных агрегатов и т. д.), из которых m одновременно находятся в работе, экономическая плотность тока может быть увеличена против значений, приведенных в табл. 1.3.36, в kn раз, где kn равно: ¶

Формула определения увеличения экономической плотности тока для питания n однотипных взаиморезервируемых электроприемников, из которых m одновременно находятся в работе

1.3.30. Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 — 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предназначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах. ¶

1.3.31. Выбор экономических сечений проводов воздушных и жил кабельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соответствующее экономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение определяется по расчетной нагрузке этого ответвления. ¶

1.3.32. Для линий электропередачи напряжением 6-20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом применяемых средств регулирования напряжения и компенсации реактивной мощности. ¶

Источник

Метод экономической плотности тока для выбора сечений проводов

Nuvola apps important blue.svg Это незавершённая статья. Вы поможете проекту, исправив и дополнив её.

Содержание

  • 1 Выбор сечений по экономическому критерию
  • 2 Описание метода
  • 3 Область и условия применения метода экономической плотности тока
  • 4 Обоснованность использования опыта проектирования
  • 5 Достоинства и недостатки использования метода экономической плотности тока
  • 6 Пример выбора сечений методом экономической плотности тока
  • 7 Использованная литература

Выбор сечений по экономическому критерию

Классический подход к выбору сечений воздушных и кабельных линий электропередачи по экономическому критерию основан на использовании методов экономической плотности тока или экономических токовых интервалов сечений. Оба упомянутых метода разработаны на базе одного экономического критерия проектирования электрической сети — статических приведенных затрат. Представление экономического критерия в виде статических приведенных затрат не соответствует современным экономическим отношениям, поэтому приведенные в справочной литературе числовые характеристики экономической плотности тока и экономических интервалов сечений не могут быть использованы при проектировании в чистом виде и должны быть подвержены корректировке.

Корректировку числовых характеристик экономической плотности тока и экономических интервалов сечений в настоящее время в условиях инфляции провести практически невозможно, однако в случае с методом экономической плотности тока есть возможность воспользоваться опытом проектирования.

Описание метода

Алгоритм расчета

  1. Задание начальных приближений сечениям линий;
  2. Расчет установившегося режима;
  3. Выбор первой проектируемой линии;
    1. Расчет экономического сечения провода Fэк выбранной линии;
    2. Проверка по нагреву и допустимому уровню падения напряжения;
    3. Расчет установившегося режима с выбранными линиями;
  4. Выбор следующей линии с исключением уже выбранных ранее из множества выбираемых; повтор П. 3.1-3.3 для вновь выбранной линии с учетом выбранных линий, перерасчет установившегося режима;
  5. Повторение П. 3-4 до исчерпания всего множества проектируемых линий.

Критерии выбора линии:

  1. линия должна иметь наибольшую токовую загрузку;
  2. при равенстве токовой загрузки брать линии ближе к станции (источнику).

Область и условия применения метода экономической плотности тока

Экономическая плотность тока jэк в течение многих лет применялась для выбора сечений кабельных линий напряжением выше 1 кВ и воздушных линий 35–500 кВ. В настоящее время по экономической плотности тока выбирают сечения кабельных линий при Uном > 1 кВ, а также воздушных линий 6–20 кВ.

Читайте также:  Соответствие пускового тока аккумуляторов

Сечение проводов и кабелей, выбранное по экономической плотности тока, проверяют по нагреву, по допустимой потере напряжения DUдоп, по механической прочности.

Выбору по экономической плотности тока не подлежат:

  1. сети промышленных предприятий с напряжением до 1 кВ при числе часов максимальной мощности до 4000–5000 ч;
  2. ответвления к отдельным электроприемникам напряжением до 1000 В;
  3. осветительные сети промышленных предприятий, жилых и общественных зданий;
  4. сети временных сооружений, а также устройства со сроком службы 3–5 лет.

Сечение кабельных линий напряжением выше 1 кВ, выбранное по экономической плотности тока, проверяется по нагреву, по допустимым потерям и отклонениям напряжения, а также по термической стойкости при токах короткого замыкания.

Данные, приведенные в табл. 1, относятся к линиям с номинальным напряжением, не превышающим 220 кВ. Для электропередач 330 и 500 кВ экономическая плотность тока не нормируется. Сечение проводов таких линий выбирается на основе сопоставления приведенных затрат, которые определяются для нескольких вариантов конструкции расщепленного провода и его суммарного сечения.

Обоснованность использования опыта проектирования

Анализ реальных, уже реализованных или находящихся на этапе конкретного проектирования, проектов развития электрических сетей различных классов номинального напряжения показал малообоснованную тенденцию снижения экономической плотности тока относительно используемых ранее нормативных значений. Несмотря на сокращение сроков окупаемости объектов, что, согласно классической теории, должно способствовать росту экономической плотности тока, наблюдается ее убыль.

Следует отметить, что четкого обоснования причин снижения экономической плотности тока на вновь проектируемых линиях нет и оно, скорее всего, объясняется пожеланиями заказчиков проектов и снижением номенклатуры сечений проводов.

Таким образом, прогнозирование тенденции изменения экономической плотности тока на основании классической теории может оказаться ошибочным, поэтому появляется необходимость использования накопленного опыта проектирования электрических сетей.

С учетом изложенного в настоящее время наиболее перспективным является использование экономической плотности тока с выбором ближайшего большего к экономическому сечения воздушных и кабельных линий электропередачи. Это позволит учесть тенденцию к снижению значения экономической плотности тока по сравнению с нормативными значениями.

Выбор сечений проводников выполняется по экономической плотности тока в зависимости от вида проводника и времени использования максимальной нагрузки.

Достоинства и недостатки использования метода экономической плотности тока

Достоинства:

  1. Выбор сечений проводов по экономической плотности тока является прогрессивным методом, поскольку позволяет учитывать при выборе сечений капитальные вложения на сооружение линий и стоимость потерь электроэнергии в электрической сети.
  2. Простота выбора сечений.
  3. Выбор экономически целесообразных сечений проводов с помощью нормированных значений экономической плотности тока позволяет унифицировать подход к проектированию, избежать разнохарактерности в оценках экономической эффективности.
  1. Применение экономической плотности тока для выбора сечений воздушных линий может привести к ошибкам, поскольку метод следует из не вполне обоснованных допущений:
    • выражение для [math]j_ < \text<эк>>[/math] получено в предположении линейной зависимости капитальных вложений в линию от ее длины, которая нарушается при переходе к массовому строительству воздушных линий на унифицированных опорах.
    • вывод выражения для [math]j_ < \text<эк>>[/math] сделан с допущением о непрерывности шкалы сечений в выражении удельных приведенных затрат.
    • сделано предположение, что в формуле затрат нормальный максимальный ток в линии Imax неизменен.
  2. В классическом методе существует неоднозначность выбора сечения, следовательно, появляется необходимость учета дополнительных условий по снижению экономической плотности тока либо увеличение сечения; при отсутствии таких условий требуются дополнительные расчёты для сравнения двух вариантов стандартных сечений — большего и меньшего.
  3. Использование экономической плотности тока не позволяет в полной мере учесть все влияющие факторы в каждом конкретном случае, поскольку для коэффициентов, определяющих единые экономические плотности тока, могут приниматься лишь некоторые средние обобщенные значения.
  4. Использование нормированных экономических плотностей тока не позволяет принять во внимание характерную особенность современной практики строительства воздушных линий, заключающуюся в широком применении унифицированных типов опор.

Пример выбора сечений методом экономической плотности тока

[math]Р_ < \text<1>> = 15 [/math] МВт

[math]Р_ < \text<2>> = 35 [/math] МВт

[math]Р_ < \text<4>> = 30 [/math] МВт

[math]Р_ < \text<5>> = 15 [/math] МВт

[math]Р_ < \text<6>> = -10 [/math] МВт

[math]Р_ < \text<7>> = 20 [/math] МВт

Примечание: положительные значения мощности — нагрузка, отрицательные — генерация.

[math]\cos \varphi[/math] = 0.8

[math]U_ < \text<б>>[/math] = 110 кВ

[math]j_ < \text<эк>> = (0.9-1.2)[/math] [math] А / мм^2[/math] ; примем [math]j_ < \text<эк>> = 1.1[/math] [math] А / мм^2[/math]

Пусть [math]\alpha_ < \text<пот>> = 3 \% [/math] от [math] Р_< \text<н> <\Sigma>>[/math] ; [math]\alpha_ < \text<сн>> = 5 \% [/math] (уголь)

Возможные сечения для данного класса напряжения ( [math] 110 [/math] кВ): [math]70, 95, 120, 150, 185, 240[/math] [math] мм^2.[/math]

Расчет баланса мощности

[math]Р_ < \text<Г6>> = 10 [/math] МВт

[math]Р_ < \text<2>> = 35 [/math] МВт

[math]Р_ < \text<4>> = 30 [/math] МВт

[math]Р_ < \text<5>> = 15 [/math] МВт

[math]Р_ < \text<7>> = 20 [/math] МВт

[math] Р_< \text<н> <\Sigma>> = Р_ < \text<1>> + Р_ < \text<2>> + Р_ < \text<4>> + Р_ < \text<5>> + Р_ < \text<7>> = 15 + 35 + 30 + 15 + 20 = 115 [/math] МВт

[math] \triangle Р = \frac <\alpha_< \text<пот>>> <100>\cdot Р_< \text<н> <\Sigma>> = \frac<3> <100>\cdot 115 = 3.45 [/math] МВт

Итого: [math]Р_ < \text<б>> = Р_< \text<н> <\Sigma>> + \triangle Р + Р_ < \text<сн>> — Р_ < \text<3>> — Р_ < \text<6>> = 115 + 3.45 + 2.5 — 40 — 10 = 70.95 [/math] МВт

  • Сеть дефицитная [math] \Longrightarrow [/math] дефицит покрывается за счет базисного узла
  • ЛЭП должны тяготеть (стремиться) в сторону базисного узла, т. е. чем ближе к базисному узлу, тем мощнее нагрузка на ЛЭП, [math] \Longrightarrow [/math] расчет нужно вести от базисного узла [math] Б [/math] .

Разработка вариантов развития

Рассчитаем схему I. Другие возможные варианты схем будут рассчитываться аналогично.

На данной схеме (схема I) представлено два варианта связи ПС с базисным узлом [math] Б [/math] : радиалная сеть (узлы 5, 6, 7 относительно узла [math] Б [/math] ) и кольцевая сеть (узлы 1, 2, 3 относительно узла [math] Б [/math] ) с ответвленным узлом 4.

Расчет режимов

  • примем на начальном этапе расчетов, что все ЛЭП выполнены проводом марки АС-240 с сечением [math] 240[/math] [math] мм^2[/math] .
  • предполагаемое количество цепей для участков:
    • [math] Б-5 [/math] , [math] 5-6 [/math] , [math] 5-7 [/math] , [math] 1-4 [/math] — 2 цепи (обеспечение надежности подключения);
    • [math] Б-1 [/math] , [math] 3-Б [/math] — 2 цепи (обеспечение надежности подключения внутри кольца из-за большой мощности, протекающей от базисного узла [math] Б [/math] );
    • [math] 1-3 [/math] , [math] 2-3 [/math] — 1 цепь (в кольце обеспечена надежность подключения наличием двух независимых путей).
  • напряжения во всех узлах примем равным напряжению узла [math] Б [/math] , [math] U_ < \text> = V_ < \text<б>> = 110 [/math] кВ, [math] i = \overline <1,8>[/math]

Так как ЛЭП на начальном этапе расчетов соответствует марке АС-240, то [math] Z_ < \text<0>>^ < \text<АС-240>> = 0.118 + j \cdot 0.405 [/math] Ом/км; [math]b_ < \text<0>>^ < \text<АС-240>> = 2.808 \cdot 10^ < \text<-6>> [/math] См/км.

Мощности узлов:

[math]Q_ < \text> = \frac <Р_< \text>> <\cos \varphi>\cdot \sin \varphi[/math] ; [math] \dot S_ < \text> = Р_ < \text<1>> + j \cdot Q_ < \text<1>>[/math] , [math] i = \overline <1,8>[/math]

[math]Q_ < \text<1>> = \frac <Р_< \text<1>>> <\cos \varphi>\cdot \sin \varphi = \frac<15> <0.8>\cdot 0.6 = 9[/math] Мвар; [math] \dot S_ < \text<1>> = Р_ < \text<1>> + j \cdot Q_ < \text<1>> = 15 + j \cdot 9[/math] МВА;

[math]Q_ < \text<2>> = \frac <Р_< \text<2>>> <\cos \varphi>\cdot \sin \varphi = \frac<35> <0.8>\cdot 0.6 = 21[/math] Мвар; [math] \dot S_ < \text<2>> = Р_ < \text<2>> + j \cdot Q_ < \text<2>> = 35 + j \cdot 21[/math] МВА;

[math]Q_ < \text<3>> = \frac <Р_< \text<3>>> <\cos \varphi>\cdot \sin \varphi = \frac<-40> <0.8>\cdot 0.6 = -24[/math] Мвар; [math] \dot S_ < \text<3>> = Р_ < \text<3>> + j \cdot Q_ < \text<3>> = -40 — j \cdot 24[/math] МВА;

[math]Q_ < \text<4>> = \frac <Р_< \text<4>>> <\cos \varphi>\cdot \sin \varphi = \frac<30> <0.8>\cdot 0.6 = 18[/math] Мвар; [math] \dot S_ < \text<4>> = Р_ < \text<4>> + j \cdot Q_ < \text<4>> = 30 + j \cdot 18[/math] МВА;

[math]Q_ < \text<5>> = \frac <Р_< \text<5>>> <\cos \varphi>\cdot \sin \varphi = \frac<15> <0.8>\cdot 0.6 = 9[/math] Мвар; [math] \dot S_ < \text<5>> = Р_ < \text<5>> + j \cdot Q_ < \text<5>> = 15 + j \cdot 9[/math] МВА;

[math]Q_ < \text<6>> = \frac <Р_< \text<6>>> <\cos \varphi>\cdot \sin \varphi = \frac<-10> <0.8>\cdot 0.6 = -6[/math] Мвар; [math] \dot S_ < \text<6>> = Р_ < \text<6>> + j \cdot Q_ < \text<6>> = -10 — j \cdot 6[/math] МВА;

[math]Q_ < \text<7>> = \frac <Р_< \text<7>>> <\cos \varphi>\cdot \sin \varphi = \frac<20> <0.8>\cdot 0.6 = 12[/math] Мвар; [math] \dot S_ < \text<7>> = Р_ < \text<7>> + j \cdot Q_ < \text<7>> = 20 + j \cdot 12[/math] МВА.

Разнесем поперечные сопротивления линий в виде шунтов по узлам:

Примечание: мощность шунта рассчитана на 1 линию.

Полная мощность узлов:

[math] \dot S_< \text<1> <\Sigma>> = \dot S_ < \text<1>> + 5 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (15 + j \cdot 9) + 5 \cdot (- j \cdot 0.034) = 15 + j \cdot 8.830 [/math] Мвар;

[math] \dot S_< \text<2> <\Sigma>> = \dot S_ < \text<2>> + 3 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (35 + j \cdot 21) + 3 \cdot (- j \cdot 0.034) = 35 + j \cdot 20.898 [/math] Мвар;

[math] \dot S_< \text<3> <\Sigma>> = \dot S_ < \text<3>> + 2 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (-40 — j \cdot 24) + 2 \cdot (- j \cdot 0.034) = -40 — j \cdot 24.068 [/math] Мвар;

[math] \dot S_< \text<4> <\Sigma>> = \dot S_ < \text<4>> + 2 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (30 + j \cdot 18) + 2 \cdot (- j \cdot 0.034) = 30 + j \cdot 17.932 [/math] Мвар;

[math] \dot S_< \text<5> <\Sigma>> = \dot S_ < \text<5>> + 6 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (15 + j \cdot 9) + 6 \cdot (- j \cdot 0.034) = 15 + j \cdot 8.796 [/math] Мвар;

[math] \dot S_< \text<6> <\Sigma>> = \dot S_ < \text<6>> + 2 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (-10 — j \cdot 6) + 2 \cdot (- j \cdot 0.034) = -10 — j \cdot 6.068 [/math] Мвар;

[math] \dot S_< \text<7> <\Sigma>> = \dot S_ < \text<7>> + 2 \cdot \dot S_ < \text<ш>>^ < \text<АС-240>> = (20 + j \cdot 12) + 2 \cdot (- j \cdot 0.034) = 20 + j \cdot 11.932 [/math] Мвар.

Источник