Меню

Решить предыдущую задачу при условии что ток в проводнике равен 30



Задания

3.1. На рис. 3.1 изображено сечение двух прямолинейных бесконечно длинных проводников с током. Расстояние АС между проводниками равно 10 см, I1=20 А, I2 = 30 А. Найдите магнитную индукцию поля, вызванного токами I1 и I2 в точках М1, М2 и М3. Расстояния М1А=2 см, АМ2 =4 см и СМ3 =3см. [0,15мТл; 0,20 мТл; 0,17 мТл].

3.2. Решите предыдущую задачу при условии, что токи текут в одном направлении. [0,25 мТл; 0; 0,23 мТл].

3.3. Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг к другу и находятся в одной плоскости (рис. 3.2). Найдите магнитную индукцию поля в точках М1 и М2, если I1=2 А и I2=3 А. Расстояния АМ1=АМ2= 1 см, DМ1=СМ2=2 см. [10 ˉ5 Тл; 7·10 ˉ5 Тл ] .

3.4.Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг к другу и находятся во взаимноперпендикулярных плоскостях (рис. 3.3). Найдите магнитную индукцию поля в точках М1 и М2, если I1=2 А и I2=3 А. Расстояния АМ1=АМ2= 1 см и АС=2 см. [4,5·10 ˉ5 Тл; 7,2·10 ˉ5 Тл] .

3.5.На рис. 3.4 изображено сечение трёх прямолинейных бесконечно длинных проводников с током. Расстояния АС=СD=5 см; I1=I2=I; I3=2I. Найдите точку на прямой АD, в которой индукция магнитного поля, вызванного токами I1, I2, I3, равна нулю. [3,3 см от I1 вправо].

3.6.Решите предыдущую задачу при условии, что все токи текут в одном направлении. [1,8 см и 6,96 см от точки А вправо].

3.7. Расстояние между двумя длинными параллельными проводниками 5 см. По проводам текут токи в одном направлении 30 А каждый. Найдите индукцию магнитного поля в точке, находящейся на расстоянии 4 см от одного и 3 см от другого провода. [2,5 . 10 -4 Тл].

3.8. Расстояние между двумя длинными параллельными проводниками 5 см. По проводам текут токи в противоположных направлениях 10 А каждый. Найдите индукцию магнитного поля в точке, находящейся на расстоянии 2 см от одного и 3 см от другого провода. [1,66 . 10 -4 Тл].

3.9. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми равно 10 см, текут токи 20 и 30 А в одном направлении. Определите магнитную индукцию поля в точке, удаленной на одинаковое расстояние 10 см от обоих проводников. [872 мТл].

3.10. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми равно 25 см, текут токи 20 и 30 А в противоположных направлениях. Определите магнитную индукцию поля в точке, удаленной на расстояние 30 см от первого и 40 см от второго проводника. [9,5 мкТл].

3.11. Определите магнитную индукцию поля на оси тонкого проволочного кольца радиусом 10 см, по которому течет ток 10 А, в точке, расположенной на расстоянии 15 см от центра кольца. [10,7 мкТл].

3.12. Два круговых витка радиусом 4 см каждый расположены в параллельных плоскостях на расстоянии 0,1 м друг от друга. По виткам текут токи I1= I2=2 А. Найдите магнитную индукцию поля на оси витков в точке, находящейся на равном расстоянии от них. Токи в витках текут в одном направлении. [1,5·10 ˉ5 Тл].

3.13.Решите предыдущую задачу при условии, что токи текут в противоположных направлениях. [0].

3.14.Два круговых витка расположены в двух взаимно перпендикулярных плоскостях так, что центры этих витков совпадают. Радиус каждого витка 2 см, токи, текущие по виткам, I1= I2=5 А. Найдите индукцию магнитного поля в центре этих витков. [2,2 . 10 -4 Тл].

3.15. По проводу, согнутому в виде квадрата со стороной, равной 60 см, течет постоянный ток 3 А. Определите магнитную индукцию поля в центре квадрата. [5,66 мкТл].

3.16. По проводнику, изогнутому в виде окружности, течет ток. Магнитное поле в центре окружности В = 6,28 мкТл. Не изменяя силу тока в проводнике, ему придали форму квадрата. Определите магнитную индукцию поля в точке пересечения диагоналей этого квадрата. [7,2 мкТл].

3.17.По контуру в виде равностороннего треугольника идёт ток 40 А. Сторона треугольника 30 см. Определите магнитную индукцию в точке пересечения высот. [1,2 . 10 -4 Тл].

3.18. По проводнику, согнутому в виде прямоугольника со сторонами а = 8 см и в = 12 см, течет ток силой I = 50 А. Определите магнитную индукцию поля в точке пересечения диагоналей прямоугольника. [0,6 мТл].

3.19. По проволочной рамке, имеющей форму правильного шестиугольника, течет ток силой I = 2 А. При этом в центре рамки образуется магнитное поле В = 41,4 мкТл. Найдите длину проволоки, из которой сделана рамка. [0,2 м].

3.20.Бесконечно длинный прямой проводник согнут под прямым углом. По проводнику течет ток 100 А. Вычислите индукцию магнитного поля в точке, лежащей на биссектрисе угла на расстоянии 10 см от вершины угла. [4,82 . 10 -4 Тл].

3.21. Ток в 2А течет по длинному проводнику, согнутому под углом . Найдите магнитную индукцию поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии 10 см. [6,9 мкТл] .

3.22. Ток 2 А, протекая по катушке длиной 30 см, создает внутри нее магнитную индукцию поля 8,38 мТл. Сколько витков содержит катушка? Диаметр катушки считать малым по сравнению с ее длиной. [1000].

3.23.Соленоид длиной 0,5 м содержит 1000 витков. Определите магнитную индукцию поля внутри соленоида, если сопротивление его обмотки 120 Ом, а напряжение на её концах 60 В. [1,26 мТл].

3.24. Обмотка соленоида содержит два слоя плотно прилегающих друг к другу витков провода диаметром d = 0,2 мм. Определите магнитную индукцию поля на оси соленоида, если по проводу течет ток I = 0,5 А. [6,28 мТл].

3.25. Тонкое кольцо массой 15 г и радиусом 12 см несет заряд, равномерно распределенный с линейной плотностью 10 нКл/м. Кольцо равномерно вращается с частотой 8 с -1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Определите отношение магнитного момента кругового тока, создаваемого кольцом, к его моменту импульса.

3.26. Ток, протекая по проволочному кольцу из медной проволоки сечением 1,0 мм 2 , создает в центре кольца магнитную индукцию поля 0,224 мТл. Разность потенциалов, приложенная к концам проволоки, образующей кольцо, равна 0,12 В. Какой ток течет по кольцу? [20 А].

3.27. Бесконечно длинный провод образует круговую петлю, касательную к проводу. Радиус петли равен 8 см. По проводу течет ток силой 5А. Найдите индукцию магнитного поля в центре петли. [51,8 мкТл].

3.28.Сила тока в горизонтально расположенном проводнике длиной 20 см и массой 4 г равна 10 А. Найдите индукцию магнитного поля (модуль и направление), в которое нужно поместить проводник, чтобы сила тяжести уравновесилась силой Ампера. [20 мТл].

3.29. Два длинных горизонтальных проводника расположены параллельно друг другу на расстоянии 8 мм. Верхний проводник закреплен неподвижно, а нижний висит свободно под ним. Какой ток нужно пропустить по верхнему проводу для того, чтобы нижний мог висеть, не падая? По нижнему течет ток в 1А и масса каждого сантиметра длины проводника равна 2,55 мг. [100А] .

3.30. Два прямолинейных длинных проводника находятся на расстоянии 10 см друг от друга. По проводникам текут токи 20А и 30А. Какую работу на единицу длины проводников надо совершить, чтобы раздвинуть эти проводники до расстояния 20 см? [83 мкДж].

3.31. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии R. Чтобы их раздвинуть до расстояния 3R, на каждый сантиметр длины проводника затрачивается работа 220 нДж. Определите силу тока в проводниках. [10А].

3.32. Прямой проводник длиной 20 см, по которому течет ток 40А, находится в однородном магнитном поле с индукцией 0,5 Тл. Какую работу совершают силы поля, перемещая проводник на 20 см, если направление движения перпендикулярно линиям магнитной индукции и проводнику. [0,8 Дж].

3.33. В однородном магнитном поле, индукция которого
0,5 Тл, движется равномерно проводник со скоростью 20 см/с перпендикулярно полю. Длина проводника 10 см. По проводнику течет ток 2А. Найдите мощность, затрачиваемую на перемещение проводника. [20 мВт].

3.34. Магнитная индукция однородного поля 0,4 Тл. В этом поле равномерно со скоростью 15 см/с движется проводник длиной 1 м так, что угол между проводником и индукцией поля равен . По проводнику течет ток 1А. Найдите работу перемещения проводника за 10 с движения. [0,3 Дж].

3.35. Проводник длиной 1м расположен перпендикулярно однородному магнитному полю с индукцией 1,3 Тл. Определите ток в проводнике, если при движении его со скоростью 10 см/с в направлении, перпендикулярном полю и проводнику, за 4 с на перемещение проводника совершается работа 10 Дж. [19А].

3.36. В однородном магнитном поле с индукцией 18 мкТл в плоскости, перпендикулярной линиям индукции, расположена плоская круговая рамка, состоящая из 10 витков площадью 100 см 2 каждый. В обмотке рамки течет ток 3А. Рамку поворачивают на вокруг одного из диаметров. Какая работа при этом совершается? [1,08 мкДж].

3.37. Квадратный контур со стороной 20 см, по которому течет ток 20А, свободно установился в однородном магнитном поле с индукцией 10 мТл. Определите работу, совершаемую при повороте контура вокруг оси, лежащей в плоскости контура, на угол . [16 мДж].

3.38. По круговому витку радиусом 15 см течет ток силой 10А. Виток расположен в однородном магнитном поле с индукцией 40 мТл так, что нормаль к плоскости контура составляет угол с вектором магнитной индукции. Определите изменение потенциальной энергии контура при его повороте на угол в направлении увеличения угла. [0,04 Дж].

Читайте также:  При силе тока в электрической цепи 0 3 а сопротивление лампы 10 ом определите мощность 1

3.39. Круглая рамка с током площадью 20 см 2 закреплена параллельно магнитному полю с индукцией 0,2 Тл, и на нее действует вращающий момент 0,6 мН·м. Когда рамку освободили, она повернулась на , и ее угловая скорость стала 20 с -1 . Определите силу тока, текущего в рамке. [1,5А].

3.40. Круговой контур помещен в однородное магнитное поле так, что плоскость контура перпендикулярна силовым линиям поля. Магнитная индукция поля 0,2 Тл. По контуру течет ток 2А. Радиус контура 2 см. Какая работа совершится при повороте контура на ? [50,24 мДж].

3.41. Поток магнитной индукции сквозь площадь поперечного сечения соленоида (без сердечника) 5 мкВб. Длина соленоида 35 см. Определите магнитный момент этого соленоида. [1А·м 2 ].

3.42. Заряженная частица движется в магнитном поле по окружности со скоростью 1 Мм/с. Магнитная индукция поля равна 0,3 Тл. Радиус окружности 4 см. Найдите заряд частицы, если известно, что ее кинетическая энергия равна 12 кэВ. [3,2·10 -19 Кл].

3.43. Электрон движется по окружности в однородном магнитном поле с индукцией 31,4 мТл. Определите период обращения электрона. [1,1 нс].

3.44. Определите частоту обращения электрона по круговой орбите в магнитном поле с индукцией 1 Тл. [28 ГГц].

3.45. Протон, ускоренный разностью потенциалов 0,5 кВ, влетая в однородное магнитное поле с индукцией 0,1 Тл, движется по окружности. Определите радиус этой окружности. [3,23 см].

3.46. Серпуховской ускоритель протонов ускоряет эти частицы до энергии 76 ГэВ. Ускоренные протоны движутся по окружности радиуса 236 м и удерживаются на ней магнитным полем, перпендикулярным к плоскости орбиты. Найдите необходимое для этого магнитное поле. [1,07 кТл].

3.47. Протон и альфа-частица, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько раз радиус кривизны траектории протона меньше радиуса кривизны траектории альфа-частицы? [1,4].

3.48. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией 0,05 Тл. Определите момент импульса, которым обладала частица при движении в магнитном поле, если траектория ее представляла дугу окружности радиусом 0,2 мм. [3,2·10 -28 Н·м·с].

3.49. Найдите отношение q/m для заряженной частицы, если она, влетая со скоростью 10 8 см/с в однородное магнитное поле напряженностью в 2·10 5 А/м, движется по дуге окружности радиусом 8,3 см. Направление скорости движения частицы перпендикулярно направлению магнитного поля. [48 МКл/кг].

3.50. Альфа-частица со скоростью 2Мм/с влетает в магнитное поле с индукцией 1 Тл под углом . Определите радиус витка винтовой линии, которую будет описывать альфа-частица. [2,1 см].

3.51. Электрон, ускоренный разностью потенциалов 6 кВ, влетает в однородное магнитное поле под углом к направлению поля и начинает двигаться по винтовой линии. Магнитная индукция поля равна 130 мТл. Найдите шаг винтовой линии. [11 см].

3.52. Протон влетел в однородное магнитное поле под углом к направлению линий поля и движется по спирали, радиус которой 2,5 см. Магнитная индукция поля равна 0,05 Тл. Найдите кинетическую энергию протона. [1,6·10 -17 Дж].

3.53. Электрон, ускоренный разностью потенциалов 3 кВ, влетает в магнитное поле соленоида под углом к его оси. Число ампер-витков соленоида равно 5000. Длина соленоида 26 см. Найдите шаг винтовой траектории электрона в магнитном поле соленоида. [3,94 см].

3.54. Магнитное поле с индукцией 126 мкТл направлено перпендикулярно электрическому полю, напряженность которого 10 В/м. Ион, летящий с некоторой скоростью, влетает в эти скрещенные поля. При какой скорости он будет двигаться прямолинейно? [79 км/с].

3.55. Заряженная частица прошла ускоряющую разность потенциалов 104 В и влетела в скрещенные под прямым углом электрическое (Е = 100 В/м) и магнитное ( В = 0,1 Тл) поля. Определите отношение заряда частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории. [4,8 кКл/кг].

3.56. В однородном магнитном поле с индукцией 0,1 Тл равномерно вращается рамка, содержащая 1000 витков. Площадь рамки 150 см 2 . Рамка делает 10 об/с. Определите максимальную ЭДС индукции в рамке. Ось вращения лежит в плоскости рамки и перпендикулярна направлению поля. [94,2 В].

3.57. Проволочный виток расположен перпендикулярно магнитному полю, индукция которого изменяется по закону В=Во(1+е к t ), где Во = 0,5Тл, к =1 с -1 . Найдите величину ЭДС, индуцируемой в витке в момент времени, равный 2,3 с. Площадь витка 0,04 м 2 . [2 мВ].

3.58. Кольцо из алюминиевого провода помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Определите скорость изменения магнитного поля, если сила индукционного тока в кольце 0,5А. Удельное сопротивление алюминия 26 нОм·м. [0,33 Тл/с].

3.59. В магнитном поле, индукция которого 0,25 Тл, вращается стержень длиной 1 м с постоянной угловой скоростью 20 рад/с. Ось вращения проходит через конец стержня параллельно силовым линиям поля. Найдите ЭДС индукции, возникающую на концах стержня. [2,5 В].

3.60. В магнитном поле с индукцией 0,1 Тл помещена квадратная рамка из медной проволоки. Площадь поперечного сечения проволоки 1 мм 2 , площадь рамки 25 см 2 . Нормаль к плоскости рамки параллельна силовым линиям поля. Какой заряд пройдет по рамке при исчезновении магнитного поля? Удельное сопротивление меди 17 нОм·м. [74 мКл].

3.61. Кольцо из проволоки сопротивлением 1 мОм находится в однородном магнитном поле с индукцией 0,4 Тл. Плоскость кольца составляет с линиями индукции угол . Определите заряд, который протечет по кольцу, если его выдернуть из поля. Площадь кольца равна 10 см 2 . [0,4 Кл].

3.62. Медный обруч, имеющий массу 5 кг, расположен в плоскости магнитного меридиана. Какой заряд индуцируется в нем, если его повернуть около вертикальной оси на ? Горизонтальная составляющая земного магнитного поля 20 мкТл. Плотность меди 8900 кг/м 3 , удельное сопротивление меди 17 нОм·м.
[5,26 мКл].

3.63. Катушка, содержащая 10 витков, каждый площадью 4 см 2 , находится в однородном магнитном поле. Ось катушки параллельна линиям индукции поля. Катушка присоединена к баллистическому гальванометру с сопротивлением 1000 Ом, сопротивлением катушки можно пренебречь. Когда катушку выдернули из поля, через гальванометр протекло 2 мкКл. Определите индукцию поля. [0,5 Тл].

3.64. На стержень из немагнитного материала длиной 50 см и сечением 2 см 2 намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определите энергию магнитного поля соленоида, если сила тока в обмотке 0,5А. [20 мкДж].

3.65. Найдите разность потенциалов на концах оси автомобиля, возникающую при горизонтальном движении его со скоростью 120 км/ч, если длина оси 1,5 м и вертикальная составляющая напряженности земного магнитного поля равна 40А/м. [2,5 мВ].

3.66. На соленоид длиной 20 см и площадью поперечного сечения 30 см 2 надет проволочный виток. Обмотка соленоида имеет 320 витков и по ней течет ток 3А. Какая ЭДС индуцируется в надетом на соленоид витке, когда ток в соленоиде исчезает в течение 0,001 с? [18 мВ].

3.67. Катушка диаметром 10 см, имеющая 500 витков, находится в магнитном поле. Ось катушки параллельна линиям магнитной индукции поля. Чему равно среднее значение ЭДС индукции в катушке, если магнитная индукция поля увеличивается в течение 0,1 с от нуля до 2 Тл? [78,5 В].

3.68. Маховое колесо диаметром 3 м вращается вокруг горизонтальной оси со скоростью 3000 об/мин. Определите ЭДС, индуцируемую между ободом и осью колеса, если плоскость колеса составляет с плоскостью магнитного меридиана угол . Горизонтальная составляющая земного магнитного поля равна 20 мкТл. [3,5 мВ].

3.69. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин -1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см 2 . Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определите максимальную ЭДС, индуцируемую в катушке. [31,4В].

Источник

Решить предыдущую задачу при условии что ток в проводнике равен 30

Формулы, используемые на уроках «Задачи на Мощность электрического тока»

Название величины

Обозначение

Единица измерения

Формула

Сила тока

I

I = U / R

Напряжение

U

U = IR

Время

t

t = A / IU

Работа тока

А

A = IUt

Мощность тока

Р

Р = IU

Мощность источника тока в замкнутой цепи

Р

1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Определить мощность тока в электрической лампе, если при напряжении 110 В сила тока в ней 200 мА.

Задача № 2. Определить мощность тока в электрической лампе, если сопротивление нити акала лампы 400 Ом, а напряжение на нити 100 В.

Задача № 3. Определить силу тока в лампе электрического фонарика, если напряжение на ней 6 В, а мощность 1,5 Вт.

Задача № 4. В каком из двух резисторов мощность тока больше при последовательном (см. рис. а) и параллельном (см. рис. б) соединении? Во сколько раз больше, если сопротивления резисторов R1 = 10 Ом и R2 = 100 Ом?

Задача № 5. Ученики правильно рассчитали, что для освещения елки нужно взять 12 имеющихся у них электрических лампочек. Соединив их последовательно, можно будет включить их в городскую сеть. Почему меньшее число лампочек включать нельзя? Как изменится расход электроэнергии, если число лампочек увеличить до 14?

Задача № 6. В горном ауле установлен ветряной двигатель, приводящий в действие электрогенератор мощностью 8 кВт. Сколько лампочек мощностью 40 Вт можно питать от этого источника тока, если 5% мощности расходуется в подводящих проводах?

Читайте также:  Как уменьшить ток зарядника

Задача № 7. Сила тока в паяльнике 4,6 А при напряжении 220 В. Определите мощность тока в паяльнике.

Задача № 8. Одинакова ли мощность тока в проводниках ?

Задача № 9. На баллоне первой лампы написано 120 В; 100 Вт, а на баллоне второй — 220 В; 100 Вт. Лампы включены в сеть с напряжением, на которое они рассчитаны. У какой лампы сила тока больше; во сколько раз?

Задача № 10. (повышенной сложности) В сеть напряжением 120 В параллельно включены две лампы: 1 — мощностью 300 Вт, рассчитанная на напряжение 120 В, и 2, последовательно соединенная с резистором,— на 12 В. Определите показания амперметров А1 и А и сопротивление резистора, если амперметр А2 показывает силу тока 2 А.

Задача № 11. ОГЭ При силе тока I1 = 3 А во внешней цепи выделяется мощность Р1 = 18 Вт, а при силе тока I2 = 1 А — мощность Р2 = 10 Вт. Найти ЭДС и внутреннее сопротивление источника тока.

Задача № 12. ЕГЭ Имеются две электрические лампочки мощностью Р1 = 40 Вт и Р2 = 60 Вт, рассчитанные на напряжение сети U = 220 В. Какую мощность будет потреблять каждая из лампочек, если их подключить к сети последовательно?

Краткая теория для решения Задачи на Мощность электрического тока.

ЗАДАЧИ на Работу электрического тока. ЗАДАЧИ на Мощность электрического тока/

Это конспект по теме «ЗАДАЧИ на Мощность электрического тока». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Закон Джоуля-Ленца
  • Посмотреть конспект по теме Работа и Мощность электрического тока
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

10 Комментарии

Как вы в задаче 12 получаете 1210 Ом?

Спасибо за информацию. Опечатку исправили, должно быть 220 Вольт, а не 200.

В 3 задаче тоже опечатка. В условии написано 4.5В,а в дано 6В

В задаче 12 у вас ответ неправильный, потому что округлили R2. Там сопротивление R2=806 и 2/3.
Посчитайте в виде дробей и всё станет ясно:
R2 = 220 * 220 / 60 = 220 * 11 / 3 = 2420 / 3 = 806 и 2/3.
Отсюда и неправильный ток, правильный:
I = 220 / (1210 + 806 и 2/3) = 220 / (2016 и 2/3) = 66/605.
P1 = 66/605 * 66/605 * 1210 = 66/605 * 132 = 14,4 Вт.
P2 = 66/605 * 66/605 * 806 и 2/3 = 66/605 * 88= 9,6 Вт.
Ответ: P1 = 14,4 Вт; P2 = 9,6 Вт.

Выполните указанные ниже задачи.
а) Лампа подключена к сети 120 В. Если работа тока 0,48 кДж, сколько электричества прошло через лампу?
б) Какое количество тепла выделяется в электрической лампе за час, если напряжение лампы 120 В, а сила тока 0,01 кА?
Помогите

а) Дано: U = 120 B, A = 480 Дж.
Найти: q — ?
Решение: A = qU, q = A/U = 480/120 = 4 Кл.

За 30 мин по цепи протекал электрический ток силой 0,75а. Напрежение в цепи-12в. Определите произведенную за это время работу электрического тока.

Если ток в сети составляет 12 А, а напряжение на клеммах двигателя составляет 12 В, сколько электроэнергии будет проходить в двигателе за 30 минут? Чему равна мощность?

Добавить комментарий Отменить ответ

Конспекты по физике:

7 класс

  • Физические величины
  • Строение вещества
  • Механическое движение. Траектория
  • Прямолинейное равномерное движение
  • Неравномерное движение. Средняя скорость
  • ЗАДАЧИ на движение с решением
  • Масса тела. Плотность вещества
  • ЗАДАЧИ на плотность, массу и объем
  • Силы вокруг нас (силы тяжести, трения, упругости)
  • ЗАДАЧИ на силу тяжести и вес тела
  • Давление тел, жидкостей и газов
  • ЗАДАЧИ на давление твердых тел с решениями
  • ЗАДАЧИ на давление жидкостей с решениями
  • Закон Архимеда
  • Сообщающиеся сосуды. Шлюзы
  • ЗАДАЧИ на силу Архимеда с решениями
  • Механическая работа, мощность и КПД
  • ЗАДАЧИ на механическую работу с решениями
  • ЗАДАЧИ на механическую мощность
  • Простые механизмы. Блоки
  • Рычаг. Равновесие рычага. Момент силы
  • ЗАДАЧИ на простые механизмы с решениями
  • ЗАДАЧИ на КПД простых механизмов
  • Механическая энергия. Закон сохранения энергии
  • Физика 7: все формулы и определения

8 класс

  • Введение в оптику
  • Тепловое движение. Броуновское движение
  • Диффузия. Взаимодействие молекул
  • Тепловое равновесие. Температура. Шкала Цельсия
  • Внутренняя энергия
  • Виды теплопередачи: теплопроводность, конвекция, излучение
  • Количество теплоты. Удельная теплоёмкость
  • Уравнение теплового баланса
  • Испарение. Конденсация
  • Кипение. Удельная теплота парообразования
  • Влажность воздуха
  • Плавление и кристаллизация
  • Тепловые машины. ДВС. Удельная теплота сгорания топлива
  • Электризация тел
  • Два вида электрических зарядов. Взаимодействие зарядов
  • Закон сохранения электрического заряда
  • Электрическое поле. Проводники и диэлектрики
  • Постоянный электрический ток
  • Сила тока. Напряжение
  • Электрическое сопротивление
  • Закон Ома. Соединение проводников
  • Работа и мощность электрического тока
  • Закон Джоуля-Ленца и его применение
  • Электромагнитные явления
  • Колебательные и волновые явления
  • Физика 8: все формулы и определения
  • ЗАДАЧИ на количество теплоты с решениями
  • ЗАДАЧИ на сгорание топлива с решениями
  • ЗАДАЧИ на плавление и отвердевание
  • ЗАДАЧИ на парообразование и конденсацию
  • ЗАДАЧИ на КПД тепловых двигателей
  • ЗАДАЧИ на Закон Ома с решениями
  • ЗАДАЧИ на сопротивление проводников
  • ЗАДАЧИ на Последовательное соединение
  • ЗАДАЧИ на Параллельное соединение
  • ЗАДАЧИ на Работу электрического тока
  • ЗАДАЧИ на Мощность электрического тока
  • ЗАДАЧИ на Закон Джоуля-Ленца
  • Опыты Эрстеда. Магнитное поле. Электромагнит
  • Магнитное поле постоянного магнита
  • Действие магнитного поля на проводник с током
  • Электромагнитная индукция. Опыты Фарадея
  • Явления распространения света
  • Дисперсия света. Линза
  • Оптические приборы
  • Электромагнитные колебания и волны

9 класс

  • Введение в квантовую физику
  • Формула времени. Решение задач
  • ЗАДАЧИ на Прямолинейное равномерное движение
  • ЗАДАЧИ на Прямолинейное равноускоренное движение
  • ЗАДАЧИ на Свободное падение с решениями
  • ЗАДАЧИ на Законы Ньютона с решениями
  • ЗАДАЧИ закон всемирного тяготения
  • ЗАДАЧИ на Движение тела по окружности
  • ЗАДАЧИ на искусственные спутники Земли
  • ЗАДАЧИ на Закон сохранения импульса
  • ЗАДАЧИ на Механические колебания
  • ЗАДАЧИ на Механические волны
  • ЗАДАЧИ на Состав атома и ядерные реакции
  • ЗАДАЧИ на Электромагнитные волны
  • Физика 9 класс. Все формулы и определения
  • Относительность движения
  • Равномерное прямолинейное движение
  • Прямолинейное равноускоренное движение
  • Свободное падение
  • Скорость равномерного движения тела по окружности
  • Масса. Плотность вещества
  • Сила – векторная физическая величина
  • Первый закон Ньютона
  • Второй закон Ньютона. Третий закон Ньютона
  • Трение покоя и трение скольжения
  • Деформация тела
  • Всемирное тяготение. Сила тяжести
  • Импульс тела. Закон сохранения импульса
  • Механическая работа. Механическая мощность
  • Кинетическая и потенциальная энергия
  • Механическая энергия
  • Золотое правило механики
  • Давление твёрдого тела. Давление газа
  • Закон Паскаля. Гидравлический пресс
  • Закон Архимеда. Условие плавания тел
  • Механические колебания и волны. Звук
  • МКТ. Агрегатные состояния вещества
  • Радиоактивность. Излучения. Распад
  • Опыты Резерфорда. Планетарная модель атома
  • Состав атомного ядра. Изотопы
  • Ядерные реакции. Ядерный реактор

10-11 классы

  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)
  • ЕГЭ Закон Кулона. ЗАДАЧИ с решениями
  • Электрическое поле. ЗАДАЧИ с решениями
  • Потенциал. Разность потенциалов. ЗАДАЧИ с решениями
  • Закон Ома. Соединение проводников. ЗАДАЧИ на ЕГЭ
  • Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Найти конспект

О проекте

Сайт «УчительPRO» — некоммерческий школьный проект учеников, их родителей и учителей. Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie и других пользовательских данных в целях функционирования сайта, проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Возрастная категория: 12+

(с) 2021 Учитель.PRO — Копирование информации с сайта только при указании активной ссылки на сайт!

Источник

Урок решения задач по теме «Закон Ома для участка цепи, последовательное и параллельное соединения»

Разделы: Физика

Цель урока: Закрепить изученный материал путем решения задач.

Задачи:

Образовательные:

  • Научить учащихся решать задачи на последовательное и параллельное соединение проводников;
  • Углубить и расширить знания о данных видах соединения проводников;
  • Научить определять силу тока, напряжение, сопротивление при последовательном и параллельном соедини проводников;
  • Научить решать задачи на смешанное соединение проводников;
  • Научить учащихся разбираться в схемах электрических цепей.

Воспитательные:

  • Развить личные качества учащихся: аккуратность, внимание, усидчивость;
  • Воспитывать культуру общения при работе в группах.

Развивающие:

  • Продолжить развитие навыков решения задач на данную тему;
  • Продолжить развитие умений анализировать условия задач и ответов, умений делать выводы, обобщения;
  • Продолжить развитие памяти, творческих способностей.

План урока

Этап Время Метод
Организационный момент 2 мин Словесный
I Актуализация знаний 5 мин Письменная работа в парах
II Вводная часть 2 мин Слово учителя, опрос учащихся
III Решение задач 45-50 мин Работа учителя, учащихся у доски
IV Работа учащихся в группах 20 мин Групповой работы, устный, письменный
V Итог урока 1-2 мин Словесный метод

Оформление класса: Проектор с экраном, доска с мелом. Раздаточный материал.

Слайд 1 включен в начале урока. Урок начинается с физического диктанта.

I. Актуализация знаний.

На слайде физический диктант. (Слайд 2). Учащимся выдается таблица для заполнения.

1. Заполнить двенадцать ячеек таблицы на карточке:

Ученый Физическая величина Формула Единица измерения
1 2 3 4
5 6 7 8
9 10 11 12
Выполнил ______________ Проверил __________ Оценка__________

2. После заполнения таблиц учащиеся меняют карточками с соседом по парте, проверяют вместе с учителем и выставляют оценку:

Кол-во ошибок 1 2-3 4-6 7 и более
Оценка 5 4 3 2

II. Вводное слово.

Читайте также:  Двигатель постоянного тока синхронный или нет

Сегодня на уроке мы с вами будем решать задачи на закон Ома, на последовательное и параллельное соединение проводников. (Слайд 3).

Запишите тему урока. (Слайд 4).

Для этого вспомним формулы и законы, которые нам пригодятся при решении задач.

III. Решение задач.

(3 ученика выходят к доске и записывают: первый закон Ома и выражает и него напряжение и сопротивление; второй – формулы справедливые для последовательного соединения; третий – формулы справедливые для последовательного соединения).

Задача 1. Для начала решим устную задачу на запоминание закона Ома. (Слайд 5)

a) U = 20B,R=10Om,I-?
б) I=10A,R = 5Om, R-?
в) I = 5A,U=15B,R-?

Ответ: а) I = 2А; б) U= 50 Ом; в) R = 3 Ом.

Задача 2. (Решает учитель с использованием презентации) Слайд 6.

Рассчитать силу тока, проходящую по медному проводу длиной 100м, площадью поперечного сечения 0,5мм 2 , если к концам провода приложено напряжение 6,8B.

Решение:

Ответ: Сила тока равна 2А.

Вопросы: Что известно из условия задачи? Какую величину необходимо определить? По какому закону будем определять силу тока? Какие величины нам неизвестны для нахождения силы тока и как их найти? ( – берется из таблицы). Теперь найдем R и полученное значение подставим в формулу для нахождения силы тока. (Перевод S в м 2 не нужно делать, т.к. в единицах измерения плотности тоже присутствуют тоже мм 2 )

Задача 3. (Решает у доски сильный ученик) Условия задачи Слайд 7.

В электрическую цепь включены последовательно резистор сопротивлением 5 Ом и две электрические лампы сопротивлением 500 Ом. Определите общее сопротивление проводника.

Решение:

Ответ: Общее сопротивление проводника равно 1005 Ом.

Вопросы: Какие элементы цепи нам даны? Как найти общее сопротивление?

Два резистора сопротивлением r 1 = 5 Ом и r2= 30 Ом включены, как показано на рисунке, к зажимам источника тока напряжением 6В. Найдите силу тока на всех участках цепи.

Решение:

Ответ: Сила тока на всех участках цепи равна 1,4 А.

Вопросы: Какой тип соединения рассматривается в задаче? Что известно из условия? Какие величины необходимо найти? Как найти I? Что для этого неизвестно? Как найти I 1 и I2?

Второй способ решения данной задачи:

Решение:

Ответ: Сила тока на всех участках цепи равна 1,4А.

Вопросы: Какой тип соединения рассматривается в задаче? Что известно из условия? Какие величины необходимо найти? По какой формуле будем находить общий ток в цепи? Какая величина нам неизвестна при нахождении силы тока и как ее найти?

Задача 5. (Решает ученик, можно вызвать два ученика по очереди). Определите полное сопротивление цепи и токи в каждом проводнике, если проводники соединены так, как показано на рисунке, а r1=1 Ом, r2=2 Ом, r3= 3 Ом, UAC = 11В. Условие задачи Слайд 9.

Решение:

Вопросы: Какие типы соединения изображены на рисунке? Что нужно определить? Как найти полное сопротивление и величины в него входящие? Как найти силу тока в цепи? Как определить I1 и 12? Как определить UBC?

Задача 6. Условия задачи Слайд 10. (Вопросы 1,2,5 решаются устно. 3,4 – два ученика).

  1. Какому значению силы тока и напряжения соответствует точка А?
  2. Какому значению силы тока и напряжения соответствует точка В?
  3. Найдите сопротивление в точке А и в точке В.
  4. Найдите по графику силу тока в проводнике при напряжении 8 В и вычислите сопротивление в этом случае.
  5. Какой вывод можно проделать по результатам задачи?

IV. Самостоятельная работа в группах.

Учащиеся делятся на 4 группы и каждой группе дается карточка с заданием.

Учитель объясняет критерии выставления оценок:

Во время работы в группах ведется наблюдение за более и менее активными участниками группы. Соответственно это будет влиять на более или менее высокую оценку при проверке записей в тетради, также будет учитываться уровень сложности решенных задач. Тетради с записями сдаются в конце урока. Время для решения задач ограниченное.

Задание 1. Слайд 11. (8 мин.)

Вопросы к карточкам:

  1. Перечислите все элементы цепи.
  2. Какие виды соединения используются?
  3. Рассчитайте напряжение на лампе.
  4. Рассчитайте напряжение на реостате.
  5. Рассчитайте силу тока на всем участке цепи.

Определить общее сопротивление в цепи.

Определите силу тока I при заданных U и R.

Группа R, Ом U, В I, А
I 2 55 ?
II 14,2 87,4 ?
III 21 100 ?
IV 0,16 0,28 ?

Моток проволоки имеет сопротивление R и длину l .

Вычислить площадь поперечного сечения S.

Группа Материал Параметры
Сопротивление Длина проводника Удельное сопротивление
R, Ом l, мм 2 p, Ом·мм 2 /м
I Медь 0,83 33,9 1,7·10 -2
II Алюминий 16,1 83,1 2,8·10 -2
III Серебро 0,39 0,234 1,6·10 -2
IV Сталь 23,2 3,06 12·10 -2

После выполнения заданий группами, тетради сдаются учителю.

На сегодня все. Мы с вами научились решать задачи на последовательное и параллельное соединение проводников, закрепили знания о законе Ома для участка цепи.

Домашнее задание. Повторить все формулы и физические величины.

Источник

Задачи на постоянный электрический ток с решением

В сегодняшней статье разберем несколько решений задач на одну из распространенных тем: постоянный электрический ток.

Даже если задачи вас не интересуют, подписывайтесь на наш телеграм – там есть актуальные новости для студентов всех специальностей. А еще у нас есть канал, где можно найти приятные скидки на наши услуги.

Постоянный электрический ток: задачи

Рубрика «Физика для чайников» может пригодится вам в учебе. Там есть не только интересные статьи, но и решения задач по разным темам:

Кстати, прежде чем приступать к решению задач по теме постоянный электрический ток, рекомендуем прочитать общую памятку: так у вас будет систематизированный план действий для решения любой задачи. На всякий случай под рукой можно держать полезные формулы.

Задача на постоянный ток №1

Условие

К источнику тока с ЭДС 1,5 В присоединили катушку с сопротивлением 0,1 Ом. Амперметр показал силу тока, равную 0,5 А. Когда к источнику тока присоединили последовательно еще один источник тока с такой же ЭДС, то сила тока в той же катушке оказалась равной 0,4 А. Определить внутренние сопротивления первого и второго источников тока.

Решение

Изобразим первоначальную схему:

Общее сопротивление цепи:

По закону Ома для участка цепи запишем:

После последовательного подключения второго источника тока:

Ответ: 2,9 Ом; 4,5 Ом

Задача на постоянный ток №2. Мощность тока

Условие

Два медных проводника одинаковой длины соединены последовательно и подключены к источнику тока, внутренним сопротивлением которого можно пренебречь. При протекании тока в первом проводнике выделяется мощность P1. Какая мощность P2 выделяется в проводниках при их параллельном соединении, если площадь сечения второго проводника вдвое больше площади сечения первого проводника?

Решение

Запишем выражения для силы тока и мощности, выделяемой на проводниках, с учетом того, что проводники соединены последовательно:

Сопротивление проводников равно:

Теперь запишем выражения для мощности и выразим P2 через P1:

Ответ: P2 = 0,5P1

Задача на постоянный ток №3. Взаимодействие токов

Условие

Определите модуль силы, действующей на единицу длины второго проводника с током со стороны двух других проводников. Токи в проводниках равны I1=2А, I2=3А, I3=2А. Расстояние l=10 см.

Решение

Направление силы показано на рисунке.

Силы 1-2 и 3-2 соответственно равны:

Ответ: 205 мкА.

Задача на постоянный ток №4. Короткое замыкание

Условие

Определить силу тока короткого замыкания в цепи, если при силе тока 2 А мощность тока во внешней цепи равна 10 Вт, а при силе тока 5 А мощность тока во внешней цепи равна 15Вт.

Решение

Чтобы вычислить ток короткого замыкания, нужно знать ЭДС и внутреннее сопротивление источника:

Запишем выражения для мощности тока во внешней цепи и напряжения нагрузки:

Условие задачи позволяет составить систему уравнений и найти нужные величины:

Ответ: 9,5 А.

Задача на постоянный ток №5. Закон Ома

Условие

Определить силу тока, проходящего через сопротивление 7 Ом, если напряжение на нем составляет 21 В.

Решение

Для решения этой элементарной задачи необходим закон Ома:

Ответ: 3 А.

Вопросы на тему «Постоянный ток»

Вопрос 1. Что такое электрический ток?

Ответ. Электрический ток – это упрядоченное движение заряженных частиц.

Вопрос 2. Какой ток называется постоянным?

Ответ. Постоянный ток – это ток, который со временем не меняется по величине и не меняет направления.

Ксати, в нашем блоге вы можете почитать о войне токов между Николой Теслой (переменный ток) и Томасом Эдисоном (постоянный ток).

Вопрос 3. Что определяет сила тока?

Ответ. Сила тока – это скаляр, который определяет заряд, переносимый через поперечное сечение проводника за определенное время.

Вопрос 4. Что такое ЭДС?

Ответ. ЭДС (электродвижущая сила) – скалярная физическая величина, равная отношению работы сторонних сил при перемещении заряда от отрицательного полюса источника тока к положительному, к величине этого заряда.

Вопрос 5. Как звучит закон Ома в простейщем виде?

Ответ. Закон Ома для участка цепи без ЭДС гласит:

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Нужна помощь в решении задач и выполнении других заданий? Обращайтесь в профессиональный студенческий сервис в любое время.

  • Контрольная работа от 1 дня / от 100 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 7950 р. Узнать стоимость
  • Курсовая работа 5 дней / от 1800 р. Узнать стоимость
  • Реферат от 1 дня / от 700 р. Узнать стоимость

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Adblock
detector