Меню

Расчеты в цепи однофазного постоянного тока



МЕТОДЫ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Суть расчетов заключается, как правило, в том, чтобы по известным значениям всех сопротивлений цепи и параметров источников (ЭДС или тока) определить токи во всех ветвях и напряжения на всех элементах (сопротивлениях ) цепи.

Для расчета электрических цепей постоянного тока могут применяться различные методы. Среди них основными являются :

– метод, основанный на составлении уравнений Кирхгофа;

– метод эквивалентных преобразований;

– метод контурных токов ;

– метод узловых потенциалов;

– метод эквивалентного источника;

Метод, основанный на составлении уравнений Кирхгофа, является универсальным и может применяться как для одноконтурных, так и для многоконтурных цепей. При этом количество уравнений, составленных по второму закону Кирхгофа, должно быть равно количеству внутренних контуров схемы.

Количество уравнений, составленных по первому закону Кирхгофа, должно быть на единицу меньше количества узлов в схеме.

Например, для данной схемы

составляется 2 уравнения по 1-му закону Кирхгофа и 3 уравнения по 2-му закону Кирхгофа.

Рассмотрим остальные методы расчета электрических цепей:

Метод эквивалентных преобразований применяется для упрощения схем и расчетов электрических цепей. Под эквивалентным преобразованием понимается такая замена одной схемы другой, при которой электрические величины схемы в целом не меняются ( напряжение, ток, потребляемая мощность остаются неизменными ).

Рассмотрим некоторые виды эквивалентных преобразований схем.

а). последовательное соединение элементов

Общее сопротивление последовательно соединенных элементов равно сумме сопротивлений этих элементов.

б). параллельное соединение элементов.

Рассмотрим два параллельно соединенных элемента R1 и R2 . Напряжение на этих элементах равны, т.к. они подключены к одним и тем же узлам а и б.

Применяя закон Ома получим

Применим 1-й закон Кирхгофа к узлу ( а )

Выразим токи I1 и I2 через напряжения получим

В соответствии с законом Ома имеем I=UАБ / RЭ ; где RЭ – эквивалентное сопротивление

Учитывая это, можно записать

Введем обозначения: 1/RЭ=GЭ – эквивалентная проводимость

1/R1=G1 – проводимость 1-го элемента

1/R2=G2 – проводимость 2-го элемента.

Запишем уравнение (6) в виде

Из этого выражения следует, что эквивалентная проводимость параллельно соединенных элементов равна сумме проводимостей этих элементов.

На основе (3.13) получим эквивалентное сопротивление

в). Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование.

Соединение трех элементов цепи R1 , R2 , R3 , имеющее вид трех лучевой звезды с общей точкой ( узлом ), называется соединением “звезда”, а соединение этих же элементов, при котором они образуют стороны замкнутого треугольника – соединением “треугольник”.

соединение – звезда ( ) соединение – треугольник ( )

Преобразование треугольника сопротивлений в эквивалентную звезду проводится по следующим правилу и соотношениям:

Сопротивление луча эквивалентной звезды равно произведению сопротивлений двух примыкающих сторон треугольника, деленному на сумму всех трех сопротивлений треугольника.

(3.15)

Преобразование звезды сопротивлений в эквивалентный треугольник производится по следующим правилу и соотношениям:

Сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух примыкающих лучей звезды плюс произведение этих двух сопротивлений, деленное на сопротивление третьего луча:

(3.16)

г). Преобразование источника тока в эквивалентный источник ЭДС Если в схеме имеется один или несколько источников тока, то часто для удобства расчетов следует заменить источники тока на источники ЭДС

Пусть источник тока имеет параметры IК и GВН .

ЕЭ

Тогда параметры эквивалентного источника ЭДС можно определить из соотношений

При замене источника ЭДС эквивалентным источником тока необходимо использовать следующие соотношения

Метод контурных токов.

Этот метод применяется, как правило, при расчетах многоконтурных схем, когда число уравнений, составленных по 1-му и 2-му законам Кирхгофа, равно шести и более.

Для расчета по методу контурных токов в схеме сложной цепи определяются и нумеруются внутренние контуры. В каждом из контуров произвольно выбирается направление контурного тока, т.е. тока, замыкающегося только в данном контуре.

Затем для каждого контура составляется уравнение по 2-му закону Кирхгофа. При этом, если какое-либо сопротивление принадлежит одновременно двум смежным контурам, то напряжение на нем определяется как алгебраическая сумма напряжений, создаваемых каждым из двух контурных токов.

Если количество контуров n , то и уравнений будет n. Решая данные уравнения ( методом подстановки или определителей ), находят контурные токи. Затем, используя уравнения , записанные по 1-му закону Кирхгофа, находят токи в каждой из ветвей схемы.

Запишем контурные уравнения для данной схемы.

Для 1-го контура:

Для 2-го контура

Для 3-го контура

Производя преобразования запишем систему уравнений в виде

Решая данную систему уравнений, определяем неизвестные I1 , I2 , I3. Токи в ветвях определяются, используя уравнения

Этот метод основан на принципе наложения и применяется для схем с несколькими источниками электроэнергии. Согласно этому методу при расчете схемы, содержащей несколько источников э.д.с. , поочередно полагаются равными нулю все ЭДС , кроме одной. Производится расчет токов в схеме, создаваемой одной этой ЭДС. Расчет производится отдельно для каждой ЭДС, содержащейся в схеме. Действительные значения токов в отдельных ветвях схемы определяются как алгебраическая сумма токов, создаваемых независимым действием отдельных ЭДС.

Пример:

На рис. 3.19 исходная схема, а на рис.3.20 и рис.3.21 схемы замещается с одним источником в каждой.

Определяются токи в ветвях исходной схемы по формулам;

Метод узловых потенциалов

Метод узловых потенциалов позволяет уменьшить число совместно решаемых уравнений до У – 1, где У – число узлов схемы замещения цепи. Метод основан на применении первого закона Кирхгофа и заключается в следующем:

Читайте также:  Допустимый ток для медных шин прямоугольного сечения

1. Один узел схемы цепи принимаем базисным с нулевым потенциалом. Такое допущение не изменяет значения токов в ветвях, так как – ток в каждой ветви зависит только от разностей потенциалов узлов, а не от действительных значений потенциалов;

2. Для остальных У — 1 узлов составляем уравнения по первому закону Кирхгофа, выражая токи ветвей через потенциалы узлов.

При этом в левой части уравнений коэффициент при потенциале рассматриваемого узла положителен и равен сумме проводимостей сходящихся к нему ветвей.

Коэффициенты при потенциалах узлов, соединенных ветвями с рассмат- риваемым узлом, отрицательны и равны проводимостям соответствующих ветвей. Правая часть уравнений содержит алгебраическую сумму токов ветвей с источниками токов и токов короткого замыкания ветвей с источниками ЭДС, сходящихся к рассматриваемому узлу, причем слагаемые берутся со знаком плюс (минус), если ток источника тока и ЭДС направлены к рассматриваемому узлу (от узла).

3. Решением составленной системы уравнений определяем потенциалы У-1 узлов относительно базисного, а затем токи ветвей по обобщен- ному закону Ома .

Рассмотрим применение метода на примере расчета цепи по рис. 3.22.

Для решения методом узловых потенциалов принимаем .

Система узловых уравнений: число уравнений N = Ny – NB -1,

где: Ny = 4 – число узлов,

NB = 1 – число вырожденных ветвей (ветви с 1-м источником ЭДС),

т.е. для данной цепи: N = 4-1-1=2.

Составляем уравнения по первому закону Кирхгоф для (2) и (3) узлов;

I2 – I4 – I5 – J5=0; I4 + I6 –J3 =0;

Представим токи ветвей по закону Ома через потенциалы узлов:

I2 = (φ2 − φ1) / R2 ; I4 = (φ2 +E4 − φ3) / R4

I5 = (φ2 − φ4) / R5 ; I6 = (φ3 – E6 − φ4) / R6;

где,

Подставив эти выражения в уравнения токов узлов, получим систему;

где ,

Решая систему уравнений численным методом подстановки или определи- телей находим значения потенциалов узлов, а по ним значения напряжений и токов в ветвях.

Метод Эквивалентного источника (активного двухполюсника)

Двухполюсником называется цепь, которая соединяется с внешней частью через два вывода – полюса. Различают активные и пассивные двухполюсники.

Активный двухполюсник содержит источники электрической энергии, а пас- сивный их не содержит. Условные обозначения двухполюсников прямоугольни- ком с буквой А для активного и П для пассивного (рис. 3.23.)

Для расчета цепей с двухполюсниками последние представляют схемами заме -щения. Схема замещения линейного двухполюсника определяется его вольт-амперной или внешней характеристикой V (I ). Вольт-амперная характеристика пассивного двухполюсника – пря мая. Поэтому его схема замещения представ- ляется резистивным элементом с сопротивлением:

где: U – напряжение между выводами, I-ток и rвх – входное сопротивление.

Вольт-амперную характеристику активного двухполюсника (рис. 3.23, б) можно построить по двум точкам, соответствующим режимам холостого хода, т. е. при гн = °°, U = Uх, I = 0, и короткого замыкания, т. е. при гн =0, U = 0, I =Iк. Эта характеристика и ее уравнение имеет вид:

где: гэк – эквивалентное или выходное сопротивление двухполюсника, совпа-

дают с одноименными характеристикой и уравнением источника электроэнер- гии, представляемого схемами замещения на рис. 3.23.

Итак, активный двухполюсник представляется эквивалентным источником с ЭДС – Еэк = Uх и внутренним сопротивлением – гэк = гвых (рис. 3.23, а) Пример активного двухполюсника.- гальванический элемент. При изменении тока в пределах 0 2

η= Рн / РЕ 100% = (1 – гэк I / Еэк) 100%

При двух предельных значениях сопротивления гн = 0 и гн = °° мощность приемника равна нулю, так как в первом случае равно нулю напряжение между выводами приемника, а во втором случае – ток в цепи. Следовательно, некоторому определенному значению гн соответствует наибольшее возможное (при данных еэк и гэк) значение мощности приемника. Чтобы определить это значение сопротивления, приравняем нулю первую производную от мощности рн по гн и получим:

откуда следует, что при условии

мощность приемника будет максимальна:

Равенство (1.38) называется условием максимальной мощности приемника, т.е. передачи максимальной энергии.

На рис. 3.26 приведены зависимости Рн ,РЕ, Uн и η от тока I.

ТЕМА 4: ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО

Переменным называется периодически изменяющийся по направлению и амплитуде электрический ток. При этом, если переменный ток изменяется по синусоидальному закону – он называется синусоидальным, а если нет – несинусоидальым. Электрическая цепь с таким током называется цепью переменного (синусоидального или несинусоидального) тока.

Электротехнические устройства переменного тока находят широкое приме- нение в различных областях народного хозяйства, при генерировании, передаче и трансформировании электрической энергии, в электроприводе, бытовой тех- нике, промышленной электронике, радиотехнике и т. д.

Преимущественное распространение электротехнических устройств пере- менного синусоидального тока обусловлено рядом причин.

Современная энергетика основана на передаче энергии на дальние расстояния при помощи электрического тока. Обязательным условием такой передачи является возможность простого и с малыми потерями энергии преобразова- ния тока. Такое преобразование осуществимо лишь в электротехнических устройствах переменного тока — трансформаторах. Вследствие громадных преимуществ трансформирования в современной электроэнергетике приме- няется прежде всего синусоидальный ток.

Читайте также:  Изолирующие средства индивидуальной защиты от тока

Большим стимулом для разработки и развития электротехнических уст- ройств синусоидального тока является возможность получения источников электрической энергии большой мощности. У современных турбогенераторов тепловых электростанций мощность равна100-1500 МВт на один агрегат, большие мощности имеют и генераторы гидростанций.

К наиболее простым и дешевым электрическим двигателям относятся асин- хронные двигатели переменного синусоидального тока, в которых отсутствуют движущиеся электрические контакты. Для электроэнергетических установок (в частности, для всех электрических станций) в России и в большинстве стран мира принята стандартная частота 50 Гц (в США – 60 Гц). Причина такого выбора простые: понижение частоты неприемлемо, так как уже при частоте тока 40 Гц лампы накаливания заметно для глаза мигают; повышение часто- ты нежелательно, так как пропорционально частоте растет ЭДС само индукции, отрицательно влияющая на передачу энергии по проводам” и работу многих электротехнических устройств. Эти соображения, однако, не ограничивают при- менение переменного тока других частот для решения различных технических и научных задач. Например, частота переменного синусоидального тока элек- три ческих печей для выплавки тугоплавких металлов составляет до 500Гц.

В радиоэлектроннике применяются высокочастотные (мегогерцовые) устрой- ства, так на таких частотах повышается излучение электромагнитных волн.

В зависимости от числа фаз электрические цепи переменного с тока под- разделяются на однофазные и трехфазные.

Источник

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

ГЛАВА 1 РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Тема1 Метод эквивалентных преобразований

Изучение этой темы очень важно, так как в ней подробно рассматриваются вопросы, необходимые для решения задач всех последующих разделов курса. Учебной программой предусмотрены три практических занятия по данной теме.

1. Научиться применять законы Ома и Кирхгофа для расчета цепей

с одним источником ЭДС.

2. Научиться рассчитывать эквивалентное сопротивление цепи при последовательно-параллельном соединении приемников.

3. Научиться использовать формулу для определения тока в одной из двух пассивных параллельных ветвей, когда общий ток известен.

Рассмотрим первую целевую задачу занятия.

В настоящее время под законом Ома понимают соотношения, связывающие напряжение и ток. В схемах замещения цепей постоянного тока имеется один вид приемников – резистор, обладающий сопротивлением R. По закону Ома напряжение на резисторе пропорционально току в нем.

Коэффициент пропорциональности и назван сопротивлением: U R = R I .

Первый закон Кирхгофа сформулирован для узла. Узел – это точка в схеме, где сходятся не менее трех ветвей. В настоящее время при использовании ЭВМ для ввода исходных данных узлами выделяют каждый элемент схемы замещения. Эти узлы называют ложными или устранимыми. В дальнейшем речь будет идти о неустранимых узлах.

Алгебраическая сумма токов в узле равна нулю:

Второй закон Кирхгофа относится к контуру. Алгебраическая сумма напряжений на приемниках в любом контуре равна алгебраической сумме ЭДС, действующих в этом же контуре:

 Теоретические основы электротехники. Практикум

ГЛАВА 1 РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Тема 1 Метод эквивалентных преобразований

При непосредственном использовании законов Ома и Кирхгофа решение получается громоздким. Расчет схемы с одним источником энергии и несколькими приемниками существенно упрощается при применении метода эквивалентных преобразований. Все приемники заменяют одним с эквивалентным сопротивлением. При этом токи и напряжения в частях схемы, не затронутых преобразованием, должны оставаться неизменными. Находят токи в свернутой схеме. Затем постепенно возвращаются к исходной схеме с определением остальных токов.

Читайте также:  Ток 7 сегментного индикатора

Перейдем ко второй целевой задаче.

Преобразование схемы проводят постепенно, выявляя участки с последовательными и параллельными соединениями приемников. Предварительно нужно выявить узлы и ветви. Узел – точка в схеме, где сходятся не менее трех ветвей. Ветвь – участок с одним током между двумя узлами. Элементы, принадлежащие одной ветви, соединены между собой последовательно. В них один ток. Эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений:

При параллельном соединении элементы схемы замещения находятся под одним напряжением и соединены между собой двумя выходными зажимами. Эквивалентная проводимость параллельно соединенных резисторов равна сумме их проводимостей:

Источник

Расчет электрических цепей постоянного тока

Расчет простых цепей постоянного тока

Расчет электрических цепей постоянного токаЦелью расчёта электрической цепи постоянного тока является определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь.

Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась. Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным.

Несколько последовательно соединённых потребителей можно заменить одним, причём его эквивалентное сопротивление равно сумме сопротивлений потребителей, включённых последовательно. Для n потребителей можно записать:

где r1 , r2, . rn – сопротивления каждого из n потребителей.

При параллельном соединении n потребителей эквивалентная проводимость gэ равна сумме проводимостей отдельных элементов, включённых параллельно:

Учитывая, что проводимость является обратной величиной по отношению к сопротивлению, можно эквивалентное сопротивление определить из выражения:

1/rэ = 1/r1 + 1/r2 +…+ 1/rn,

где r1, r2, . rn – сопротивления каждого из n потребителей, включённых параллельно.

В частном случае, когда параллельно включены два потребителя r1 и r2, эквивалентное сопротивление цепи:

rэ = (r1 х r2)/(r1 + r2)

Преобразования в сложных цепях, где отсутствует в явном виде последовательное и параллельное соединение элементов (рисунок 1), начинают с замены элементов, включённых в исходной схеме треугольником, на эквивалентные элементы, соединённые звездой.

Преобразование элементов цепи: а - соединённых треугольником, б - в эквивалентную звезду

Рисунок 1. Преобразование элементов цепи: а — соединённых треугольником, б — в эквивалентную звезду

На рисунке 1, а треугольник элементов образуют потребители r1, r2, r3. На рисунке 1, б этот треугольник заменён эквивалентными элементами ra, rb, rc, соединёнными звездой. Чтобы не происходило изменение потенциалов в точках a, b, с схемы, сопротивления эквивалентных потребителей определяются из выражений:

Упрощение исходной цепи можно также осуществить заменой элементов, соединённых звездой, схемой, в которой потребители соединены треугольником.

В схеме, изображённой на рисунке 2, а, можно выделить звезду, образованную потребителями r1, r3, r4. Эти элементы включены между точками c, b, d. На рисунке 2, б между этими точками находятся эквивалентные потребители rbc, rcd, rbd, соединённые треугольником. Сопротивления эквивалентных потребителей определяются из выражений:

Преобразование элементов цепи: а - соединённых звездой, б - в эквивалентный треугольник

Рисунок 2. Преобразование элементов цепи: а — соединённых звездой, б — в эквивалентный треугольник

Дальнейшее упрощение схем, приведённых на рисунках 1, б и 2, б, можно осуществлять путём замены участков с последовательным и параллельным соединением элементов их эквивалентными потребителями.

При практической реализации метода расчёта простой цепи с помощью преобразований выявляются в цепи участки с параллельным и последовательным соединением потребителей, а затем рассчитываются эквивалентные сопротивления этих участков.

Если в исходной цепи в явном виде нет таких участков, то, применяя описанные ранее переходы от треугольника элементов к звезде или от звезды к треугольнику, проявляют их.

Данные операции позволяют упростить цепь. Применив их несколько раз, приходят к виду с одним источником и одним эквивалентным потребителем энергии. Далее, применяя законы Ома и Кирхгофа, рассчитывают токи и напряжения на участках цепи.

Расчет сложных цепей постоянного тока

В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей.

Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых напряжений.

Для проверки правильности вычисления токов необходимо составить баланс мощностей. Из закона сохранения энергии следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.

Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.

Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления.

Математически баланс мощностей можно записать в следующем виде:

где n – количество источников питания в цепи; m – количество потребителей.

Если баланс мощностей соблюдается, то расчет токов выполнен правильно.

В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).

Источник