Меню

Род тока измеряемый прибором



Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Для контроля за правильностью работы электротехнических установок, испытания их, определения параметров электрических цепей, учета расходуемой электрической энергии и т. д. производят различные электрические измерения. В технике связи, как и в технике сильных токов, электрические измерения имеют важное значение. Приборы, с помощью которых измеряются различные электрические величины: ток, напряжение, сопротивление, мощность и т. д., — называются электрическими измерительными приборами.

Щитовой амперметр

Существуют большое количество различных электроизмерительных приборов. Наиболее часто при производстве электрических измерений используются: амперметры, вольтметры, гальванометры, ваттметры, электросчетчики, фазометры, фазоуказатели, синхроноскопы, частотомеры, омметры, мегомметры, измерители сопротивления заземления, измерители емкости и индуктивности, осциллографы, измерительные мосты, комбинированные приборы и измерительные комплекты.

Осциллограф

Электроизмерительный комплект К540

Классификация электроизмерительных приборов по принципу действия

По принципу действия электроизмерительные приборы подразделяются на следующие основные типы:

1. Приборы магнитоэлектрической системы , основанные на принципе взаимодействия катушки с током и внешнего магнитного поля, создаваемого постоянным магнитом.

2. П риборы электродинамической системы , основанные на принципе электродинамического взаимодействия двух катушек с токами, из которых одна неподвижна, а другая подвижна.

3. Приборы электромагнитной системы , в которых используется принцип взаимодействия магнитного поля неподвижной катушки с током и подвижной железной пластинки, нaмагниченной этим полем.

4. Тепловые измерительные приборы , использующие тепловое действие электрического тока. Нагретая током проволока удлиняется, провисает, и вследствие этого подвижная часть прибора получает возможность повернуться под действием пружины, выбирающей образовавшуюся слабину проволоки.

5. Приборы индукционной системы , основанные нa принципе взаимодействия вращающегося магнитного поля с токами, индуктированными этим полем в подвижном металлическом цилиндре.

6. Приборы электростатической системы , основанные на принципе взаимодействия подвижных и неподвижных металлических пластин, заряженных разноименными электрическими зарядами.

7. Приборы термоэлектрической системы , представляющие собой совокупность термопары с каким-либо чувствительным прибором, например магнитоэлектрической системы. Измеряемый ток, проходя через термопару, способствует возникновению термотока, воздействующего на магнитоэлектрический прибор.

8. Приборы вибрационной системы , основанные нa принципе механического резонанса вибрирующих тел. При заданной частоте тока наиболее интенсивно вибрирует тот из якорьков электромагнита, период собственных колебаний которого совпадает с периодом навязанных колебаний.

9. Электронные измерительные приборы — приборы, измерительные цепи которых содержат электронные элементы. Они используется для измерений практически всех электрических величин, а также неэлектрических величин, предварительно преобразованных в электрические.

По типу отсчетного устройства различают аналоговые и цифровые приборы. В аналоговых приборах измеряемая или пропорциональная ей величина непосредственно воздействует на положение подвижной части, на которой расположено отсчетное устройство. В цифровых приборах подвижная часть отсутствует, а измеряемая или пропорциональная ей величина преобразуется в числовой эквивалент, регистрируемый цифровым индикатором.

Индукционный счетчик электроэнергии:

Индукционный счетчик электроэнергии

Отклонение подвижной части у большинства электроизмерительных механизмов зависит от значений токов в их катушках. Но в тех случаях, когда механизм должен служить для измерения величины, не являющейся прямой функцией тока (сопротивления, индуктивности, емкости, сдвига фаз, частоты и т. д.), необходимо сделать результирующий вращающий момент зависящим от измеряемой величины и не зависящим от напряжения источника питания.

Для таких измерений применяют механизм, отклонение подвижной части которого определяется только отношением токов в двух его катушках и не зависит от их значений. Приборы, построенные по этому общему принципу, называются логометрами. Возможно построение логометрического механизма любой электроизмерительной системы с характерной особенностью — отсутствием механического противодействующего момента, создаваемого закручиванием пружин или растяжек.

Условные обозначения на вольтметре:

Условные обозначения на вольтметре

На рисунках ниже приведены условные обозначения электроизмерительных приборов по принципу их действия.

Обозначение принципа действия прибора

Обозначение принципа действия измерительного прибора

Обозначения рода тока

Обозначения рода тока

Обозначения класса точности, положения прибора, прочности изоляции, влияющих величин

Обозначения класса точности, положения прибора, прочности изоляции, влияющих величин

Классификация электроизмерительных приборов по роду измеримой величины

Электроизмерительные приборы классифицируются и по роду измеряемой ими величины, так как приборы одного и того же принципа действия, но предназначенные для измерения разных величин могут значительно отличаться друг от друга по своей конструкции, не говоря уже о шкале прибора.

В таблице 1 приведен перечень условных обозначений наиболее употребительных электроизмерительных приборов.

Таблица 1. Примеры обозначения единиц измерения, их кратных и дольных значений

Наименование Обозначение Наименование Обозначение
Килоампер kA Коэффициент мощности cos φ
Ампер A Коэффициент реактивной мощности sin φ
Миллиампер mA Тераом
Микроампер μA Мегаом
Киловольт kV Килоом
Вольт V Ом Ω
Милливольт mV Миллиом
Мегаватт MW Микром μΩ
Киловатт kW Милливебер mWb
Ватт W Микрофарада mF
Мегавар MVAR Пикофарада pF
Киловар kVAR Генри H
Вар VAR Миллигенри mH
Мегагерц MHz Микрогенри μ H
Килогерц kHz Градус стоградусной температурной шкалы o C
Герц Hz
Градусы угла сдвига фаз φ o

Классификация электроизмерительных приборов по степени точности

Абсолютной погрешностью прибора называют разность между показанием прибора и истинным значением измеряемой величины.

Например, абсолютная погрешность амперметра равна

где δ (читать «дельта») — абсолютная погрешность в ампеpax, I — показание прибора в амперах, I э — истинное значение измеряемого тока в амперах.

Если I > I э, то абсолютная погрешность прибора положительна, а при I э, она отрицательна.

Поправкой прибора называют величину, которую надо прибавить к показаниям прибора, чтобы получить истинное значение измеряемой величины.

I э = I — δ = I + (-δ)

Следовательно, поправка прибора — величина р авная абсолютной погрешности прибора, но противоположная ей по знаку. Например, если амперметр показал 1 = 5 А, а абсолютная погрешность прибора равна δ =0,1 а, то истинное значение измеряемой величины равно I = 5+ (—0,1) = 4,9 а.

Приведенной погрешностью прибора называется отношение абсолютной погрешности к наибольшему возможному отклонению показателя прибора (номинальному показанию прибора).

Например, для амперметра

β = (δ/In) · 100% = ( (I — I э )/In) · 100%

где β — приведенная погрешность в процентах , In — номинальное показание прибора.

Точность прибора характеризуется величиной его максимальной приведенной погрешности. Согласно ГОСТ 8.401-80 приборы по степени их точности разделяются на 9 классов: 0,02, 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. Если, например, данный прибор имеет класс точности 1,5, то это значит, что его максимальная приведенная погрешность равна 1,5%.

Электроизмерительные приборы, имеющие классы точности 0,02, 0,05, 0,1 и 0,2, как наиболее точные, применяются там, где требуется весьма большая точность измерения. Если прибор имеет приведенную погрешность выше 4%, то он считается внеклассным.

Прибор для измерения угла сдвига фаз с классом точности 2,5:

Прибор для измерения угла сдвига фаз с классом точности 2,5

Чувствительность и постоянная измерительного прибора

Чувствительностью прибора называют отношение углового или линейного перемещения указателя прибора, приходящееся на единицу измеряемой величины. Если шкала прибора равномерна, то чувствительность его по всей шкале одинакова.

Например, чувствительность амперметра, имеющего равномерную шкалу, определяется формулой

где S — чувствительность амперметра в делениях на ампер, Δ I — приращение тока в амперах или миллиамперах, Δα — приращение углового перемещения показателя прибора в градусах или миллиметрах.

Читайте также:  Преобразование электромагнитных волн в электрический ток

Если шкала прибора неравномерна, то чувствительность прибора в различных областях шкалы различна, так как одному и тому же приращению (например, тока) будут соответствовать разные приращения углового или линейного перемещения показателя прибора.

Величина, обратная чувствительности прибора, называется постоянной прибора. Следовательно, постоянная прибора — это цена деления прибора, или, иначе, величина, на которую должен быть помножен отсчет по шкале в делениях, чтобы получить измеряемую величину.

Например, если постоянная прибора равна 10 мА/дел (десять миллиампер на деление), то при отклонении его указателя на α = 10 делений измеряемая величина тока равна I = 10 · 10 = 100 мА.

Ваттметр Д5065

Схема подключения ваттметра и обозначения на приборе

Калибровка измерительных приборов — определение погрешностей или поправок для совокупности значений шкалы прибора путем сравнения в различных сочетаниях отдельных значений шкалы друг с другом. За основу сравнения берется одно из значений шкалы. Калибровка широко применяется в практике точной метрологической работы.

Простейший способ калибровкой — сравнение каждого размера с номинально равным ему (принимаемым за достаточно верный) размером. Это понятие не следует смешивать (как это часто делают) с градуированием (градуировкой) измерительных приборов, представляющим собой метрологическую операцию, при помощи которой делениям шкалы измерительного прибора придаются значения, выраженные в установленных единицах измерения.

Мощность потерь энергии в приборах

Электроизмерительные приборы потребляют при работе энергию, которая в них преобразуется обычно в тепловую энергию. Мощность потерь зависит от режима в цепи, а также от системы и конструкции прибора.

Если измеряемая мощность относительно мала, а следовательно, относительно малы ток или напряжение в цепи, то мощность потерь энергии в самих приборах может заметно влиять на режим исследуемой цепи и показания приборов могут иметь довольно большую погрешность. При точных измерениях в цепях, где развиваемые мощности сравнительно малы, необходимо знать мощность потерь энергии в приборах.

В табл. 2 приведены средние величины мощности потерь энергии в различных системах электроизмерительных приборов.

Источник

Род тока измеряемый прибором

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ

§ 67. Общие сведения

Электрические измерительные приборы служат для измерения различных электрических величин: силы тока, напряжения, сопротивления, мощности, энергии, а также многих неэлектрических величин, в том числе температуры, давления, влажности, скорости, уровня жидкости, толщины материала и др.
В связи с тем, что абсолютно точных приборов нет, показания электроизмерительных приборов несколько отличаются от действительного значения измеряемых величин.
Разность между измеренным и действительным значением величины называется абсолютной погрешностью прибора. Если, например, в цепи сила тока I = 10 а, а амперметр, включенный в эту цепь, показывает Iизм = 9,85 а, то абсолютная погрешность показания прибора

ΔA = IизмI = 9,85 — 10 = -0,15 a. (94)

Приведенной погрешностью прибора γпр называется отношение абсолютной погрешности ΔA к наибольшему значению величины Aмакс, которую можно измерить при данной шкале прибора:

Приведенная погрешность прибора, находящегося в нормальных рабочих условиях (температура 20° С, отсутствие вблизи прибора ферромагнитных масс, нормальное рабочее положение шкалы и т. д.), называется основной погрешностью прибора.

Пример. Пусть при измерении силы тока I = 4 а в нормальных условиях пользовались амперметром со шкалой 0 — 10 а и он показывал, что сила тока в цепи 4,1 а. Вычислить основную (приведенную) погрешность прибора, характеризующую его точность.
Решение .

В зависимости от допускаемой основной погрешности электроизмерительные приборы делятся на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4.
Цифра класса точности показывает величину допускаемой основной (приведенной) погрешности ΔAмакс прибора в процентах вне зависимости от знака погрешности.
Класс точности

Прибор, у которого класс точности выражен меньшим числом, позволяет выполнять измерение с большей точностью.
Зная класс точности прибора и наибольшее значение величины, которую можно измерить при данной шкале прибора, можно определить наибольшую возможную абсолютную погрешность выполненного измерения:

Пример. Допустим, что наибольшая сила тока, которую можно измерить данным амперметром, составляет 15 а, а класс точности прибора К = 4.
Определить наибольшую возможную абсолютную погрешность при выполнении измерения в любой точке шкалы.
Решение .

Чем ближе измеряемая величина к наибольшему значению, которое позволяет измерить прибор, тем меньшая получается относительная погрешность при прочих равных условиях. Это обстоятельство следует учитывать при выборе предела измерения прибора для выполнения измерения.
Электроизмерительные приборы классифицируются по роду измеряемой величины, принципу действия, степени точности и роду измеряемого тока, кроме того, они делятся на эксплуатационные группы.
По роду измеряемой величины приборы делятся на амперметры, вольтметры, омметры, ваттметры, счетчики, электротермометры, электротахометры (измеряющие число оборотов в минуту) и др.
По принципу действия измерительного механизма приборы могут быть следующих систем: электромагнитной, магнитоэлектрической, электродинамической, ферродинамическои, индукционной, выпрямительной, термоэлектрической, электронной, вибрационной и электростатической.
В зависимости от рода тока, для измерения которого предназначены приборы, они делятся на приборы, измеряющие переменный ток, постоянный ток, и приборы, измеряющие переменный и постоянный токи.
Выпускают приборы трех основных эксплуатационных групп: А, Б и В. Условные обозначения электроизмерительных приборов разных эксплуатационных групп приведены в табл. 7.

На шкале каждого электроизмерительного прибора условными знаками указаны необходимые сведения о конструкции и эксплуатации прибора. Например, на шкале вольтметра (рис. 79) указано: вольтметр (V) электромагнитной системы; предназначен для измерения переменного напряжения (

) в пределах от 0 до 250 в; при измерениях напряжения прибор следует устанавливать вертикально (⊥); изоляция испытана напряжением 2 кв ; класс точности 1,5; заводской номер 5140; год выпуска 1966; эксплуатационная группа .

К электроизмерительным приборам всех систем предъявляются следующие технические требования:
точность и надежность в работе и низкая стоимость;
потребление по возможности малой мощности;
способность не вносить заметных изменений в электрические параметры измеряемой цепи;
более равномерные деления в пределах рабочей части шкалы;
способность выдерживать возможно большую перегрузку;
продолжительный срок службы без ухудшения своих качеств;
надежная изоляция токоведущих частей от корпуса;
показания практически не должны зависеть от влияния внешних факторов;
стрелки приборов должны быстро устанавливаться у соответствующего деления шкалы.

Источник

Разбираемся с электроизмерительными приборами

Электроизмерительные приборы (ЭИП) – тип приспособлений, необходимых для измерения различного рода физических величин.

Разновидности электроизмерительных приборов

Классификация электроизмерительных приборов:

  1. переменного;
  2. постоянного;
  3. комбинированные устройства.

По уровню точности:

  • 0, 05;
  • 0,1;
  • 0,2;
  • 0,5;
  • 1,0.

Каждая цифровое обозначение указывает на процентный показатель допустимой погрешности.

По сущности работы:

  1. электромагнитные;
  2. индукционные;
  3. магнитоэлектрические;
  4. ферромагнитные.

При проведении измерительных испытаний необходимо правильно выбрать соответствующее измерительное устройство.

  1. Амперметры – устройства для измерения величин тока. Единица измерения – Ампер (А).
  2. Вольтметр – измеряет напряжение электрической сети. Единица измерения – Вольт (В).
  3. Омметр – вспомогательное приспособление, измеряющее сопротивление в электроцепи. Измеряется в Оммах (Ом).
  4. Ваттметр – элемент, измеряющий мощность сети. Измеряемая единица – Ватт (Вт).
  5. Частотомер – измеритель частоты значений переменного импульса. Измеряется в Герцах (Гц).
Читайте также:  Зарядное с ограничением по току автомобильного

Устройство, принцип действия

Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:

  1. амперметры;
  2. вольтметры;
  3. омметры.

Амперметры

Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:

  1. амперметр переменного тока;
  2. амперметр постоянного тока;
  3. магнитоэлектрические;
  4. электромагнитные.

Cоставные части устройства измерения электрического заряда

Как амперметр работает? Идеальный амперметр, является прибором для измерения электрозаряда. Представляет собой проводящий контур, закрепленный на оси между полюсами постоянного магнита.

При отсутствии сигнала контура, благодаря давлению пружины, стрелка находится в нулевом положении. При включении устройства, на подвижный элемент поступает токовый импульс – происходит отклонение стрелки на угол, соответствующей величине тока. Таким образом индикаторная шкала показывает значение, измеренное устройством.

Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.

Измеритель электрического заряда с аналоговой шкалой

Аналоговый вольтметр переменного тока и цифровые вольтметры.

  1. постоянное;
  2. переменное.

Типовой стрелочный вольтметр

Идеальный вольтметр электроизмерительный, как правило, подключается в цепь параллельно. Сопротивление вольтметра пропорционально поданному на него сигнала. Для того чтобы на показания не влияли искажения электроимпульсов, его резистивность рекомендуется делать как можно больше.

Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.

Омметр

Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:

  1. единицы, десятки (Ом);
  2. сотни, тысячи (Ом).

Изображение омметра, с переключателем, дающий возможность показать большие пределы измеренийПодключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения.

Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.

Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.

Как подключать

Электрические измерительные приборы подключаются:

Амперметр подключается в цепь последовательно, рядом с резистором, возле которого будет проведен замер величины тока.

Схема подключения, учитывая сопротивление амперметра

Как пользоваться амперметром? Данная схема достаточно проста, для того чтобы разобрать, как правильно пользоваться амперметром.

На рисунке 5 указаны:

  1. R – резистор;
  2. А – элемент измерения тока;
  3. I – направление электрического заряда.

Как пользоваться вольтметром? Электроприбор имеет параллельные соединения, в тех местах, где будет измеряться напряжение.

Схема подключения, учитывая сопротивление вольтметра

На рисунке 6 указаны:

  1. R – элемент сопротивления;
  2. V – измеритель напряжения.

авометр

Как пользоваться авометром? Эта разновидность (вольтметр амперметр) – комбинированное устройство. В случае измерения токового сигнала – подключается как измеритель электрозаряда. Если измеряется напряжение – как измеритель напряжения.

Более удобным в работе считается цифровой вольтметр амперметр. При использовании электрических приборов, необходимо соблюдать все правила пожарной безопасности и для правильно работы – учитывать все их конструктивные характеристики.

Видео о принципах работы электроизмерительных приборов

Источник

Учебные материалы

Помощь студентам

Электроизмерительные приборы — это средства электрических измерений, предназначенные для выработки сигналов в форме, доступной для непосредственного восприятия наблюдателем. К ним относятся, например, амперметр, вольтметр, ваттметр.

По способу представления результата измерения измерительные приборы делятся на аналоговые, в которых показания являются непрерывными, и цифровые, показания которых представляются дискретными величинами — цифрами.

По характеру применения измерительные приборы могут быть стационарными и переносными.
По роду измеряемой величины измерительные приборы делятся на приборы для измерения постоянных величин и изменяющихся во времени величин.

По виду измеряемой величины различают приборы для измерения тока (амперметр), напряжения (вольтметр), сопротивления (омметр), частоты (частотомер), энергии (счетчик) и т. д.

Большую группу электроизмерительных приборов составляют электромеханические показывающие приборы.
Электромеханический прибор состоит из измерительной цепи, измерительного механизма и отсчетного устройства. Измерительная цепь является преобразователем измеряемой величины х в некоторую промежуточную электрическую величину у, функционально связанную с величиной х, т. е. y=f(x). Электрическая величина у, которой является ток или напряжение, непосредственно воздействует на измерительный механизм (ИМ), являющийся основой электромеханического прибора и имеющий подвижную и неподвижную части.

Наиболее распространены механизмы, в которых механические силы возникают при воздействии магнитного поля, создаваемого постоянным магнитом или током, на проводник с током. Вращающий момент Мвр, действующий на подвижную часть, является в этом случае функцией измеряемой величины х (тока или напряжения), т. е. Мвр = f(x). Кроме этого, на подвижную часть влияет противодействующий момент Мпр, создаваемый при помощи растяжек или спиральных пружинок при их закручивании: Мпр = Kα, где К — удельный противодействующий момент на единицу угла закручивания; α — угол поворота подвижной части.

Противодействующие спирали и пружины выполняются, как правило, из бронзы. Один конец их прикрепляется к подвижной части измерительного механизма, а другой — к неподвижной части прибора. Закручивание пружины или спирали происходит до тех пор, пока вращающий момент Мвр не будет равен противодействующему Мпр. Для создания противодействующего момента применяют не одну, а две пружины, устанавливая их с разных сторон подвижной части измерительного механизма ИМ (рис. 11.1, а), где 1 — подвижная рамка, 2 — противодействующие пружины. Таким образом, установившееся отклонение подвижной части и укрепленного на ней указателя характеризуется равенством:
Мвр=Mпр

Рис. 11.1. Создание противодействующего момента (а) и момента успокоения (б) в электромеханических приборах

Чтобы подвижная часть быстрее установилась, механизмы снабжают так называемыми успокоителями, создающими момент успокоения. На рис. 11.1, б приведен пример построения магнитоиндукционного успокоителя, состоящего из постоянного магнита 1 и алюминиевого диска 2, жестко скрепленного с подвижной частью измерительного механизма. Успокоение создается за счет взаимодействия токов, индуцированных в диске при его перемещении в магнитном поле постоянного магнита.

В зависимости от физических явлений, положенных в основу создания вращающего момента, различают следующие измерительные механизмы: магнитоэлектрические, электромагнитные, электродинамические, электростатические, индукционные.

Магнитоэлектрический механизм

Магнитоэлектрический механизм содержит постоянный магнит, магнитопровод и катушку с током.

Магнитная система измерительного механизма (рис. 11.2) состоит из постоянного магнита 1 и замкнутого магнитопровода 2. В рабочем зазоре между ними образуется равномерное радиальное магнитное поле с индукцией В. Подвижная катушка 3, выполненная из тонкого изолированного провода, намотанного на алюминиевый каркас, помещена в рабочем зазоре и укреплена на осях. Концы обмотки электрически соединены со спиральными пружинками, по которым измеряемый ток I поступает в катушку. При наличии тока на активную длину l витка обмотки действует сила F, равная, согласно закону Ампера, F=BlwI, где w — число витков обмотки.

Читайте также:  Сколько выставлять силу тока при зарядке аккумулятора

Под действием пары таких сил на обеих активных сторонах катушки создается вращающий момент Мвр, который прямо пропорционален току. Под действием Мвр подвижная часть ИМ вместе с указателем поворачивается на некоторый угол α, который пропорционален току I.
Магнитоэлектрические приборы, в которых используются магнитоэлектрические ИМ, применяют для измерения постоянных токов (амперметры), напряжений (вольтметры), сопротивлений (омметры) и т. д.
Магнитоэлектрические амперметры и вольтметры отличаются высокой точностью, равномерностью шкалы, обладают малым потреблением энергии от объекта измерения. К недостаткам этих приборов относятся: непригодность к работе в цепях переменного тока, чувствительность к перегрузкам и зависимость показаний от окружающей температуры.
Рис. 11.2. Конструкция магнитной системы магнитоэлектрического измерительного механизма с внутрирамочным магнитом

Магнитоэлектрические ИМ служат и для измерения в цепях переменного тока, но только в сочетании с различными преобразователями переменного тока в постоянный. К таким приборам относятся, например, выпрямительные, термоэлектрические.

Выпрямительные приборы

Выпрямительные приборы (рис. 11.3) представляют собой сочетание магнитоэлектрического ИМ и выпрямительного устройства, состоящего, как правило, из двух диодов и более. Выпрямительные устройства (рис. 11.3, а) преобразуют переменный ток в пульсирующий однополярный iП (рис. 11.3, б). Подвижная часть ИМ, обладающая инерцией, реагирует на среднее значение этого пульсирующего тока — IСР.

Рис. 11.3. Схема выпрямительного прибора с двухполупериодным выпрямителем (а) и временные диаграммы (б) работы двухполупериодного выпрямительного прибора

Шкала выпрямительного прибора градуируется в действующих значениях синусоидального тока (напряжения).

Выпрямительные приборы часто выполняются в виде комбинированных многопредельных — в одном приборе сочетаются амперметр, вольтметр и омметр, каждый на несколько пределов измерения.

Достоинствами выпрямительных приборов являются: высокая чувствительность (наименьшие пределы измерения 0,25 … …0,3 мА; 0,3 В), малое собственное потребление энергии, так как используются магнитоэлектрические ИМ. К недостаткам относятся: неравномерность шкалы в начале (в пределах до 15% от предела измерения), невысокая точность (высший класс точности 1,0).

Электромагнитный механизм

Электромагнитный механизм (рис. 11.4) состоит из неподвижной катушки 1 и укрепленной на оси 3 подвижной пластинки 2 из магнитомягкого материала. При включении катушки в цепь постоянного тока создается магнитное поле, которое намагничивает пластинку, и она втягивается внутрь катушки. Возникающий при этом вращающий момент пропорционален квадрату тока.

Рис. 11.4. Конструктивное исполнение измерительного механизма электромагнитной системы

Подвижная часть ИМ, обладающая инерцией, реагирует на среднее значение момента.
Часто квадратичную шкалу выравнивают, подбирая соответствующую форму ферромагнитной пластинки.

Электромагнитные приборы, построенные на базе электромагнитных ИМ, применяют для измерения в цепях постоянного и переменного тока в качестве амперметров, вольтметров и фазометров.

Амперметры изготовляют одно- и многопредельными путем секционирования катушки. Вольтметры также выполняются многопредельными путем использования ряда добавочных резисторов.

Электромагнитные приборы являются одними из самых распространенных щитовых приборов для измерений в цепях переменного тока. Они просты по устройству, не имея токоподвижных частей, хорошо переносят перегрузки. Недостатками этих приборов являются: невысокая точность, большое собственное потребление энергии (до 10 Вт), ограниченный частотный диапазон,, чувствительность к внешним магнитным полям.

Щитовые амперметры выпускают классов 1,0; 1,5; 2,5 на токи прямого включения до 300 А. Щитовые вольтметры тех же классов точности выпускают на напряжения до 600 В с прямым включением.

Электродинамический механизм

Электродинамический механизм (рис. 11.5) состоит из неподвижной 1 и подвижкой 2 катушек. Катушка 2 укреплена на растяжках и может поворачиваться вокруг оси внутри двух секций неподвижной катушки. При наличии в катушках постоянных токов I1 и I2 возникают электромагнитные силы взаимодействия, стремящиеся повернуть катушку 2 соосно с катушкой 1. В результате возникает вращающий момент: MBP=K1I1I2, где K1 — коэффициент, учитывающий изменение взаимной индуктивности подвижной и неподвижной катушек.

Вращающий момент электродинамического ИМ пропорционален произведению действующих значений токов в катушках и косинусу угла сдвига фаз между ними.

Рис. 11.5. Конструктивное исполнение измерительного механизма электродинамической системы

Электродинамические приборы, в которых используются электродинамические механизмы, применяют в цепях постоянного и переменного тока в основном для измерения тока, напряжения и мощности.

Электродинамические амперметры обычно выполняются на два предела измерения, что достигается различием схем включения катушек: на малые токи — по схеме рис. 11.6, а, на большие токи — по схеме рис. 11.6, б. В первом случае ток IХ проходит через неподвижную 1 и подвижную 2 катушки, соединенные последовательно. Во втором случае катушки соединяются параллельно. В электродинамическом приборе отклонение подвижной части ИМ пропорционально квадрату измеряемого тока IХ.

Рис. 11.6. Схемы построения амперметров электродинамической системы на малые (а) и большие (б) токи

Индукционный механизм

Индукционный механизм (рис. 11.7) состоит из двух неподвижных магнитопроводов 1 и 2 с обмотками и подвижного алюминиевого диска 3, укрепленного на оси. Магнитные потоки Ф1 и Ф2, создаваемые синусоидальными токами i1, и i2 и пронизывающие диск, смещены в пространстве. При этих условиях в диске создается вращающееся магнитное поле, под влиянием которого диск приходит во вращение.

Рис. 11.7 Конструктивное исполнение измерительного механизма индукционной системы

При этом вращающий момент относительно оси диска пропорционален частоте, произведению действующих значений токов и синусу угла сдвига фаз между токами.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно- и трехфазных счетчиков энергии переменного тока. По точности счетчики делятся на классы 1,0; 2,0 и 2,5.

Электростатический механизм

Электростатический механизм (рис. 11.8) состоит из двух (и более) металлических изолированных пластин, выполняющих роль электродов. На неподвижные пластины 1 подается потенциал одного знака, а на подвижные 2 — потенциал другого знака. Подвижная пластина вместе с указателем 3 укреплена на оси и под действием сил электрического поля между пластинами поворачивается. При постоянном напряжении U между пластинами емкостью С вращающий момент пропорционален зарядам q = CU на пластинах.

Рис. 11.8 Конструктивное исполнение измерительного механизма электростатической системы

При синусоидальном напряжении U = Um sin ωt подвижная часть механизма реагирует на среднее значение момента: MBP*СР=K2U 2 (где U – действующее значение напряжения).

Электростатические приборы, в которых используется электростатический механизм, применяются в качестве вольтметров постоянного и переменного тока.

Угол отклонения указателя электростатического прибора пропорционален квадрату напряжения, т. е. шкала является квадратичной. Подбором формы электродов (пластин) можно получить практически равномерную шкалу.

Электростатические вольтметры отличаются малым собственным потреблением энергии, широким частотным диапазоном (до 10 МГц), нечувствительностью к внешним магнитным полям, колебаниям температуры, их показания не зависят от формы кривой измеряемого напряжения. К недостаткам этих приборов следует отнести сравнительно низкую чувствительность (без предварительных усилителей сигналов их нижний предел измерения составляет 10 В), необходимость электростатического экранирования от внешних электрических полей.

Характеристики шкал измерительных приборов >

Источник