Меню

Самый мощный электродвигатель постоянного тока



Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.
Читайте также:  Трансформаторы тока иэк габариты

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

В России создан самый лучший электродвигатель на планете

Инновации есть квинтэссенция научного труда, помноженная на упрямство и веру в лучшее. Не старайтесь искать эту цитату в интернете – это чистая импровизация. На самом деле в цитате не хватает нескольких переменных. Например, лучшая жизнь себе и своей семье, а еще щепотка наивности и несколько грамм альтруизма. Ну и не забывайте про распилы, без них инновации могли бы достичь своей цели. Представьте, что бы было! В каждом доме стоит мощный отечественный компьютер. У каждого человека свой просторный дом, к дому ведет хорошая ровная дорожка, по которой можно прокатиться на своем электромобиле, тоже, к слову, отечественной сборки. Ужас, не правда ли? Кстати, на электромобилях мы с вами и остановимся.

реклама

Итак, цикл материалов (1, 2, 3, 4, 5, 6), где мы простыми словами рассказываем об отечественных достижениях и инновациях сегодня пополнится еще одной новостью. Недавно мы вам рассказывали про электромобиль, который будет проезжать на одном заряде 1000 километров и заряжаться за 3 минуты, но который до сих пор не имеет даже примитивной картинки. Так вот, у другой команды разработчиков есть для нас неплохой материал.

Ребята из компании «Электротранспортные технологии» показали картинку (что уже круче, чем суперавтомобиль без картинки), на которой запечатлен уникальный мотор, технические характеристики которого значительно лучше всего, что представлено на зарубежном рынке. При этом, данная разработка настолько уникальна, что вовсе не имеет аналогов. Как пишут ребята из компании «Электротранспортные технологии», двигатель «ДВИТ-40» вместо постоянных магнитов использует медную катушку, создавая таким нехитрым образом магнитное поле. Вот так!

реклама

Как заявляют авторы картинки, новый электромотор не боится перегрева и прекрасно работает даже при температуре 150 0 С. Ну и, ко всему прочему, разработчики предполагают, что электродвигатель может позволить вашему авто проехать на 15% дальше аналогов. А может и не позволит. Тут как повезет. Но самой любопытной информацией поделился Илья Федичев, занимающий пост технического директора компании «Электротранспортные технологии»: «Наш мотор, образно говоря, состоит из железа, меди и математики».

«Что день грядущий нам готовит?» — спросил бы поэт, но кто бы ему ответил? Ждем реализации картинки в железе и меди.

Если у вас есть замечания или дополнения — обязательно пишите их в комментариях. И не забывайте, что комментарии существует для того, чтобы вы в них писали!

реклама

Мое отношение к комментариям читайте здесь.

Источник

Электрический двигатель: виды и характеристики

Одним из наиболее эффективных способов преобразования природных энергий является вращение. Используя его с незапамятных времен, Человечество сумело поставить себе на службу, например, ветер и текущую воду. В середине XIX века, когда был изобретен первый электродвигатель постоянного тока, пришел черед и электричества. О том, что такое электродвигатель и как он работает, пойдет речь в этой статье.

Физическая сущность электродвигателя

Это машина, вал которой вращается в результате взаимодействия постоянных или переменных магнитных полей. Классификация электродвигателей напрямую зависит от типа тока, который течет по его обмоткам. Они бывают:

  • постоянными;
  • переменными.

Это одно из наиболее эффективных устройств среди всех, которые были созданы за тысячелетия развития цивилизации: КПД электродвигателя достигает 99 процентов. Обладает он и еще одним, чрезвычайно полезным свойством: из потребителя электроэнергии может стать ее производителем.

Двигатели постоянного тока

Майкл Фарадей, английский физик, официальный изобретатель электрической машины постоянного тока, нашел практическое применение эффекту отталкивания одноименных полюсов магнита, который известен даже младшим школьникам. Он выяснил, что если согнутый в виде рамки проводник, по которому течет постоянный ток, поместить магнитное поле, то он стремится повернуться так, чтобы одноименные полюса совпали.

Диск Фарадея

Вообще-то, гениальный англичанин создавал негальванический источник постоянного тока. Он состоял из неподвижного магнита U-образной формы, между полюсами которого находился край бронзового диска, вращаемого вручную. К поверхности диска прислонен проводник – так, чтобы он мог скользить по ней. Его подключили к плюсовой клемме. Во время вращения диска между плюсовой клеммой и землей измерялась ЭДС величиной в десяток вольт. Одновременно было замечено, что если подать на плюсовую клемму напряжение извне, то диск делал половину оборота самостоятельно. Последовательная же смена полюсов приводила его в движение.

Позже было установлено, что диск можно заменить на несколько витков токопроводящего материала. А чтобы получить непрерывное вращение, в устройство электродвигателя такого типа надо ввести особый элемент – коллектор. Это медное кольцо, разделенное на две половинки диэлектриком. По нему скользят концы питающих проводников, которые назвали щетками. Каждая из половинок этого кольца соединена с обмоткой, являющейся самостоятельным электромагнитом со своим полюсом. В момент поворота коллектора происходит смена полюсов, что и провоцирует непрерывное вращение.

Подвижный элемент двигателя постоянного тока получил название ротора или якоря. А неподвижный – статора. В последующем эту терминологию распространили и на машины переменного тока.

При малых мощностях было достаточно устанавливать постоянный магнит. Однако для ее увеличения необходима его замена на несколько независимых электромагнитов – катушек, подключенных к источнику постоянного тока. Поскольку именно она является причиной вращения ротора и вала двигателя, ее назвали обмоткой возбуждения. Это потребовало увеличить и количество обмоток (полюсов) на якоре и, как следствие, разбить кольцо коллектора не на два, а на гораздо большее количество токопроводящих участков.

Обмотку возбуждения можно подключить и параллельно обмотке якоря, и последовательно с ней. Поэтому электродвигатели постоянного тока бывают двух типов:

  1. С параллельным возбуждением. Можно регулировать частоту вращения. Используется для привода станков, требующих постоянства скорости вращения.
  2. С последовательным возбуждением. Регулируется момент вращения (мощность). Используется в тяговых приводах.

Двигатель постоянного тока

Достоинством электрических машин этого типа является то, что ими очень просто управлять: для изменения скорости вращения достаточно изменить силу тока в цепи якоря или статора. Реверс электродвигателя осуществляется переключением полюсов питающего напряжения. Кроме того, из них наиболее просто можно сделать генератор, для этого не потребуется никаких конструктивных переделок, все выводы обмоток уже имеются.

К недостаткам стоит отнести большой вес и сложность машины, поскольку требуется устройство обмоток и на статоре, и на роторе. Однако с этим мирятся, поскольку вращающий момент двигателя постоянного тока наиболее высок, как и его КПД. Это объясняется тем, что магнитные потоки вращаются практически синхронно, с очень малым отставанием друг от друга.

Синхронные электрические машины чаще всего используются в качестве тяговых: на транспорте, крановые электродвигатели. Они безразличны к переменным нагрузкам и даже приветствуют реверсирование. Самый мощный электродвигатель постоянного тока приводит в движение атомный ледокол «Арктика».

Двигатели переменного тока

Изменение направления движения заряженных частиц позволяет получить, при соблюдении условия сдвига фаз, вращающееся магнитное поле. На нем основан принцип действия электродвигателя переменного тока. Его конструкция как бы вывернута наизнанку по отношению к машинам постоянного тока: питающее напряжение подается не на коллектор якоря, а на статорную обмотку.

Из-за механической и электрической инерционности якорь трогается с места не сразу, а спустя некоторое время (субъективно оно незаметно) и как бы пытается догнать магнитное поле в статорной обмотке. Рассогласование фаз достигает 18 градусов, поэтому такие электрические машины называются асинхронными, а их КПД ниже (оно не бывает более 85 процентов), чем синхронных.

Асинхронный электрический двигатель

По типу конструкции якоря асинхронные двигатели бывают двух типов:

  1. С короткозамкнутой обмоткой. Она состоит из двух колец и соединяющих их медных проводников. По форме напоминает «беличье колесо». Благодаря простоте применяется наиболее широко, однако в момент начала движения вала провоцирует короткое замыкание, из-за чего пусковые токи выше номинальных в два-три раза.
  2. С фазной обмоткой. Три независимых катушки, соединенных звездой, их концы припаяны к сплошным кольцам на конце вала. Используется в электродвигателях большой мощности, когда требуется плавный пуск с минимальным падением напряжения. По мере разгона вала напряжение на якоре снижают.

Машины переменного тока проще и легче, они хорошо выдерживают критические нагрузки на валу, но не лишены недостатков:

    • сложно регулировать частоту вращения, для этого надо в цепь питания включать преобразователи частоты;
    • лучше всего работают в режиме максимальных нагрузок, в режиме холостого хода снижают КПД;
    • зависят от качества питающего напряжения.
Читайте также:  Электролиты всегда проводят электрический ток

Питание асинхронных двигателей

Первые практические опыты применения многофазных токов осуществлялись изобретателем Николой Тесла, он создал генератор с двумя обмотками на статоре, расположенными под углом в 90 0 друг к другу. Более стабильные результаты по току и напряжению дал генератор трехфазный, который был изобретен русским инженером М.О. Доливо-Добровольским. В нем статорные обмотки сдвинуты на 120 0 .

Сдвиг фаз на 90 или 120 градусов порождает вращающееся магнитное поле без дополнительных конструкторских ухищрений. Если же машину переменного тока надо питать от однофазной сети, то его создают принудительно. Для этого в клеммной коробке трехфазного двигателя шесть выводов обмоток соединяют по схеме «треугольник», а между двумя любыми входными зажимами устанавливают электролитический конденсатор большой мощности, обеспечивающий нужный угол смещения фаз. Изменение скорости вращения невозможно. Для реверсирования необходимо переподключить реактивную нагрузку.

Однофазные двигатели, имеющие две последовательно включенные статорные обмотки, без включения между ними реактивной нагрузки так же не работают. Если при включении двигатель только «мычит», немедленно обесточьте его и проверьте исправность цепи конденсатора, иначе вы рискуете сжечь обмотки большими пусковыми токами. Управление ими невозможно.

Гибридные конструкции

Сложность управления двигателями переменного тока подвигла инженеров-электриков на создание гибридных конструкций. Это так называемые синхронные машины, в которых ротор движется, не отставая от вращающегося магнитного поля.

Трехфазные синхронные машины

Статор состоит из трех обмоток со сдвигом в 120 0 . На них подается трехфазное переменное напряжение. Ротор имеет несколько обмоток, но их концы выведены на токосъемный коллектор, поделенный диэлектрическими прокладками на сектора. Посредством графитовых щеток на него подается постоянное напряжение. Для постоянного магнита суммарный сдвиг фаз в 360 0 – это тот же ноль. Чтобы вал электродвигателя начал вращаться, его надо подтолкнуть – вручную, механическим (ДВС) или электрическим устройством. После набора номинальных оборотов инициирующее устройство останавливают. В итоге машина питается широко распространенным переменным, но имеет положительные свойства двигателя постоянного тока: стабильность оборотов, высокий КПД и, главное, возможность регулирования частоты вращения в широких пределах.

Синхронный двигатель

Однофазные синхронные машины

Это так называемый универсальный коллекторный двигатель. По факту – та же машина постоянного тока, но питающаяся от бытовой сети переменного. Две статорных обмотки включены последовательно с якорем посредством графитовых щеток, поэтому полюса меняются одновременно и вращающий момент не меняет направления. Двигатель подключается к бытовой сети напрямую, не вызывает падения напряжения при запуске и не требует времени на разгон для достижения номинальной мощности. Он обладает мягкой нагрузочной характеристикой, поддается регулировке и по частоте, и направлению вращения. Используется в ручном электрифицированном рабочем инструменте, стиральных машинах.

Подключение двигателя 380В на 220В

Нагрузочное поведение электродвигателей

Номинальная мощность электродвигателя обычно указывается на шильдике, прикрепленном к его корпусу. Однако нагрузочное поведение машин постоянного и переменного тока существенно разнится. Так же, как и способ достижения паспортных значений этого параметра.

Двигатели постоянного тока номинальные обороты набирают плавно. Величина вращающего момента на их валу зависит, прежде всего, от напряженности магнитного поля. Поэтому для повышения отдачи увеличивают количество витков в катушках статора и ротора. Кроме того, регулировать частоту вращения можно, изменяя величину напряжения или тока в обмотке возбуждения.

Асинхронные машины переменного тока выходят на номинальные обороты резко, нередко за доли секунды, и стараются держаться на них независимо от уровня нагрузки, увеличивая силу тока в обмотках. Быстроходные, развивающие большое количество оборотов, используются в малонагруженных, но производительных приводах. Количество витков в обмотках у них большое, а сечение провода невелико, поэтому из-за большого удельного сопротивления по нему течет ток малой силы. Катушки же тихоходных, тяговых, наматываются проводом большого сечения, по которым течет ток большой силы.

Знание того, как работает электродвигатель, поможет вам сделать правильный выбор при создании приводов различного назначения. Однако и простое знакомство с устройством, коэффициент полезного действия которого близок к ста процентам, будет весьма полезным для общего развития.

Источник

Британская фирма создала самый мощный в мире электродвигатель

Британская фирма создала самый мощный в мире электродвигатель

Британская компания Equipmake показала уникальный проект самого мощного электрического силового агрегата на постоянных магнитах.

Электромотор Ampere

Силовая установка сконструирована совместно с компанией Hieta, специализирующейся на 3D-печати. Вес электрического агрегата Ampere мощностью 299 лошадиных сил — меньше 10 килограмм. К примеру, 2 электродвигателя от Jaguar I-Pace мощностью 200 лошадиных сил весят по 40 килограмм каждый. Таким образом, Ampere обладает высочайшим соотношением мощности к массе — 29,9 лошадиных сил на 1 килограмм.

Электромотор Ampere

Добиться такой низкой массы создателям удалось при помощи минимального применения компонентов из металла. Корпус агрегата был напечатан на 3D-принтере, а его толщина минимально возможная. Одним из преимуществ данной конструкции является повышенная тепловая эффективность. Это означает, что установка может больше работать на максимальных оборотах при максимальной нагрузке и не перегреваться.

Несмотря на впечатляющие результаты, компания планирует установить на такой силовой агрегат весьма скромную цену, так как стоимость компонентов для его сборки сравнительно небольшая.

Электромотор Ampere

Рабочие образцы силовой установки Ampere должны появиться в течение 12 месяцев. Скорее всего, первым автомобилем с этой технологией станет гиперкар Ariel, который может быть представлен уже в 2020 году.

Источник

Самый мощный электромотор для лодки

Какой лодочный электромотор считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Графики крутящего момента для различных типов двигателей

Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Какая бывает мощность

Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать лодочные электромоторы различных марок нужно привести имеющиеся данные к «общему знаменателю»

Единый критерий для сравнения важен. Мощности, измеренные в разных местах, существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.

Потребляемая мощность, на валу и на винте

Виды мощности

Гребной винт преобразует энергию двигателя в силу, которая преодолевая сопротивления воды и воздуха двигает лодку вперед с выбранной скоростью. Часть энергии при этом теряется и мощность, идущая на движение судна, всегда меньше той, что потребляет двигатель. Rt — сопротивление воды; Pe — эффективная (буксировочная) мощность; Pt — мощность на винте; Pв — мощность на валу; Pb — мощность двигателя. T — тяга; V — скорость

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Измеряется в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Мощность на валу – используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Единица измерения – лошадиные силы или ватты. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте – более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.

Читайте также:  Виды защитные средства от электрического тока

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют двигаться вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для носовых лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Потери мощности в лодочном электромоторе

Ротор и щетки недорогого лодочного электромотора

Ротор, щеточный узел и щетки лодочного электромотора. Щетки и кольца служат источником потерь и снижают надежность электромотора. В мощных лодочных электромоторах двигатели постоянного тока не используют

Общая эффективность силовой установке на лодке с двигателем внутреннего сгорания около 15%. Для судна с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электромоторов 48 вольт, но для небольших лодок подходят и 24-вольтовые модели. При силе тока 50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии.

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент.

Разрез лодочного электромотора с редуктором

Редуктор служит источником дополнительного шума и потерь. В профессиональных электромоторах их стараются не использовать

Большинство гребных винтов для подвесных моторов небольших лодок созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и используются изготовителями до сих пор.

При разработке современных винтов используют другой подход. Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды. Винты этого типа называют винтами с переменным шагом. Их потери меньше, а КПД выше.

Виды электромоторов

Подвесные

Подвесной лодочный электромотор

Подвесной лодочный электромотор для профессионального использования Aquamot

Подвесные электромоторы устанавливают на транце или реже на носу лодки. В стандартном исполнении электромотор соединяется с системой рулевого управления, в моделях с румпелем лодкой управляют поворачивая двигатель. Мощность румпельных электромоторов варьируется от 1 до 4 кВт, а у моделей с рулевым управлением достигает 15 кВт.

Как правило мощные подвесные электромоторы рассчитаны на напряжение 24-48 Вольт. 24 вольтовый электрический двигатель мощностью 2,2 кВт развивает на винте тягу 124 lbs и сопоставим по этому показателю с подвесным бензиновым мотором мощностью 6,5 л.с. Двигатель мощностью 15 кВт эквивалентен бензиновому мотору 35 л.с

В подвесных лодочных электромоторах используют асинхронные двигатели переменного тока или синхронные двигатели на постоянных магнитах. Оба типа двигателей бесщеточные, не имеют изнашивающихся частей и не требуют обслуживания.

Pod электромоторы

POD электромоторы подходят как для однокорпусных лодок и катеров, так и для катамаранов

Род электромотор Aquamot

Фиксированные POD электромоторы бывают мощностью от 1 до 25 кВт. Они подходят как для небольших лодок, сдающихся в прокат, так и для судов весом несколько тонн

Электромотор состоит из блока управления и гондолы внутри которой установлен асинхронный или BLDC электродвигатель. Гондола аэродинамической формы крепится к днищу судна фланцами из нержавеющей стали между килем и рулем. Чтобы избежать вибрации на руле, вызванной турбулентностью за винтом, и снизить сопротивление потоку воды гондолу стараются располагать ближе к килю.

Pod электромоторы на лодках

Фиксированный (слева) и поворотный Pod электромоторы. Внутри корпуса, находящегося под водой, находится только двигатель. Электроника и органы управления расположены на борту судна

Производится две модификации POD электромоторов — фиксированная и поворотная. Поворотная модель соединяется с системой рулевого управления или румпелем и обеспечивает более высокую маневренность судна

Электрические лодочные моторы типа Pod выпускаются мощностью от 1 до 25 кВт.

Бортовые лодочные электромоторы

Бортовой лодочный электромотор

Бортовой лодочный электромотор Aquamot. Электромоторы этого типа выпускаются мощностью от 2,5 до 30 кВТ

В бортовой силовой установке электродвигатель устанавливают внутри судна и соединяют с винтом валопроводом. Бортовым моторам требуется принудительное охлаждение. В зависимости мощности электродвигателя оно может быть воздушным или водяным.

Установка бортового электромотора на лодку сложнее чем подвесного или POD. Дополнительно потребуется вал, муфта, сальник, втулка Гудрича (дейдвудный подшипник), дейдвудная труба. Валы электромотора и винта необходимо центрировать – они должны иметь общую ось. При неправильной установке возможны протечки через сальник

Электромоторы для профессионального использования

Если лодка или катер используется для перевозки туристов, организации экскурсий или водных прогулок, то электрическая установка может оказаться выгоднее двигателя внутреннего сгорания. Экономия достигается из-за более низкой стоимости энергии и практически нулевых затрат на техническое обслуживание.

Лодочный электромотор для профессионального использования Aquamot на катамаране

Установка подвесного лодочного электромотора для профессионального использования Aquamot на небольшой катамаран

Сравнение показывает, что при коммерческой эксплуатации судна переход с бензинового на электрический двигатель окупается за 1-2 года. Однако для этого профессиональный лодочный электромотор должен отвечать определенным требованиям:

Катамаран с установленным лодочным электромотором отправляется к месту эксплуатации

  • Иметь высокий КПД – это позволит эксплуатировать его с аккумуляторной батареей меньшей емкости, снизит первоначальные затраты, время зарядки и стоимость потребляемой электроэнергии
  • Быть простым и надежным — электромотор должен выдерживать ежедневную интенсивную нагрузку и иметь минимум лишних функций. Дополнительные возможности, такие как встроенный компьютер c GPS, повышают цену и могут стать источником неисправностей в будущем.
  • Стоимость ремонта и технического обслуживания в течении периода эксплуатации должна быть минимальной Катамаран с установленным лодочным электромотором отправляется к месту эксплуатации

Надежность

Корпуса профессиональных лодочных электромоторов отливают из алюминия, а затем дополнительно наносят многослойное антикоррозионное покрытие. Вал делают из нержавеющей стали, а винт из бронзы. Для защиты от коррозии устанавливают жертвенный анод

В мощных электромоторах для лодок используют асинхронные двигатели переменного тока или BLDC PM электродвигатели, которые также называют вентильными. Питание вентильных двигателей осуществляется от импульсных источников энергии. При этом импульсы напряжения подаются на обмотки статора в заданные моменты времени – при определенном положении ротора относительно статора. Положение ротора определяют датчики, которые, как и импульсный источник питания, в моторах небольшой мощности находятся на печатной плате, расположенной внутри подводной части электромотора.

Электроника в корпусе лодочного электромотора

Зеленая плата в центре электромотора — электронный коммутатор, который заменяет щетки и кольца. Слева та же плата в увеличенном виде. В окружении воды электронные компоненты иногда работают не стабильно и отказ всего одного элемента на плате влечет за собой выход из строя всего электромотора. Заменять приходится плату целиком — это увеличивает стоимость ремонта, время простоя электромотора и срок его окупаемости при профессиональном использовании

Внутри корпуса трехфазного асинхронного двигателя дополнительных электронных компонентов нет. На долговечность двигателя влияют только подшипники и обмотки, однако качество этих элементов в настоящее время таково, что асинхронные двигатели служат до 50 000 часов без осмотра и ремонта. Асинхронные двигатели просты, надежны и эффективны. КПД мощного электродвигателя 85-92%, что на 30% выше, чем у двигателя постоянного тока, и на 40-50% больше, чем у двигателя внутреннего сгорания.

Система безопасности электромотора для коммерческих лодок имеет как механические, например, заданный предел прочности киля, так и электронные средства защиты. Электромотор отключается при перегрузке по току, при пониженном и повышенном напряжении аккумуляторов

Экономичность

Два электромотора на небольшом пароме для перевозки пассажиров

Два подвесных электромотора мощностью по 11 кВт каждый на небольшом пароме для перевозки пассажиров

Высокий КПД достигается только при последовательном и тщательном улучшении всех элементов электромотора. Потерь мощности стараются избежать во всех узлах. Воздушный зазор в двигателе, конструкция ротора, изоляция обмоток оптимизируют на компьютере так, чтобы электродвигатель подходил для использования на лодках.

Корпуса двигателей и винты проектируют по тем же правилам, что и в коммерческом судостроении. Сначала рассчитывают обтекание подводных частей по трехмерной модели, а затем результаты проверяют на натурных гидродинамических испытаниях.

Редуктор, который устанавливают на некоторых моделях лодочных электромоторов не используют. Вместо этого вал электродвигателя напрямую соединяют с винтом, и конструируют двигатель таким образом, чтобы его обороты совпадали с оптимальными для винта

В результате во время движения электромотор не теряет мощность, не создает дополнительное сопротивление и способен долго работать на одной зарядке аккумулятора

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

Источник