Меню

Расчет цепи синусоидального тока с параллельным соединением



Параллельное соединение элементов r, L, C в цепи синусоидального тока

date image2015-05-13
views image6405

facebook icon vkontakte icon twitter icon odnoklasniki icon

Если у цепи приложить синусоидальное напряжение

С учетом сдвига фаз между напряжением и током на основании первого закона Кирхгофа можно записать

В комплексной форме уравнение имеет вид

Характер сопротивления цепи зависит от соотношения индуктивной и емкостной проводимостей, которое определяется частотой .

Сдвиг фаз , т.е. ток в неразветвленной части цепи отстает от приложенного напряжения. Сопротивление цепи – индуктивный характер

Сдвиг фаз , т.е. ток в неразветвленной части цепи опережает приложенное напряжение, а сопротивление имеет активно-емкостной характер.

в) при равенстве комплексных индуктивной и емкостной проводимостей, векторная диаграмма имеет вид:

Сдвиг фаз , т.е. ток в цепи совпадает по фазе с напряжением, а сопротивление имеет активный характер и равно . При этом амплитуда тока в неразветвленной части цепи будет меньше, чем в двух предыдущих случаях, что следует из векторных диаграмм.

Явление, при котором в цепи с параллельным соединением r, L, C проводимость является активной и называется резонансом токов.

при изменении частоты полная проводимость цепи и ее характер будет изменятся, так как и зависят от частоты.

Таким образом, рассматриваемая цепь может быть представлена эквивалентной цепью, состоящей из последовательно соединенного активного сопротивления и реактивного элемента с сопротивлением .

Источник

Расчет цепей с параллельным соединением ветвей

ads

Расчет электрической цепи, рассмотренный в предыдущей статье, можно распространить на цепи, содержащие произвольное число приемников, соединенных параллельно.

1

На рис. 14.14, а параллельно соединены те же элементы цепи, которые были рассмотрены при последовательном соединении (см. рис. 14.7, а). Предположим, что для этой цепи известны напряжение u = Umsinωt . и параметры элементов цепи R, L, С. Требуется найти токи в цепи и мощность.

Векторная диаграмма для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

2

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

3

Для действующих токов нужно написать векторное уравнение

4

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l1a активного тока ветви I (по фазе совпадает c напряжением), а из конца его проведен вектор I1p реактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I1 тока первой ветви. Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная, поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные, поэтому в составе этих токов нет активных составляющих.

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково — параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: Iа = I1a + I2a + I3a.

Реактивные составляющие векторов токов перпендикулярны вектору напряжения, причем индуктивные токи направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая общего тока в цепи определяется их алгебраической суммой, в которой индуктивные токи считаются положительными, а емкостные — отрицательными: Ip = — I1p + I2p — I4p + I5p.

Векторы активного, реактивного и полного тока всей цепи образуют прямоугольный треугольник, из которого следует

5

Подставив величины токов в ветвях, выраженные через напряжение и соответствующие проводимости, получим

6

7

где ∑Gnобщая активная проводимость, равная арифметической сумме активных проводимостей всех ветвей; ∑Bn общая реактивная
проводимость, равная алгебраической сумме реактивных проводимостей всех ветвей (в этой сумме индуктивные проводимости считаются положительными, а емкостные — отрицательными); Y — полная проводимость цепи;

Таким образом получена знакомая уже формула (14.12), связывающая напряжение, ток и проводимость цепи [ср. (14.12) и (14.8)].

Читайте также:  Что такое электрческий ток

Следует обратить внимание на возможные ошибки при определении полной проводимости цепи по известным проводимостям отдельных ветвей: нельзя складывать арифметически проводимости ветвей, если токи в них не совпадают по фазе.

Полную проводимость цепи в общем случае определяют как гипотенузу прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активная и реактивная проводимости всей цепи:

8

От треугольника токов можно перейти также к треугольнику мощностей и для определения мощности получить известные уже формулы

9

Активную мощность цепи можно представить как арифметическую сумму активных мощностей ветвей.

10

Реактивная мощность цепи равна алгебраической сумме мощностей ветвей. В этом случае индуктивная мощность берется положительной, а емкостная — отрицательной:

Расчет цепи без определения проводимостей ветвей

Расчет электрической цепи при параллельном соединении ветвей можно выполнить без предварительного определения активных и реактивных проводимостей, т. е. представляя элементы цепи в схеме замещения их активными и реактивными сопротивлениями (рис. 14.15, а).

Определяют токи в ветвях по формуле (14.4);

11

где Z1, Z2 и т. д. — полные сопротивления ветвей.

Полное сопротивление ветви, в которую входят несколько элементов, соединенных последовательно, определяют по формуле (14.5).

12

Для построения векторной диаграммы токов (рис. 14.15, б) можно определить активную и реактивную составляющие тока каждой ветви по формулам

13

и т. д. для всех ветвей.

В этом случае отпадает необходимость определения углов ф1 ф2 и построения их на чертеже.

Ток в неразветвленной части цепи

14

Общий ток и мощность цепи определяются далее в том же порядке, какой был показан ранее (см. формулы (14.10), (14.15), (14.16)].

Источник

Электрическая цепь синусоидального тока с параллельным соединение элементов L и C. Схема. Векторные диаграммы. Расчет. Резонанс токов. Особенности.

Если к зажимам электрической цепи, состоящей из параллельно соединенных элементов приложено синусоидальное напряжение , то синусоидальный ток, проходящий через эту цепь равен алгебраической сумме синусоидальных токов в параллельных ветвях (первый закон Кирхгофа) .

В электрических цепях переменного тока имеются цепи с параллельным соединением потребителей электроэнергии, при котором все потребители находятся под одним и тем же напряжением. При этом на ток в цепи каждого из потребителей не влияет их число. Значение тока в каждом из них определяется только значениями соответствующих сопротивлений и значением подводимого напряжения. Наличие на различных участках цепей переменного тока как активных, так и реактивных элементов приводит к тому, что сопротивление этих участков имеет комплексный характер. В качестве примера рассмотрим цепь, представленную на рис. 8, а. Данная цепь состоит из двух параллельно соединенных ветвей, характер сопротивлений которых различен. Эта схема может рассматриваться как схема замещения реальной цепи, содержащей неидеальные катушку индуктивности и конденсатор. СопротивлениеR1учитывает наличие потерь в витках обмотки катушки, аR2 – потери энергии в диэлектрике конденсатора.

Анализ работы данной цепи проведем на основе построения векторной диаграммы токов и напряжений. Вначале рассмотрим графоаналитический метод расчета. Определим действующие значения токов ветвей, используя закон Ома:

Данные соотношения позволяют определить длины векторов токов на комплексной плоскости. Для построения вектора тока на комплексной плоскости необходимо, помимо длины вектора, знать его ориентацию относительно вектора напряжения на соответствующем участке цепи (угол сдвига фаз). Углы сдвига фаз j1иj2 между напряжением и токами ветвей могут быть определены из следующих соотношений:

Примем начальную фазу напряжения uна входе рассматриваемой цепи равной нулю, что соответствует ориентации вектора напряжения, совпадающей с положительным направлением оси вещественных чисел (рис. 8,б). Рассчитанные выше углы сдвига фазj1иj2 представляют собой углы между соответствующими векторами токов ( ) и напряжения на комплексной плоскости. Причем, при активно-индуктивном характере сопротивления (в данной схеме первая ветвь) напряжение опережает ток на уголj1, а при активно-емкостном сопротивлении (вторая ветвь) – напротив, напряжение отстает по фазе от тока на уголj2. Вектор общего тока цепи в соответствии с первым законом Кирхгофа равен геометрической сумме векторов токов ветвей:

Действующее значение общего тока Iопределяется графически по векторной диаграмме как длина вектора .

Графоаналитический метод не удобен для расчета разветвленных цепей: он отличается громоздкостью и невысокой степенью точности. Более эффективным является использование комплексного метода расчета с использованием проводимостей. Под комплексной проводимостью участка цепи (ветви) Yпонимают величину, обратную комплексному сопротивлению этого участкаZ:

Читайте также:  Какие частицы являются носителями электрического тока в газах

Y=1/Z= G – jB = Ye –j j .

Единица измерения проводимости – (Ом -1 ) или (См) (читается: сименс). Вещественная часть комплексной проводимостиG называется активной проводимостью участка цепи, а мнимая часть комплексной проводимостиB называется реактивной (индуктивной или емкостной) проводимостью. Учитывая что комплексное сопротивление участка цепи в общем виде может быть представлено в видеZ = R+jX, запишем выражение для комплексной проводимости через активную и реактивную составляющие комплексного сопротивления участка цепи:

Если комплексное сопротивление участка цепи имеет индуктивный характер, то B> 0, если же характер комплексного сопротивления емкостный, тоB 2 Y;P=UIcosj=U 2 G ;Q=UIsinj=U 2 B.

Может возникать в цепи содержащей параллельные соединения R, L, C элементы.

1. Совпадения по фазе тока и напряжения на входе цепи. Разность фаз напряжения и тока равны нулю.

2. Равенство реактивных токов в индуктивности и емкости.

3. Резкое возрастание амплитуды напряжения

Дата добавления: 2018-06-27 ; просмотров: 445 ; Мы поможем в написании вашей работы!

Источник

Приложение 1. Комплексный метод расчета электрических цепей синусоидального тока

Все графические методы расчета цепей синусоидального тока не обеспечивают точного расчета электрических цепей, кроме того, они сложны и трудоемки.

Наиболее простым и точным методом расчета электрических цепей синусоидального тока является комплексный метод, основанный на теории комплексных чисел.

Синусоидальная величина изображается вращающимся вектором на комплексной плоскости с осями ±1 и ±j, где мнимая единица, символ.

За положительное направление вращения вектора принято направление против часовой стрелки. За время, равное одному периоду, вектор совершает один оборот.

На рис.4.5 изображен вектор комплексного тока , которому соответствует комплексное число

Рис.4.5. Составляющие комплексного числа на комплексной плоскости

где I — модуль действующего значения тока, равный длине вектора;

где — действительная составляющая тока; — мнимая составляющая; yi = arctg ( ) – аргумент тока, равный начальной фазе, т. е. угол между вектором и действительной полуосью +1 при t = 0. Аргумент положительный, если вектор отложен в направлении против движения часовой стрелки, и отрицательный — если по часовой.

Комплексные значения синусоидальных величин обозначают несинусоидальных — z, S.

Над комплексными числами можно производить все алгебраические действия (при сложении и вычитании удобнее использовать алгебраическую форму, а при умножении, делении, возведении в степень, извлечении корня – показательную).

Алгебраическая форма записи:

Тригонометрическая форма записи:

İ = Icosyi + jsinyi .

Показательная форма записи:

İ = Ie j y i .

Переход из одной формы записи в другую осуществляется по формуле Эйлера через тригонометрическую форму записи

e ± j α =cosα±j sinα.

Например: İ = 10e j37º = 10cos37˚ + j10sin37º = 10 · 0,8 + j10 0,6 = = 8 + j6 = (8² + 6²) 1/2 e +jarctg6/8 = 10e +j37º (А).

При работе с комплексными числами используют и сопряженные комплексные величины, имеющие одинаковые модули и одинаковые по величине, но противоположные по знаку аргументы:

İ = 10e j 37º , А; I* =10ej37º , А.

Произведение İ I* = 10e j 37º 10ej 37º = 100e j 0° , À.

Приложение 2.

Таблица Основные свойства элементов цепей переменного тока

Двухполюсник Резистор (резистивное сопротивление Катушка (индуктивное реактивное сопротивление Конденсатор (емкостное реактивное сопротивление)
Обозначение
Связь между мгновенными значениями u и i i= uR/R uL = Ldi/dt i = CduC/dt
Если задано uR = maxsinωt uL = Umaxsinωt uC = Umaxsinωt
То имеем i = maxsinωt/R i = Umaxsin(ωt – – π/2)/ωL = = Imax sin(ωt – π/2) i= ωCUmaxcosωt= = Imax sin(ωt +π/2)
Действующее значение тока I = UR/R I = ULL ICUC
Сопротивление (или соответственно реактивное сопротивление) R XL = ωL XC = 1/ωC
Сдвиг фаз φ = ψU – ψi = 0 φ = ψU – ψi =+90 ͦ φ = ψU – ψi = –90 ͦ
Сдвиг по фазе
Комплексное сопротивление
Расчет комплексным методом
Зависимость сопротивления от частоты R R ω XL ωL ω XC 1/ωC ω

Приложение 3.Расчет электрических цепей комплексным методом

Задача 1.

Определить ток и напряжения на участках цепи рис.1, если известны следующие данные:

R = 8 Ом; XL =6 Ом

Рис.1. Пример к расчету цепи с последовательным включением R и XL

Решение.

Комплексное сопротивление цепи, Ом:

где = arctqXL/R = 37°

Начальная фаза тока ψi = –37°.

Напряжения участков цепи, В :

Задача 2.

Определить ток, напряжения на участках цепи и мощности электрической цепи при последовательном соединении R, L и С рис.2, если известны следующие данные:

R = 8 Ом; XL =6 Ом, ХС = 12 Ом.

Рис. 2. Последовательное соединение R, L и С.

Читайте также:  Единица измерения работы электрического тока ответ

Решение.

Определяем комплексное сопротивление цепи, Ом:

где = arctq(XLС)/R = arctq (6 12)/8 = 37°

Определяем комплексный ток, А:

Определяем комплексные напряжения на участках цепи, В:

= 3872 – j2904

Определяем комплексную полную мощность цепи, ВА:

= = = =4840cos37º – j4840sin37 º = 3872 – j2904

Активная мощность, Вт:Р = 3872

Реактивная (емкостная) мощность, вар:

Задача 3.

Определить токи ветвей для схемы рис. 3, если известны следующие данные:

u(t) = 183sin314t; R1 = 8 Ом; R2 = 12 Ом; XL =6 Ом; XC = 5 Ом.

Рис. 3. Параллельное соединение ветвей с R-L и R-C

Решение.

Комплексное действующее входное напряжение цепи, В:

Комплексные токи параллельных ветвей, А:

Сумма комплексных токов параллельных ветвей, А:

Полученному комплексному току соответствует синусоидальный ток, А:

i(t) = 20

Задача 4.

В четырехпроводную сеть с линейным напряжением Uл =220 В, включен трехфазный приемник, соединенный по схеме «звезда» (рис.4). Комплексные сопротивления фаз приемника:

Найти комплексные токи в линейных и нейтральном проводах.

Решение.

Фазное напряжение, В:

Комплексные фазные напряжения, В:

Комплексные линейные токи равны соответственно комплексным фазным токам, А:

Комплексный ток в нейтральном проводе, А:

+ + + = ˗˗ 2,81 + j4,9 =5,9e j 120

Приложение 4. Техника безопасности при работе с электротехническими установками. Опасность поражения

Лабораторные стенды являются действующими электроустановками и при определенных условиях могут стать источником опасности поражения электрическим током. Дело в том, что тело человека обладает свойством электропроводности и при соприкосновении с неизолированными элементами установки, находящейся под напряжением, становится звеном электрической цепи. Возникший вследствие этого в теле человека электрический ток может вызвать ожог кожи (электрическую травму) или нанести тяжелые поражения нервной, сердечной и дыхательной системам организма (электрический удар).

Установлено, что как постоянный, так и переменный электрические токи при величине ),05 А являются опасными, а при величине 1 А – смертельными.

Чтобы оценить, при каком напряжении может быть нанесен серьезный ущерб здоровью человека или какое напряжение считать опасным для жизни, надо знать величину сопротивления тела человека. Однако, это чрезвычайно изменчивая величина, зависящая от свойств кожи человека, его душевного состояния и ряда других величин. Как показывают измерения, сопротивление тела человека может изменяться в широких пределах – от 700 до нескольких десятков тысяч Ом. Нетрудно посчитать, что напряжение даже в несколько десятков вольт (40 ÷ 60 В) может при неблагоприятном стечении обстоятельств создать условия, когда возможен электрический удар. Поэтому следует всегда помнить о возможности поражения электрическим током и соблюдать меры предосторожности.

ЛИТЕРАТУРА

1. Алиев, И. И. Электротехнический справочник / И. И. Алиев. – М.: Радио Софт, 2004. – 384 с.

2. Беневоленский С.Б. Основы электротехники /Беневоленский С.Б., Марченко С. Л. – Москва: Физматлит, 2006. – 566 с.

3. Горошко, В. И. Электротехника, основы электроники и электрооборудование химических производств / В. И. Горошко, И. О. Оробей, Л. М. Давидович. – Минск: БГТУ, 2006. – 246 с.

4. Григораш О. В. Электротехника и электроника /О. В. Григораш, Г. А. Султанов, Д. А. Нормов. – Ростов-на-Дону; Краснодар: Феникс: Неоглари, 2008. – 462с.

5. Данилов И. А. Общая электротехника / И. А. Данилов. – Москва: Высшее образование, 2009. – 673с.

6. Жаворонков М. А. Электротехника и электроника / Жаворонков М. А., Кузин А.В. – Москва: Академия, 2005. – 394с.

7. Иванов, И. И. Электротехника /Иванов И. И., Соловьев В. И, Равдоник В. С. – Изд. 3-е, Санкт-Петербург: Лань, 2005. – 496 с.

8. Касаткин, А. С. Электротехника / А. С. Касаткин, М. В. Немцов. 10-изд; – Москва: Академия, 2007. – 538 с.

9. Кононенко В. В. Электротехника и электроника / В. В. Кононенко и др; под ред. Кононенко В. В. 4-е изд. – Ростов-на-Дону: Феникс, 2008. – 778 с.

10. Коровкина Н. П. Электротехника и основы электроники [Электронный ресурс]: Тексты лекций для студентов спец.1-36 07 01. 01, 1-36 07 01.02, 1-36 01 08, 62,8 мБ, формат pdt -2012г. Кафедра автоматизации производственных процессов и электротехники

11. Рекус, Г. Г. Основы электротехники и электроники в задачах с решениями / Рекус Г. Г. – Москва: Высшая школа, 2005. — 343с.

12. Электрические цепи. – Минск: БГТУ. 2005. – 56 с.

Источник

Adblock
detector