Меню

Рассчитать относительную погрешность измерения тока равного 2 5 а



Расчет погрешностей средств измерений

Погрешность результата измерений в значительной мере зави­сит от погрешности средств измерений, являющейся важнейшей составляющей, от которой зависит качество измерений.

Технические характеристики, оказывающие влияние на результаты и на по­грешности измерений, называются метрологическими характерис­тиками средств измерений. В зависимости от специфики и назначения средств измерений, нормируются различные наборы или комплекты метрологических характеристик. В соответствии со стандар­том метрологические характеристики средств измерений исполь­зуются для определения результата измерений и расчетной оценки характеристик инструментальной составляющей погрешности из­мерений, расчета метрологических характеристик каналов измерительных систем и оптимального выбора средств измерений.

Инструментальная погрешность измерения – погрешность из-за несовершенства средств измерений. Эта погрешность в свою очередь обычно подразделяется на основную погрешность средств измерения и дополнительную.

Основная погрешность средства измерений – это погрешность в условиях, принятых за нормальные, т.е. при нормальных значениях всех величин, влияющих на результат измерения (температуры, влажности, напряжения питания и др.):

Δ=а или Δ=(а+bх), (1.1)

где Δ и хвыражаются в единицах измеряемой величины.

Абсолютной погрешностью прибора называется разность между показанием прибора и действительным значением измеряемой величины:

Поправкой прибора называется разность между действительным значением измеряемой величины и показанием прибора. Численно поправка равна абсолютной погрешности, взятой с обратным знаком:

=-Δх. (1.3)

Дополнительная погрешность возникает при отличии значений влияющих величин от нормальных. Обычно различают отдельные составляющие дополнительной погрешности, например, температурную погрешность, погрешность из-за изменения напряжения питания и т.п.

Относительная погрешностьсредств измерений — погрешность средств измерений, выраженная отношением абсолютной погрешности к действительному значению физической величины, в преде­лах диапазона измерений.

где Δx — абсолютная погрешность;

xп — показания прибора.

Приведенная погрешностьсредств измерений — относительная погрешность, определяемая отношением абсолютной погрешности измерительного прибора к нормирующему значению. Нормирующее значение — это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы и т. д. Например, для милливольтметра термоэлектрического термометра с пределами измерений 200 и 600°С нормирующее значение
xN = 400 0 С. Приведенную погрешность можно определить по формуле

где xn нормирующее значение.

Например, значения абсолютной, относительной, приведенной погрешности потенциометра с верхним пределом измерений 150°С при хп=120°C, действительным значением измеряемой температуры Х=120,6°С и нормирующим значением верхнего предела из­мерений xn=150°С будут, соответственно, составлять Δxп = — 0,6°С, δ= — 0,5 %, γ= — 0,4 %.

Предел допускаемой погрешности средств измерений — наибольшая погрешность средств измерений, при которой оно может быть признано годным и допущено к применению. В случае превышения установленного предела средство измерений остается непригодным к применению.

Пределы допускаемой приведенной основной погрешности, определяемой по формуле (1.5),

где p отвлеченное положительное число, выбираемое из ряда: 1,0·10 n ; 1,5·10 n ; 1,6·10 n ; 2·10 n ; 2,5·10 n ; 3·10 n ; 4·10 n ; 5·10 n ; 6·10 n (где п=1; 0; -1; -2 и т. д.).

Для средств измерений, используемых в повседневной практике, принято деление по точности на классы.

Класс точности средств измерений обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами средств измерений, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений.

Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполненных с помощью этих средств.

Классы точности устанавливаются стандартами, содержащими технические требования к средствам измерений, подразделяемым по точности. Средства измерений должны удовлетворять требованиям, предъявляемым к метрологическим характеристикам, установленным для присвоенного им класса точности как при выпуске их из производства, так и в процессе эксплуатации.

Пределы допускаемых дополнительных погрешностей устанавливают в виде дольного значения предела допускаемой основной погрешности для всей рабочей области влияющей величины или ее интервала, отношения предела допускаемой дополнительной погрешности, соответствующей интервалу величины, к этому интервалу, либо в виде зависимости предела, допускаемой относительной погрешности от номинальной или пре­дельной функции влияния. Пределы всех основных и дополнительных допускаемых погрешностей выражаются не более чем двумя значащими цифрами, причем погрешность округления при вычислении пределов не должна превышать 5 %.

Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений, приводятся в нормативно-технических документах.

Пример

Десять одинаковых осветительных ламп соединены параллельно. Ток каждой лампы Iл = 0,3 А. Определить абсолютную и отно­сительную погрешности амперметра, включенного в неразвет­вленную часть цепи, если его показания I1 = 3,3 А.

1. Ток в неразветвленной части цепи

2. Абсолютная погрешность

3. Относительная погрешность

Задачи

1. Температура в термостате измерялась техническим термометром со шкалой 0…500°С, имеющим пределы допускаемой основной погрешности ±4°С. Показания термометра составили 346 °С. Одновременно с техническим термометром в термостат был погружен лабораторный термометр, имеющий свидетельство о поверке. Показания лабораторного термометра составили 352°С, поправка по свидетельству составляет — 1°С. Определите, выходит ли за пределы допускаемой основной погрешности действительное значение погрешности показаний технического термометра.

Читайте также:  Цепи постоянного тока режим работы электрических цепей

2. Было проведено однократное измерение термо-ЭДС автоматическим потенциометром класса 0,5 градуировки ХК со шкалой 200…600°С. Указатель стоит на отметке 550°С. Оцените максимальную относительную погрешность измерения термо-ЭДС потенциометром на отметке 550°С. Условия работы нормальные.

3. Определить относительную погрешность измерения напряжения 100 В вольтметром класса точности 2,5 на номинальное напряжение 250 В.

4. Амперметр с верхним пределом измерения 10А показал ток 5,3 А при его действительном значении, равном 5,23 А. Определить абсолютную, относительную и относительную приведенную погрешности амперметра, а также абсолютную поправку.

5. При поверке амперметра с пределом измерения 5А в точках шкалы: 1; 2; 3; 4 и 5А получены следующие показания образцового прибора: 0,95; 2,06; 3,05; 4,07 и 4,95 А. Определить абсолютные, относительные и относительные приведенные погрешности в каждой точке шкалы и класс точности амперметра.

6. При поверке технического амперметра получены следующие показания приборов: поверяемый амперметр 1—2—3—4—5—4—3—2—1А,

образцовый ход вверх l,2—2,2—2,9—3,8—4,8 А

амперметр ход вниз 4,8—3,9—2,9—2,3—1,1 А.

Найти абсолютную и относительную приведенную погрешности, а также вариации показаний прибора. Определить, к какому классу точности его можно отнести.

7. Поверка вольтметра методом сравнения с показаниями образцового прибора дала следующие результаты:

прибор, V прибор, V

при увеличении при уменьшении

Определить наибольшую относительную приведенную погрешность и класс точности.

8. Определить относительную погрешность измерения напряжения, если показание вольтметра класса 1,0 с пределом измерения 300 В составило 75 В.

9. Определить абсолютную и относительную погрешности измерений, если вольтметр с пределом измерений 300 В класса 2,5 показывает 100 В.

10. Для измерения напряжения используются два вольтметра: V1(Uном=30 B; Кv= 2,5) и V2(Uном=150 В;Kv=1,0). Определить, какой вольтметр измеряет напряжение точнее, если первый показал 29,5 В, а другой — 30 В.

11. В цепь током 15 А включены три амперметра со следующими параметрами: класса точности 1,0 со шкалой на 50 А, класса 1,5 на 30 A и класса 2,5 на 20 А. Определить, какой из амперметров обеспечит большую точность измерения тока в цепи.

12. Имеются три вольтметра: класса 1,0 номинальным напряжением 300 В класса 1,5 на 250 В и класса 2,5 на 150 В. Определить, какой из вольтметров обеспечит большую точность измерения напряжения 130 В.

13. Показания амперметра I1= 20 А, его верхний предел Iн = 50 А; показания образцового прибора, включенного последовательно, I = 20,5 А. Определить относительную и приведенную от­носительную погрешности амперметра.

14. Определить относительную погрешность измерения тока 10 А амперметром с Iн = 30 А класса точности 1,5.

15. При измерении мощности ваттметром класса точности 0,5, рассчитанным на номинальную мощность Рн = 500 Вт записано показание Р1=150 Вт. Найти пределы, между которыми заключено действительное значение измеряемой мощности.

16. Сопротивления включены по схеме, изображенной на рис.1.1. Ток в неразветвленной части цепи I=12 А, в сопротивлениях I1=3 А; I2=5А. Чему равны абсолютная и относительная погрешности амперметра, указанного на схеме, если его показания I3=3,8 А?

Рис.1.1. Схема измерения тока

Источник

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 3.1

Определить класс точности магнитоэлектрического миллиамперметра с номинальным значением шкалы для измерения тока в интервале от1–го до 10 мА так, чтобы относительная погрешность измерения тока не превышала 1%.

Дано:
К=?

Решение. Относительная погрешность измерения больше в начале шкалы прибора, так как значение абсолютной погрешности по всей шкале прибора примерно одно и то же. Поэтому определяется при

Класс точности рабочего средства измерения находится по основной приведенной погрешности:

Вывод: класс точности выбранного прибора должен быть К=0,1.

Задача 3.2

Определить какой прибор больше подходит для измерения тока I=10 мА, если для измерения использованы два прибора, имеющих соответственно шкалы на 15 мА, класс точности 0,5 и на 100 мА, класс точности 0,1.

Дано:
I=10 мА

Решение. Абсолютную и относительную погрешности первого миллиамперметра определим по формулам:

Абсолютную и относительную погрешности второго миллиамперметра определим по формулам:

Вывод: несмотря на то, что второй прибор имеет более высокий класс точности, для заданного измерения тока больше подходит первый миллиамперметр, так как в этом случае уменьшается относительная погрешность измерения.

Задача 3.3

Определить наибольшую разницу в показаниях двух последовательно включенных магнитоэлектрических миллиамперметров разного класса точности при измерении одного и того же тока.

Решение. Пусть пределы измерения миллиамперметров одинаковы: Iном1= Iном2= Iном. Класс точности первого миллиамперметра равен n, а класс точности второго – m. Абсолютные погрешности измерения: .

Если предположить, что И наихудший случай разницы в показаниях двух миллиамперметров имеет место тогда, когда один показывает значение тока , а второй показывает значение тока .

Следовательно, наибольшая разница

Задача 3.4

Размах шкалы электромагнитного вольтметра равен 100 В. Определить изменение относительной погрешности измерений с изменением напряжения, зная, что класс точности К=1.

Дано:
Uном=100 В К=1

Пусть измеряемое напряжение равно 100 В. Тогда , причем абсолютная погрешность измерения В. Наиболее вероятное значение измеряемого напряжения находится в интервале В.

Пусть измеряемое напряжение равно 10 В. Так как абсолютная погрешность измерения В по определению, то , Наиболее вероятное значение измеряемого напряжения находится в интервале от 9 до 11 В.

Вывод: при измерении напряжения менее 30 В – значения попадают в первую треть шкалы – относительная погрешность весьма велика. Поэтому данным прибором следует измерять напряжения большей величины.

Задача 3.5

Определить относительную методическую погрешность измерения тока амперметром, внутреннее сопротивление которого RA, включенным последовательно в цепь с источником ЭДС Е и сопротивлением R.

Дано:
R RA Е

Действительное значение тока в цепи до включения амперметра

Измеренное значение тока в цепи

.

Относительная погрешность измерения тока

Если отношение сопротивлений заменить на отношение мощностей потребления РА и Р соответственно амперметром и самой цепью, то

Из данного выражения следует, что погрешность измерения тем меньше, чем меньше мощность потребления амперметра РА по сравнению с мощностью потребления амперметра Р цепи. Поэтому амперметр, включаемый последовательно в цепь нагрузки, должен обладать малым сопротивлением, т.е. .

Задача 3.6

Определить относительную методическую погрешность измерения напряжения вольтметром c внутренним сопротивлением RV на нагрузке R в цепи с источником энергии, ЭДС которого Е и внутреннее сопротивление R. Вольтметр включен параллельно нагрузке.

Дано:
RV R R Е

Решение.

Действительное значение напряжения U на нагрузке R до включения вольтметра

Измеренное значение напряжения

Относительная погрешность измерения напряжения

Отношение сопротивлений обратно пропорционально отношению мощностей :

Из данного выражения следует, что погрешность измерения тем меньше, чем меньше мощность потребления PV вольтметром по сравнению с мощностью потребления Р цепи, или, что то же самое, . Поэтому вольтметр, включенный параллельно резистору R, должен обладать большим сопротивлением, т.е. .

Задача 3.7

Определить наиболее достоверное значение напряжения Uср постоянного тока, измеренного компенсатором постоянного тока, среднеквадратичную погрешность ряда измерений , среднеквадратичную погрешность среднеарифметического , доверительный интервал (при заданной доверительной вероятности Р=0,98) и предельную погрешность найденного значения Uср.

Результаты 13 равноточных измерений Ui в мВ следующие:

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13
100,08 100,09 100,07 100,10 100,05 100,06 100,04 100,06 99,95 99,92 100,02 99,98 99,97

Решение. Среднеарифметическое значение ряда измерений является наиболее достоверным значением напряжения:

Остаточные погрешности и их квадраты ( ) 2 имеют следующие значения:

0,05 0,06 0,04 0,07 0,02 0,03 0,01
( ) 2 0,025 0,036 0,016 0,049 0,004 0,0009 0,0001
0,03 –0,08 –0,11 –0,01 –0,05 –0,06
( ) 2 0,0009 0,0064 0,0121 0,0001 0,0025 0,036

Сумма остаточных погрешностей , что свидетельствует о правильности расчета Uср.

Сумма квадратов остаточных погрешностей .

Среднеквадратичная погрешность ряда измерений характеризует точность метода измерения:

Среднеквадратичная погрешность среднеарифметического значения характеризует погрешность результата измерения:

Доверительный интервал определяется по значению доверительной вероятности Р=0,98.

Наиболее достоверное значение напряжения

Задача 3.8

Определить абсолютную и относительную погрешности измерения напряжения U в цепи, если показания вольтметра: U1=100 В, U2=50 B.

Предел измерения вольтметра 0–150 В, класс точности К=1,5.

Дано:
Uном=150 В U1=100 В U2=50 B К=1,5
=?

Решение. Абсолютная погрешность вольтметра

Напряжение, приложенное к цепи, определяется косвенным путем:

Абсолютная погрешность измерения напряжения цепи

Максимально возможное значение абсолютной погрешности

Относительная погрешность измерения напряжения

Максимально возможное значение относительной погрешности

Задача 3.9

Рассчитать значения сопротивлений многопредельного кольцевого шунта на следующие пять пределов измерения: 100 мкА, 1 мА, 10 мА, 100 мА, 1А. Ток полного отклонения магнитоэлектрического миллиамперметра составляет 50 мкА. Сопротивление измерительного механизма 3кОм.

Дано:
Iи=50мкА=50*10 –6 А Rи=3кОм=3000Ом I1=100 мкА=10 –4 А I2=1 мА=10 –3 А I3=10 мА=10 –2 А I4=100 мА=0,1А I5=1А
R1, R2, R3, R4, R5 –?

1) Найдем значения шунтирующих множителей по формуле

2) Для расчета шунтов воспользуемся общей формулой при любом числе пределов измерения тока:

где к – количество пределов измерения тока.

,

Примечание. При вычислении последнего к–го значения сопротивления следует иметь в виду, что , поэтому формула упрощается (см. R5).

Ответ: 2,7 кОм; 270 Ом; 27 Ом; 2,7 Ом; 0,27 Ом.

Когда измерительный механизм включают в цепь в качестве вольтметра, то добавочное сопротивление включается последовательно с рамкой измерительного механизма ИМ. Сумма добавочного сопротивления и сопротивления рамки ИМ обеспечивают преобразование измеряемого напряжения в ток, необходимый для отклонения подвижной части ИМ. Предел измерения зависит от тока полного отклонения подвижной части прибора Iи, сопротивления его рамки Rи и величины добавочного сопротивления Rд.

Читайте также:  Практическая работа однофазные электрические цепи переменного тока

где Uk – напряжение на к–том пределе измерения напряжения. А Rk – добавочное сопротивление, необходимое для расширения пределов измерения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Определение относительных погрешностей измерения сопротивления в цепи постоянного тока с помощью амперметра и вольтметра при подключении их двумя возможными способами. Определение параметров периодического сигнала поступающего после однополупериодного выпрямителя

Страницы работы

Содержание работы

Для определения мощности в цепи постоянного тока были измерены напряжение сети U вольтметром класса точности NB с пределом измерений Um, ток I амперметром класса точности Na с пределом измерений Im. Определить мощность, потребляемую приёмником, а также относительную и абсолютную погрешности её определения.

Дано:

Найти:

1) Найдем мощность, потребляемую приемником

2) Класс точности определяет приведенную погрешность

3) Найдем абсолютную погрешность измерения тока и напряжения

,

.

4) Найдем абсолютную погрешность измерения мощности при косвенном измерении

5) Найдем относительную погрешность измерения мощности

6) Доверительный интервал результата измерения с вероятностью .

Проведено пять независимых наблюдений одного и того же напряжения U. Найти результат измерения и доверительную вероятность того, что абсолютная погрешность измерения не превышает по модулю DU. Систематической погрешностью можно пренебречь.

Дано:

Найти:

1) Определим среднее арифметическое результатов измерения

2) Определяем среднее квадратичное результатов измерения

3) Для определения интервала и вероятности пользуются распределением Стьюдента, где доверительный интервал равняется , где

— коэффициент Стьюдента,

— среднее квадратичное отклонение результата измерения.

4) Находим доверительный интервал

5) Результат измерения

Обмотка магнитоэлектрического измерительного механизма имеет сопротивление RO и рассчитана на предельный длительный ток IO, при котором подвижная часть получает наибольшее отклонение. Каким образом на базе указанного измерительного механизма сделать амперметр с пределом измерений Im и вольтметр с пределом измерений Um?

Дано:

Найти: ,

1) Расчет измерительной цепи амперметра

1.1 Определяем коэффициент расширения пределов измерения по току

1.2 Определяем сопротивление шунта

1.3 Схема измерительной цепи

2) Расчет цепи вольтметра

2.1 Определяем коэффициент расширения пределов измерения по напряжению

2.2 Определяем добавочное сопротивление

2.3 Схема включения


Задача 4

Определить цену деления измерительных приборов:

1) амперметра, имеющего на шкале na делений и предел измерения Im;

2)вольтметра, имеющего nв делений шкалы и предел измерения Um;

3) ваттметра, имеющего nВТ делений шкалы и пределы измерений по току Im ВТ и напряжению Um ВТ.

Дано:

Найти:

1) Цена деления амперметра

2) Цена деления вольтметра

3) Цена деления ваттметра

У вольтметра и амперметра с пределами измерений Um и Im, включенных соответственно через измерительные трансформаторы напряжения 6000/100 и тока 600/5, отчёт по шкале составил U2 и I2. Определить напряжение и ток в сети, а также предел допускаемой абсолютной и относительной погрешностей измерения, если известны класс точности приборов Na и Nв и измерительных трансформаторов Nтн и Nтт. Привести схему измерения.

Дано:

Найти:

1) Определим коэффициенты трансформации трансформатора напряжения и тока

2) Определим ток и напряжение в сети

3) Определим абсолютные погрешности амперметра и вольтметра

4) Определяем абсолютные погрешности коэффициентов трансформации трансформатора тока и напряжения

5) Результирующие абсолютные погрешности измерения тока и напряжения равны

6) Относительные погрешности измерения тока и напряжения

Определить относительные погрешности измерения сопротивления Rx в цепи постоянного тока с помощью амперметра и вольтметра при подключении их двумя возможными способами. Сопротивление амперметра – Ra, вольтметра – Rв. Сделать вывод о целесообразности использования той или иной схемы.

Дано:

Найти: .

Источник

Как найти абсолютную и относительную погрешность

Как найти абсолютную и относительную погрешность

  • Как найти абсолютную и относительную погрешность
  • Как определить погрешность прибора
  • Как определить класс точности прибора
  • — результаты измерений;
  • — калькулятор.
  • Как рассчитать достоверностьКак рассчитать достоверность
  • Как рассчитать относительное отклонениеКак рассчитать относительное отклонение
  • Как посчитать погрешностьКак посчитать погрешность
  • Как найти погрешностьКак найти погрешность
  • Как рассчитать погрешность измеренияКак рассчитать погрешность измерения
  • Как вычислить абсолютную погрешностьКак вычислить абсолютную погрешность
  • Как найти относительную погрешностьКак найти относительную погрешность
  • Как вычислить погрешности измеренийКак вычислить погрешности измерений
  • Как вычислить погрешностьКак вычислить погрешность
  • Как рассчитать относительные показателиКак рассчитать относительные показатели
  • Как рассчитать дельтуКак рассчитать дельту
  • Как определить цену деления амперметраКак определить цену деления амперметра
  • Как вычислить дельтуКак вычислить дельту
  • Как рассчитать абсолютное отклонениеКак рассчитать абсолютное отклонение
  • Как найти относительное отклонениеКак найти относительное отклонение
  • Как рассчитать рентабельность: формулаКак рассчитать рентабельность: формула
  • Как найти сигмуКак найти сигму
  • Как узнать величинуКак узнать величину
  • Как найти процент разницы чиселКак найти процент разницы чисел
  • Как определить трансформаторы токаКак определить трансформаторы тока
  • Как определить влажность параКак определить влажность пара
  • Как оценить выражениеКак оценить выражение
  • Как найти влажность воздухаКак найти влажность воздуха

Источник

Adblock
detector