Меню

Регулировка тока блока питания для зарядки



Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2. 30В 10А

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Схема блока питания с регулировкой напряжения и тока 1.2. 30В 25А

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2. 30В 10А

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2. 30В 25А

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Блок питания с регулировкой напряжения и тока

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Блок питания с регулировкой напряжения и тока подключение нагрузки

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

Блок питания с регулировкой напряжения и тока начало зарядки аккумулятора

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Блок питания с регулировкой напряжения и тока конец зарядки аккумулятора

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм
Читайте также:  Ток параллельной цепи ваттметра

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Источник

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Радиатор с транзисторами

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторов

Печатная плата блока резисторов

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Блок питания с регулировкой тока и напряжения

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Блок питания с регулировкой тока и напряжения

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятора

Схема подключения вентилятора

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к регулируемому блоку питания

Схема подключения китайского вольтметра амперметра к блоку питания

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

Блок питания с регулировкой тока и напряжения

Как заряжать автомобильный аккумулятор?

Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

Зарядное устройство для автомобильного аккумулятора

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Схема блока питания с регулировкой тока и напряжения 2.4. 28В 15А

Схема блока питания с регулировкой тока и напряжения 2.4…28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный
Читайте также:  Как увеличить силу тока usb компьютера

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Источник

Схемы самодельных ЗУ для автомобильных АКБ на TL494

Схемы самодельных ЗУ для автомобильных АКБ на TL494Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.

Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.

В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.

При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.

В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.

Настройка схемы зарядного устройства

В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.

Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.

Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

Монтаж ЗУ

Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.

Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.

Схема ЗУ на мс TL494 с нормализацией напряжения шунта

Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.

В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

Конструкция и монтаж

Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.

Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

Автор: Кравцов В. (сайт:Автоматика в быту)

Источник

Схемы регулировки тока зарядных устройств

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Схемы регулировки тока зарядных устройств

Вариант реализации такого блока до безобразия прост и собран на одном элементе ОУ.
Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.
Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.

Схемы регулировки тока зарядных устройств

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

Схемы регулировки тока зарядных устройств

Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.

Схемы регулировки тока зарядных устройствСхемы регулировки тока зарядных устройств

Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

Схемы регулировки тока зарядных устройств

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

– простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Читайте также:  Выберите устройство обеспечивающие защиту человека от поражения током

Схемы регулировки тока зарядных устройств

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

Схемы регулировки тока зарядных устройств

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Схемы регулировки тока зарядных устройств

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Схемы регулировки тока зарядных устройств

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схемы регулировки тока зарядных устройств

Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

Схемы регулировки тока зарядных устройств

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1. Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом. Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242. Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000. 18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Схемы регулировки тока зарядных устройств

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

Схемы регулировки тока зарядных устройств

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Схемы регулировки тока зарядных устройств

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Схемы регулировки тока зарядных устройств

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Источник