Меню

Регулирование тока возбуждения синхронной машины



Регулирование тока возбуждения синхронной машины

При постоянной величине механической нагрузки на валу двигателя активная мощность, потребляемая двигателем из сети, остается также постоянной (если не учитывать разницы в величине потерь мощности в самом двигателе). Отсюда следует, что при любом cos φ активная составляющая тока I1, потребляемого двигателем из сети, будет постоянной (рис. 286):

Рис. 286. Векторная диаграмма синхронного двигателя при М = const и Iр = var
Рис. 286. Векторная диаграмма синхронного двигателя при М = const и Iр = var

В создании результирующего магнитного потока синхронного двигателя принимают участие как обмотка статора, так и обмотка ротора. Доля участия той или иной обмотки в создании результирующего магнитного потока зависит от величины тока этих обмоток. Так же как у трансформаторов и асинхронных двигателей, результирующий поток синхронного двигателя при постоянном напряжении (Uc = const) остается практически постоянным. Поэтому при изменении тока возбуждения синхронного двигателя ток статорной обмотки, т. е. ток, потребляемый двигателем из сети, будет также изменяться.

На рис. 287 дана векторная диаграмма магнитных потоков синхронного двигателя. Результирующий магнитный поток Φрез индуктирует в обмотке статора двигателя э.д.с. Eрез, отстающую от потока на 90°.

Рис. 287. Векторная диаграмма магнитных потоков синхронного двигателя
Рис. 287. Векторная диаграмма магнитных потоков синхронного двигателя

Если сопротивления обмотки статора принять равными нулю, то э.д.с. Ерез будет уравновешена напряжением сети U. Если пренебречь влиянием гистерезиса и вихревых токов, то магнитный поток статора (якоря) Φя будет совпадать по фазе с током якоря I.

Геометрическая сумма магнитных потоков статора Φя и ротора Φв даёт результирующий поток Φрез.

На диаграмме магнитные потоки представлены для трех случаев: ток якоря I1 совпадает по фазе с напряжением U; ток якоря I2 отстает от напряжения U, и ток якоря I3 опережает по фазе напряжение U.

Из рис. 287 видно, что при недовозбуждении двигатель работает как индукционная катушка, потребляя из сети ток I2, отстающий на фазе от напряжения сети Uc на угол φ2. Активная составляющая тока равна I2 cos φ2. С увеличением тока возбуждения статорный ток будет уменьшаться и при φ = 0 величина тока I1 будет наименьшей. Если продолжать увеличивать ток возбуждения, то двигатель начнет работать с опережающим током I3, т. е. будет подобен емкости (конденсатору). Активная составляющая тока I3 cos φ3 будет по-прежнему постоянна, но за счет увеличения реактивной составляющей тока I3 sin φ3 статорный ток будет увеличиваться.

Способность перевозбужденного синхронного двигателя работать с опережающим током часто используют для увеличения коэффициента мощности электрической установки.

Зависимость тока I в обмотке статора синхронного двигателя от тока возбуждения Iв при постоянном вращающем моменте М и постоянном напряжении U на зажимах двигателя, т. е.

выражается при помощи так называемых U-образных кривых, которые даны на рис. 288.

Рис. 288. U-образные характеристики синхронного двигателя
Рис. 288. U-образные характеристики синхронного двигателя

Представленные кривые показывают, что при определенной мощности на валу двигателя минимальная величина статорного тока будет иметь место при определенном токе возбуждения, соответствующем работе с cos φ = 1. Любые изменения тока возбуждения (увеличение или уменьшение) будут сопровождаться увеличением статорного тока.

В некоторых физических приборах, звуковом кино, телемеханических установках и других устройствах, там, где требуется постоянная скорость вращения, нашли себе применение маломощные, (порядка нескольких десятков или сотен ватт) реактивные синхронные двигатели. На статоре этих двигателей располагается обмотка переменного тока, создающая вращающееся магнитное поле. Ротор синхронных реактивных двигателей явнополюсный, имеет короткозамкнутую пусковую обмотку, но не имеет обмотки возбуждения. Различные конструкции роторов синхронных реактивных двигателей показаны на рис. 289.

Рис. 289. Различные конструкции роторов синхронных реактивных двигателей: 1 - сталь, 2 - алюминий
Рис. 289. Различные конструкции роторов синхронных реактивных двигателей: 1 — сталь, 2 — алюминий

За счет асинхронного момента ротор двигателя разгоняется до 95-97% синхронной скорости.

Магнитные линии вращающегося магнитного поля статора стремятся пройти по пути с меньшим магнитным сопротивлением. Поэтому ротор будет поворачиваться так, чтобы оси полюсов совпадали с направлением магнитных линий поля статора. Следовательно, ротор будет вращаться синхронно с полем статора. Вхождение ротора в синхронизм происходит толчком под влиянием реактивного момента за счет которого в дальнейшем работает двигатель.

Источник

Возбуждение синхронных машин

Способы возбуждения и устройство синхронных машин

При рассмотрении принципа действия син­хронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС.

Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения — наведения в ней магнитного поля.

Основным способом возбуждения синхронных машин является электромагнитноевозбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При про­хождении по этой обмотке постоянного тока возни­кает МДС возбуждения, которая наводит в магнит­ной системе машины магнитное поле.

До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала пита­ние постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регу­лировочные реостаты, включаемые в цепи возбуж­дения возбудителя (r1)и подвозбудителя (r2).

В синхронных генераторах средней и большой мощности про­цесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах большой мощности — турбогене­раторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.

Рис. 19.1. Контактная (а) и бесконтактная (б) системы

электромагнитно­го возбуждения синхронных генераторов

Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индуктор­ного генератора.

Получила применение в синхронных генераторах бескон­тактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе.

В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмот­ка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осу­ществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а об­мотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной маши­ны и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока.

Отсутствие скользящих контактов в цепи возбуждения син­хронной машины позволяет повысить ее эксплуатационную на­дежность и увеличить КПД.

В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупро­водниковый преобразователь (ПП) преобразуется в энергию по­стоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.

Рис. 19.2. Принцип самовозбуждения синхронных генераторов

На рис. 19.2, б представлена структурная схема автоматиче­ской системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток пода­ется в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряже­ния на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки.

В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включае­мые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А.

Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение от­носится к машинам большой мощности).

Читайте также:  Сила тока для зарядки мобильного телефона

В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ воз­буждения дает возможность избавить машину от обмотки возбуж­дения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности мате­риалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбу­ждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1).

Источник

Возбуждение синхронных генераторов

Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение — от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Изменение напряжения возбуждения при форсировке

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот — Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Принципиальная схема независимого электромашинного возбуждения генератора

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Принципиальная схема высокочастотного возбуждения турбогенератора

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Принципиальная схема независимого тиристорного возбуждения генераторов

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Принципиальная схема бесщеточного возбуждения генераторов

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Читайте также:  Почему меня сильно бьет током

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Принципиальная схема зависимого электромашинного возбуждения

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Принципиальная схема полупроводникового самовозбуждения

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей — неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.

Источник

Системы возбуждения синхронных генераторов: разновидности, схемы, достоинства и недостатки

Системы возбуждения синхронных генераторов

Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

  1. начальное возбуждение;
  2. холостой ход;
  3. включение в сеть методом точной синхронизации или самосинхронизации;
  4. работу в энергосистеме с допустимыми нагрузками и перегрузками;
  5. форсировку возбуждения по напряжению и по току с заданной кратностью;
  6. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  7. гашение поля генератора в аварийных режимах и при нормальной остановке;
  8. электрическое торможение агрегата.

Система независимого возбуждения с возбудителем постоянного тока

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения:
• системы тиристорные независимые (СТН) – рис.5.2;
• системы тиристорные самовозбуждения (СТС) – рис.5.3;
• системы бесщеточные диодные (СБД) – рис.5.4

  1. Системы тиристорного независимого возбуждения (СТН)
  2. Система тиристорного самовозбуждения (СТС)
  3. Система тиристорного самовозбуждения резервная (СТСР)
  4. Системы бесщеточные диодные (СБД)
  5. Системы возбуждения для дизель-генераторов
  6. Автоматы гашения поля (АГП)

Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях – рис.5.2.

Абрамян Евгений Павлович

Система тиристорная независимая (СТН)

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом – её параметры не зависят от процессов, протекающих в энергосистеме.

Васильев Дмитрий Петрович

В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Система тиристорного самовозбуждения (СТС)

Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%. Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.

Система тиристорного самовозбуждения (СТС)

Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток – не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН.

Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

Абрамян Евгений Павлович

Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля – электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Система бесщеточная диодная (СБД)

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

Орлов Анатолий Владимирович

Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.

Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.

Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.
Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.

Главное достоинство бесщеточных возбудителей состоит в отсутствии контактных колец и щеточного контакта в цепи обмотки ротора турбогенератора и в сокращении длины машины.

Абрамян Евгений Павлович

Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

Читайте также:  Работа диода при прямом токе

Система бесщеточная диодная (СБД)

Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

Система бесщеточная диодная (СБД)

Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

Бесщеточная диодная система возбуждения (СБД) обладает меньшим быстродействием по сравнению с тиристорными системами (СТС и СТН). Так, время нарастания напряжения возбуждения до максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5% от номинального составляет величину не более 50мс, тогда как в тиристорных системах – не более 25 мс.

Система бесщеточная диодная (СБД)

В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.

Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).

Системы возбуждения для дизель-генераторов

АО «Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения. Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6. Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

Система бесщеточная с диодным синхронным возбудителем (СБД), магнитоэлектрическим подвозбудителем с постоянными магнитами и статическим тиристорным регулятором возбуждения представлена на рис.5.7.

Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

Основные характеристики систем возбуждения дизель-генераторов

Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.

Автоматы гашения поля (АГП)

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока.

Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО «Электросила” представлены в табл.5.2.

Источник

Регулирование тока возбуждения синхронной машины

СИСТЕМЫ ВОЗБУЖДЕНИЯ СИНХРОННЫХ МАШИН

Большинство синхронных машин имеет электромагнит­ное возбуждение. Источниками постоянного тока для обмо­ток возбуждения являются специальные системы возбуж­дения, к которым предъявляется ряд важных требований:

1) надежное и устойчивое регулирование тока возбуж­дения в любых режимах работы машины;

2) достаточное быстродействие, для чего применяется форсировка возбуждения, т. е. быстрое увеличение напря­жения возбуждения до предельного значения, называемого потолочным. Форсировка возбуждения применяется для поддержания устойчивой работы машины во время аварий и в процессе ликвидации их последствий. Потолочное напряжение возбуждения выбирают не менее 1,8-2 номи­нального напряжения возбуждения. Скорость нарастания напряжения при форсировке возбуждения должна быть не менее 1,5-2 номинальных напряжений на контактных кольцах ротора в секунду;

3) быстрое гашение магнитного поля, т. е. уменьшение тока возбуждения машины до нуля без значительного по­вышения напряжения на ее обхмотках. Необходимость в гашении поля возникает при отключении генератора или по­вреждении в нем.

Для возбуждения синхронных машин применяется не­сколько систем. Простейшей из них является электрома­шинная система возбуждения с возбудителем постоянного тока (рис. 15). В этой системе в качестве источника ис­пользуют специальный генератор постоянного тока GE, на­зываемый возбудителем; он приводится во вращение от ва­ла синхронного генератора, а его мощность составляет 1- 3 % мощности синхронного генератора. Ток возбуждения синхронной машины Iв относительно велик и составляет не­сколько сотен и даже тысяч ампер. Поэтому его регулиру­ют с помощью реостатов, установленных в цепи возбуждения возбудителя. Возбуждение возбудителя осуществляют по схеме самовозбуждения (рис. 15) или независимого возбуждения от специального генератора постоянного тока GEA, называемого подвозбудителем (рис. 16). Подвозбудитель работает с самовозбуждением, и сопротивление резистора Rш2 при работе генератора не изменяется.

Для гашения магнитного поля применяют автомат га­шения поля (АГП), который состоит из контакторов К1 и К2 и гасительного резистора Rp. Гашение поля проводит­ся в следующем порядке. При включенном контакторе К1 включается контактор К2, замыкающий обмотку возбуж­дения на гасительный резистор, имеющий сопротивления rp≈5 rв, где rв — сопротивление обмотки возбуждения. За­тем происходит размыкание контактора К1 и ток в цепи об­мотки возбуждения генератора уменьшается (рис. 17).

Ток возбуждения можно было бы снизить до нуля от­ключением только одного контактора К1 без включения га­сительного резистора. Ток возбуждения в этом случае исчез бы практически мгновенно. Но мгновенный разрыв цепи возбуждения недопустим, так как из-за большой ин­дуктивности обмотки возбуждения Lв в ней индуктирова­лась бы большая ЭДС самоиндукции е= Lвdiв/dt, превы­шающая в несколько раз номинальное напряжение, в результате чего возможен пробой изоляции этой обмотки. Кроме того, в контакторе К1 при его отключении выделя­лась бы значительная энергия, запасенная в магнитном по­ле обмотки возбуждения, что могло бы вызвать разрушение контактора.

Форсировка возбуждения при использовании схем на рис. 15 и 16 осуществляется шунтированием резисто­ра Rш1 включенного в цепь возбуждения возбудителя.

В последнее время вместо электромашинных систем по­лучают все большее применение вентильные системы воз­буждения с диодами и тиристорами. Эти системы возбуж­дения могут быть построены на большие мощности и явля­ются более надежными, чем электромашинные.

Различают три разновидности вентильных систем воз­буждения: систему с самовозбуждением, независимую си­стему возбуждения и бесщеточную систему возбуждения.

В вентильной системе с самовозбуждением (рис. 18) для возбуждения синхронной машины используется энер­гия, отбираемая от обмотки якоря основного генератора G, которая затем преобразуется статическим преобразователем ПУ в энергию постоянного тока. Эта энергия поступает в обмотку возбуждения. Начальное возбуждение генерато­ра происходит за счет остаточного намагничивания его по­люсов.

Разновидностью вентильной независимой системы воз­буждения является бесщеточная система возбуждения. В этом случае на валу основной синхронной машины раз­мещается якорь возбудителя переменного тока с трехфаз­ной обмоткой. Переменное напряжение этой обмотки с по­мощью выпрямительного моста, закрепленного на валу машины, преобразуется в постоянное напряжение и непо­средственно (без колец) подается на обмотку возбуждения основного генератора. Обмотка возбуждения возбудителя располагается на статоре и получает питание от независи­мого источника.

Источник

Adblock
detector