Меню

Решение задач по физике найти ток в цепи



Решение задач. Электрический ток

Конспект по физике для 8 класса «Решение задач по теме Электрический ток». Как решать задачи на нахождение силы тока в цепи. Как решать задачи на нахождение напряжения в цепи. Как решать задачи на закон Ома.

Решение задач по теме
Электрический ток

ЗАДАЧА 1.

Через нить накаливания лампочки от карманного фонарика за 2 мин проходит электрический заряд, равный 30 Кл. Определите силу тока в этой лампочке.

Запишем условие задачи и решим её.

Ответ: I = 250 мА.

ЗАДАЧА 2.

Электродвигатель включён в электрическую цепь с напряжением 24 В. Определите заряд, прошедший через электродвигатель, если при этом была совершена работа, равная 84 кДж.

Ответ: q = 3500 Кл.

ЗАДАЧА 3.

Определите силу тока в кипятильнике, включённом в сеть с напряжением 220 В, если сопротивление спирали составляет 55 Ом.

Ответ: I = 4 А.

ЗАДАЧА 4.

Какое напряжение нужно приложить к концам проводника сопротивлением 5 Ом, чтобы по проводнику пошёл ток с силой тока, равной 300 мА?

Ответ: U = 1,5 В.

ЗАДАЧА 5.

Определите сопротивление резистора, если за время 10 мин через него проходит заряд 200 Кл. Напряжение на концах резистора равно 6 В.

Ответ: R = 18 Ом.

ИТОГИ темы «Электрический ток»

  • Электрическим током называют упорядоченное движение заряженных частиц под действием электрического поля.
  • Сила тока — это физическая величина, которая показывает, какой электрический заряд проходит через поперечное сечение проводника за единицу времени.
  • Работу электрического поля, создающего электрический ток, называют работой тока.
  • Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного электрического заряда из одной точки поля в другую.
  • Электрическое сопротивление характеризует свойство проводника препятствовать протеканию в нём электрического тока.
  • Закон Ома гласит: сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению.

Вы смотрели Конспект по физике для 8 класса «Решение задач. Электрический ток».

Источник

Решение задач по физике найти ток в цепи

Решение задач на уроках физики в 10-11 классах и при подготовке к ЕГЭ смотрите в следующих конспектах:

Задачи на Закон Ома.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Какова сила тока в резисторе, если его сопротивление 12 Ом, а напряжение на нем 120 В?

Задача № 2. Сопротивление проводника 6 Ом, а сила тока в нем 0,2 А. Определите напряжение на концах проводника.

Задача № 3. Определите сопротивление проводника, если при напряжении 110 В сила тока в нем 2 А.

Задача № 4. По графикам зависимости силы тока от напряжения определите сопротивление каждого проводника.

Задача № 5. Чему равна сила тока в электрической лампе карманного фонаря, если сопротивление нити накала 16,6 Ом и лампа подключена к батарейке напряжением 2,5 В?

Задача № 6. Электрический утюг включен в сеть с напряжением 220 В. Какова сила тока в нагревательном элементе утюга, если сопротивление его равно 48,4 Ом?

Задача № 7. При напряжении 110 В, подведенном к резистору, сила тока в нем равна 5 А. Какова будет сила тока в резисторе, если напряжение на нем увеличить на 10 В?

Задача № 8. Чему равно сопротивление спирали электрической лампы в рабочем состоянии, у которой на цоколе написано 6,3 В, 0,22 А?

Задача № 9. Показание вольтметра, присоединенного к горящей электрической лампе накаливания, равно 120 В, а амперметра, измеряющего силу тока в лампе, 0,5 А. Чему равно сопротивление лампы? Начертите схему включения лампы, вольтметра и амперметра.

Задача № 10. ОГЭ Источник постоянного тока с ЭДС E = 12 В и внутренним сопротивлением г = 1 Ом замкнут на внешнее сопротивление R = 9 Ом. Определить силу тока в цепи I, падение напряжения UR на внешнем участке и падение напряжения Ur на внутреннем участке цепи.

Краткая теория для решения Задачи на Закон Ома.

ЗАДАЧИ на Закон Ома

Это конспект по теме «ЗАДАЧИ на Закон Ома». Выберите дальнейшие действия:

6 Комментарии

а 4 задача верна?=)

Там все примерною.

там должен быть 4,55

Здесь все задачи верны?

Добавить комментарий Отменить ответ

Конспекты по физике:

7 класс

  • Физические величины
  • Строение вещества
  • Механическое движение. Траектория
  • Прямолинейное равномерное движение
  • Неравномерное движение. Средняя скорость
  • ЗАДАЧИ на движение с решением
  • Масса тела. Плотность вещества
  • ЗАДАЧИ на плотность, массу и объем
  • Силы вокруг нас (силы тяжести, трения, упругости)
  • ЗАДАЧИ на силу тяжести и вес тела
  • Давление тел, жидкостей и газов
  • ЗАДАЧИ на давление твердых тел с решениями
  • ЗАДАЧИ на давление жидкостей с решениями
  • Закон Архимеда
  • Сообщающиеся сосуды. Шлюзы
  • ЗАДАЧИ на силу Архимеда с решениями
  • Механическая работа, мощность и КПД
  • ЗАДАЧИ на механическую работу с решениями
  • ЗАДАЧИ на механическую мощность
  • Простые механизмы. Блоки
  • Рычаг. Равновесие рычага. Момент силы
  • ЗАДАЧИ на простые механизмы с решениями
  • ЗАДАЧИ на КПД простых механизмов
  • Механическая энергия. Закон сохранения энергии
  • Физика 7: все формулы и определения

8 класс

  • Введение в оптику
  • Тепловое движение. Броуновское движение
  • Диффузия. Взаимодействие молекул
  • Тепловое равновесие. Температура. Шкала Цельсия
  • Внутренняя энергия
  • Виды теплопередачи: теплопроводность, конвекция, излучение
  • Количество теплоты. Удельная теплоёмкость
  • Уравнение теплового баланса
  • Испарение. Конденсация
  • Кипение. Удельная теплота парообразования
  • Влажность воздуха
  • Плавление и кристаллизация
  • Тепловые машины. ДВС. Удельная теплота сгорания топлива
  • Электризация тел
  • Два вида электрических зарядов. Взаимодействие зарядов
  • Закон сохранения электрического заряда
  • Электрическое поле. Проводники и диэлектрики
  • Постоянный электрический ток
  • Сила тока. Напряжение
  • Электрическое сопротивление
  • Закон Ома. Соединение проводников
  • Работа и мощность электрического тока
  • Закон Джоуля-Ленца и его применение
  • Электромагнитные явления
  • Колебательные и волновые явления
  • Физика 8: все формулы и определения
  • ЗАДАЧИ на количество теплоты с решениями
  • ЗАДАЧИ на сгорание топлива с решениями
  • ЗАДАЧИ на плавление и отвердевание
  • ЗАДАЧИ на парообразование и конденсацию
  • ЗАДАЧИ на КПД тепловых двигателей
  • ЗАДАЧИ на Закон Ома с решениями
  • ЗАДАЧИ на сопротивление проводников
  • ЗАДАЧИ на Последовательное соединение
  • ЗАДАЧИ на Параллельное соединение
  • ЗАДАЧИ на Работу электрического тока
  • ЗАДАЧИ на Мощность электрического тока
  • ЗАДАЧИ на Закон Джоуля-Ленца
  • Опыты Эрстеда. Магнитное поле. Электромагнит
  • Магнитное поле постоянного магнита
  • Действие магнитного поля на проводник с током
  • Электромагнитная индукция. Опыты Фарадея
  • Явления распространения света
  • Дисперсия света. Линза
  • Оптические приборы
  • Электромагнитные колебания и волны

9 класс

  • Введение в квантовую физику
  • Формула времени. Решение задач
  • ЗАДАЧИ на Прямолинейное равномерное движение
  • ЗАДАЧИ на Прямолинейное равноускоренное движение
  • ЗАДАЧИ на Свободное падение с решениями
  • ЗАДАЧИ на Законы Ньютона с решениями
  • ЗАДАЧИ закон всемирного тяготения
  • ЗАДАЧИ на Движение тела по окружности
  • ЗАДАЧИ на искусственные спутники Земли
  • ЗАДАЧИ на Закон сохранения импульса
  • ЗАДАЧИ на Механические колебания
  • ЗАДАЧИ на Механические волны
  • ЗАДАЧИ на Состав атома и ядерные реакции
  • ЗАДАЧИ на Электромагнитные волны
  • Физика 9 класс. Все формулы и определения
  • Относительность движения
  • Равномерное прямолинейное движение
  • Прямолинейное равноускоренное движение
  • Свободное падение
  • Скорость равномерного движения тела по окружности
  • Масса. Плотность вещества
  • Сила – векторная физическая величина
  • Первый закон Ньютона
  • Второй закон Ньютона. Третий закон Ньютона
  • Трение покоя и трение скольжения
  • Деформация тела
  • Всемирное тяготение. Сила тяжести
  • Импульс тела. Закон сохранения импульса
  • Механическая работа. Механическая мощность
  • Кинетическая и потенциальная энергия
  • Механическая энергия
  • Золотое правило механики
  • Давление твёрдого тела. Давление газа
  • Закон Паскаля. Гидравлический пресс
  • Закон Архимеда. Условие плавания тел
  • Механические колебания и волны. Звук
  • МКТ. Агрегатные состояния вещества
  • Радиоактивность. Излучения. Распад
  • Опыты Резерфорда. Планетарная модель атома
  • Состав атомного ядра. Изотопы
  • Ядерные реакции. Ядерный реактор

10-11 классы

  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)
  • ЕГЭ Закон Кулона. ЗАДАЧИ с решениями
  • Электрическое поле. ЗАДАЧИ с решениями
  • Потенциал. Разность потенциалов. ЗАДАЧИ с решениями
  • Закон Ома. Соединение проводников. ЗАДАЧИ на ЕГЭ
  • Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Найти конспект

О проекте

Сайт «УчительPRO» — некоммерческий школьный проект учеников, их родителей и учителей. Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie и других пользовательских данных в целях функционирования сайта, проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Читайте также:  Ощущение удара током в ноге

Возрастная категория: 12+

(с) 2021 Учитель.PRO — Копирование информации с сайта только при указании активной ссылки на сайт!

Источник

Практическое занятие № 3

Тема. Решение задач по теме «Постоянный электрический ток».

— рассмотреть методы решения задач на использование закона Ома в цепях постоянного тока;

— показать на примерах применение правил Кирхгофа для расчета сложных разветвленных цепей постоянного тока.

В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.

При решении задач на законы постоянного тока нужно начертить электрическую цепь и проанализировать, как соединены резисторы, источники тока, конденсаторы. Если точки цепи имеют одинаковые потенциалы, их можно соединять между собой.

Далее рассчитывают сопротивление отдельных участков цепи или полное сопротивление цепи и используют закон Ома для участков цепи или замкнутой цепи. Если в цепи постоянного тока включен конденсатор, то ток через него не идет. Если параллельно конденсатору подключен резистор, то напряжение на резисторе и конденсаторе одинаково.

Расчет сложных разветвленных цепей проводят с помощью правил Кирхгофа. Для этого произвольно выбирают направление тока на всех участках цепи. Разбивают сложную цепь на простые замкнутые контуры, произвольно выбирают направления обхода контуров.

Составляют систему уравнений в соответствии с правилами Кирхгофа, учитывая правила выбора знаков «плюс» и «минус».

Для решения задач на превращение электрической энергии в тепловую и механическую используют закон сохранения и превращения энергии.

1. Моток голой проволоки, состоящий из семи с половиной витков, растянут между двумя вбитыми в доску гвоздями, к которым прикреплены концы проволоки. Подключив к гвоздям приборы, измерили сопротивление цепи между гвоздями. Определите, во сколько раз изменится это сопротивление, если моток размотать, оставив концы присоединенными к гвоздям.

2. Пять одинаковых сопротивлений включены по схеме, приведенной на рис. 1. Как изменится накал правой верхней спирали, если замкнуть ключ К?

3. Могут ли существовать токи, текущие от более низкого потенциала к более высокому?

4. Трамвайный провод оборвался и лежит на земле. Человек в токопроводящей обуви может подойти к нему лишь маленькими шагами. Делать же большие шаги опасно. Почему?

5. Для того, чтобы включить лампу в сеть, напряжение которой больше напряжения, на которое рассчитана лампа, можно воспользоваться одной из схем, приведенных на рис. 2. У какой из этих схем коэффициент полезного действия выше, если в каждом случае лампа горит в нормальном режиме?

6. На рис. 3 представлены две схемы для измерения сопротивления. Какую из них следует предпочесть, когда измеряемое сопротивление: а) велико; б) мало?

7. Две лампы с сопротивлениями при полном накале r и R, причем R > r , подключают к источнику электродвижущей силы. В обеих лампах вольфрамовые нити. Которая из ламп горит ярче при последовательном соединении? При параллельном соединении?

8. Гирлянда елочных фонариков сделана из 40 лампочек, соединенных последовательно и питаемых от городской сети. После того как одна лампочка перегорела, оставшиеся 39 лампочек снова соединили последовательно и включили в сеть городского тока. В каком случае в комнате будет светлее: когда горело 40 лампочек или 39?

9. Показание какого вольтметра больше (рис. 4)? Почему?

10. Ток проходит по стальной проволоке, которая при этом слегка накаляется. Если одну часть проволоки охладить, погрузив ее в воду, то другая часть накаляется сильнее. Почему? (Разность потенциалов на концах проволоки поддерживается постоянной).

11. Две стальные проволоки одной и той же длины, но разного сечения соединены параллельно между собой и включены в сеть электрического поля. В какой из них будет выделяться большее количество теплоты?

Примеры решения расчетных задач

Задача 1. По медному проводу сечением S = 1 мм 2 течет ток силой I = 10 мА. Найдите среднюю скорость упорядоченного движения электронов вдоль проводника, если считать, что на каждый атом меди приходится один электрон проводимости. Молярная масса меди А = 63,6 г/моль, плотность меди = 8,9 г/см 3 .

Решение:

Сила тока в проводнике равна заряду, протекающему за единицу времени через поперечное сечение проводника

где n — концентрация электронов, q — заряд одного электрона, v — средняя скорость упорядоченного движения, S — площадь поперечного сечения проводника. Из (1) получим следующее выражение для средней скорости упорядоченного движения электронов:

Поскольку на каждый атом меди приходится один электрон проводимости, то концентрация электронов проводимости будет равна концентрации атомов меди. Следовательно, концентрация электронов проводимости будет связана с плотностью меди соотношением

где m — масса одного атома.

здесь NA — число Авогадро. Подставляя (4) в (3), получим:

Тогда скорость упорядоченного движения электронов будет иметь вид:

Задача 2. В схеме, изображенной на рис. 5, определите силу тока, протекающего через батарею в первый момент времени после замыкания ключа К; спустя большой промежуток времени. Параметры элементов схемы и внутреннее сопротивление источника r считать заданными.

Решение:

В первый момент времени конденсаторы не заряжены, и ток в цепи, согласно закону Ома, будет равен

В установившемся режиме ток течет через сопротивления R1 и R3, и сила тока будет равна

Задача 3. Что покажет амперметр в схеме, изображенной на рис. 6?

Решение:

Найдем силу тока, текущего через источник. Будем считать, что сопротивление амперметра очень мало. Тогда электрическую схему можно будет перерисовать так, как показано на рис. 7. После этого легко найти сопротивление всей цепи. Сопротивления R1 и R3 соединены параллельно, поэтому сопротивление участка ВС будет равно

Общее сопротивление участка цепи, содержащего сопротивления R1, R2 и R3, будет равно

Тогда общее сопротивление всей цепи определится следующим образом:

Сила тока, текущего через источник, согласно закону Ома для полной цепи, будет равна

где — электродвижущая сила источника тока.

Как видно из рис. 6, ток, идущий через источник, равен сумме токов, текущих через сопротивление R1 и амперметр IA:

Обратимся снова к рис. 7. Так как R123 = R4 , то в точке А ток I делится на две равные части. Через резистор R2 будет идти ток силой I2 = 2A. В точке В ток I2 снова делится поровну между резисторами R1 и R3, и через резистор R1 пойдет ток силой I1 = 1A.

Задача 4. Собрана электрическая цепь, приведенная на рис. 8. Вольтметр, включенный параллельно резистору с сопротивлением R1 = 0,4 Ом, показывает U1 = 34,8 В. Напряжение на зажимах источника тока поддерживается постоянным и равным U = 100 В. Найдите отношение силы тока, идущего через вольтметр, к силе тока, идущего через резистор с сопротивлением R2 = 0,6 Ом.

Читайте также:  Чем замерить ток стартера

Решение:

Напряжение на резисторе с сопротивлением R2 будет равно , а сила тока, идущего через этот резистор, согласно закону Ома для однородного участка цепи,

где I1 — сила тока, идущего через резистор с сопротивлением R1, а IV — сила тока, идущего через вольтметр. Отсюда

Задача 5. Несколько источников тока соединены так, как показано на рис. 9. Каковы показания идеального амперметра и вольтметра, включенных в цепь? Сопротивлением соединительных проводов пренебречь.

Решение:

Случай 1. Считаем, что все источники одинаковы, то есть имеют одинаковую электродвижущую силу и внутреннее сопротивление r. Пусть количество источников равно n. Тогда, используя закон Ома для замкнутой цепи, получим:

Таким будет показание амперметра. Из закона Ома для неоднородного участка цепи следует, что показание вольтметра будет

Случай 2. Все источники различны. Тогда амперметр покажет силу тока

Очевидно, что показание вольтметра в этом случае

Ответ: если все источники тока одинаковы, то если электродвижущие силы источников тока различны, то

Задача 6. Найдите напряжение на конденсаторах емкостями С1 и С2 в цепи, показанной на рис. 10, если известно, что при коротком замыкании сила тока, проходящего через источник, возрастает в n раз. С1, С2, известны.

Решение:

Напряжение на резисторе, подключенном параллельно к конденсаторам,

где U1 и U2 — напряжение на первом и втором конденсаторах соответственно. Конденсаторы соединены последовательно, следовательно, заряды на них будут одинаковыми.

Решая совместно уравнение (5) и (6), получим:

Через конденсаторы ток не идет, поэтому закон Ома для рассматриваемой цепи запишется в виде:

где r — внутреннее сопротивление источника, I — сила тока, текущего через источник и резистор. Падение напряжения на резисторе, согласно закону Ома для однородного участка цепи,

Ток короткого замыкания соответствует R = 0 , то есть

Согласно условию задачи

Подставляя значение I и I в последнее соотношение, получим:

Отсюда R = r(n -1). Подставляя значение R в (8), получим

После подстановки I в (9) получим:

Подставляя найденное значение U в (7), получим:

Задача 7. Между пластинами плоского конденсатора помещен жидкий диэлектрик (рис. 11) Уровень жидкости каждую секунду равномерно поднимается на h. К пластинам подсоединен последовательно источник постоянного тока, электродвижущая сила которого , и сопротивление R. Определите ток в цепи. Ширина пластин l, расстояние между ними d, диэлектрическая проницаемость диэлектрика .

Решение:

В каждый момент времени конденсатор, частично заполненный жидкостью, можно рассматривать как совокупность двух конденсаторов, воздушного и заполненного жидкостью, соединенных параллельно. Емкость параллельно соединенных конденсаторов равна сумме их емкостей. За каждую секунду часть пластин высотой h освобождается от диэлектрика. Это приводит к изменению емкости конденсатора на

Заряд при этом стекает с пластин конденсатора и в цепи течет ток, сила которого

Поскольку напряжение между пластинами конденсатора не меняется, то изменение заряда на пластинах конденсатора за единицу времени будет равно

Тогда после подстановки в (12) получим:

то есть сила тока в цепи будет равна

Напряжение на пластинах конденсатора можно найти из закона Ома для полной цепи.

Подставив значение U в (13), получим для силы тока следующее выражение:

Задача 8. В схеме на рис. 12 1 = 2 В, 2 = 4 В, 3 = 6 В, R1 = 4 Ом, R2 = 6 Ом, R3 = 8 Ом. Найдите силу тока во всех участках.

Решение:

Воспользуемся правилами Кирхгофа. Зададим направления токов I1, I2, I3 . В качестве независимых контуров выберем большой контур, содержащий источники тока 1 и 3, и малый контур, содержащий источники тока 1 и 2. Обход контуров будем совершать по часовой стрелке (рис. 13). Тогда можно составить следующую систему уравнений:

Решая систему уравнений относительно токов, получим следующие значения:

Знак минус означает, что ток I1 течет в направлении, противоположном выбранному.

Задача 9. Электродвижущая сила батареи = 16 В, внутреннее сопротивление r = 3 Ом. Найдите сопротивление внешней части цепи, если известно, что в ней выделяется мощность Р = 16 Вт. Определите к.п.д. батареи.

Решение:

Если внешнее сопротивление равно R, то на нем выделяется полезная мощность P = I 2 R. Силу тока в цепи можно найти из закона Ома для полной цепи:

Последнее выражение можно переписать в виде квадратного уравнения с неизвестным R:

Решение этого уравнения имеет вид:

Подставляя в полученное решение числа, получим R1 = 1 Ом; R2 = 9 Ом. Этим двум значениям сопротивления соответствуют к.п.д.:

Задача 10. Через два последовательно соединенных проводника с одинаковыми сечениями S, но разными удельными сопротивлениями 1 и 2 ( 2 > 1), течет ток силой I (рис. 14). Определите знак и величину поверхностной плотности заряда, возникающего на границе раздела проводников.

Решение:

Воспользуемся теоремой Гаусса для электрических полей. В качестве произвольной замкнутой поверхности, через которую будем рассчитывать поток вектора напряженности электрического поля, выберем цилиндрическую поверхность, боковая поверхность которой совпадает с поверхностью проводника (рис. 15). Векторы напряженности электрического поля в проводнике параллельны боковой поверхности цилиндра, поэтому вклад в поток вектора напряженности дают только потоки через основания цилиндрической поверхности. Поскольку каждый проводник электронейтрален, то внутри этой поверхности нескомпенсированным оказывается только заряд q на границе раздела проводников. Поэтому теорема Гаусса запишется следующим образом:

Поэтому теорема Гаусса запишется следующим образом:

Согласно закону Ома

где j — плотность тока в проводнике. Подставим значения Е1 и Е2 в (14):

Плотность тока равна , а заряд на границе раздела связан с поверхностной плотностью заряда соотношением . Подставляя значения j и q в (15), получим:

Следовательно, на границе раздела скапливается положительный заряд.

Задачи для самостоятельной работы

1. Электродвижущая сила источника = 1,6 В, его внутреннее сопротивление r = 0,5 Ом. Сила тока в цепи I = 2,4 А. Чему равен к.п.д. источника?

2. Батарея, состоящая из двух одинаковых параллельно соединенных элементов с электродвижущими силами = 2 В, замкнута резистором, сопротивление которого R = 1,4 Ом (рис. 16). Внутреннее сопротивление элементов r1 = 1 Ом и r2 = 1,5 Ом. Найдите токи I1, I2, I, текущие в цепи.

3. Два потребителя, сопротивления которых R1 и R2, подключаются к сети постоянного тока первый раз параллельно, а второй — последовательно. В каком случае мощность, потребляемая от сети, будет больше?

4. Резистор и конденсатор соединены последовательно с источником электродвижущей силы, при этом заряд на обкладках конденсатора q1 = 6 10 -4 Кл. Если резистор и конденсатор подключены к источнику электродвижущей силы параллельно, то заряд на обкладках конденсатора q2 = 4 10 -4 Кл. Найдите внутреннее сопротивление источника электродвижущей силы r, если сопротивление резистора R = 45 Ом.

5. Определите полное сопротивление R показанной на рис. 17 цепи, если R1 = R2 = R5 = R6 = 3 Ом, R3 = 20 Ом, R4 = 24 Ом. Чему равна сила тока, идущего через каждый резистор, если к цепи приложено напряжение U = 36 В?

6. Два источника тока соединены, как показано на рис. 18. 1) Определите разность потенциалов между точками А и В. 2) Какой станет эта разность потенциалов, если изменить полярность включения второго источника?

7. Конденсаторы с емкостями С и включены в цепь, как показано на рис. 19, электродвижущая сила источника равна . Какое количество теплоты выделится на резисторе с сопротивлением R после замыкания ключа К? Внутренним сопротивлением источника пренебречь.

8. Найдите суммарный импульс электронов в проводе длины l = 1000 м, по которому течет ток силой I = 70 А.

9. Во сколько раз добавочное сопротивление (шунт) должно быть больше сопротивления вольтметра, чтобы этот вольтметр позволил измерить напряжение в n = 10 раз большее, чем то, на которое он рассчитан?

10. Пучок электронов проходит ускоряющую разности потенциалов U = 1000 В и, попадая на металлическую пластину, полностью поглощается. При этом микроамперметр, включенный между пластинкой и «землей», показывает ток I = 10 -3 А (рис. 20). Определите температуру металлической пластинки после поглощения ею электронного пучка, если начальная температура пластинки была Т = 300 К. Теплоемкость металлической пластинки С = 10 Дж/К, время действия пучка t = 100 c. Считать, что все тепло, выделившееся в пластинке, идет на ее нагревание.

Читайте также:  Что это когда часто бьешься током с человеком

Рекомендуемая литература

1. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. — М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. — С. 11-82.

2. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. — М.: Физматлит, 2005. — С. 123-142.

3. Готовцев В.В. Лучшие задачи по электричеству. — М.; Ростов н/Д: Издательский центр «Март», 2004. — С. 59-116.

Источник

Как найти силу тока?

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U 2 /R)*t или

A = ((220 В) 2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Источник