Меню

Расчет токов во всех ветвях по правилам кирхгофа



Учебные материалы

Помощь студентам

Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю:

Согласно второму закону Кирхгофа алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур.

Расчет многоконтурной линейной электрической цепи, имеющей «b» ветвей с активными и пассивными элементами и «у» узлов, сводится к определению токов отдельных ветвей и напряжений на зажимах элементов, входящих в данную цепь.

Пассивной называется ветвь, не содержащая источника ЭДС. Ветвь, содержащая источник ЭДС, называется активной.

1-й закон Кирхгофа применяют к независимым узлам, т.е. таким, которые отличаются друг от друга хотя бы одной новой ветвью, что позволяет получить (y — I) уравнений.

Недостающие уравнения в количестве b — (у — I) составляют, исходя из второго закона Кирхгофа. Уравнение записывают для независимых контуров, которые отличаются один от другого, по крайней мере, одной ветвью.

Порядок выполнения расчета:

  1. выделяют в электрической цепи ветви, независимые узлы и контуры;
  2. с помощью стрелок указывают произвольно выбранные положительные направления токов в отдельных ветвях, а также указывают произвольно выбранное направление обхода контура;
  3. составляют уравнения по законам Кирхгофа, применяя следующее правило знаков:
    1. токи, направленные к узлу цепи, записывают со знаком «плюс», а токи, направленные от узла,- со знаком «минус» (для первого закона Кирхгофа);
    2. ЭДС и напряжение на резистивном элементе (RI) берутся со знаком»плюс», если направления ЭДС и тока в ветви совпадают с направлением обхода контура, а при встречном направлении — со знаком «минус»;
  4. решая систему уравнений, находят токи в ветвях. При решении могут быть использованы ЭВМ, методы подстановки или определителей.

Отрицательные значения тока какой-либо ветви указывают на то, что выбранные ранее произвольные направления тока оказались ошибочными. Это следует учитывать, например, при построении потенциальной диаграммы, где следует знать истинное направление тока.

На рис. 4, а изображена исходная электрическая схема, для которой следует рассчитать токи в ветвях. Направления токов и обхода контуров приведены на рис. 4, б.

Система уравнений, составленных по первому и второму законам Кирхгофа, имеет вид

Источник

Расчет токов по правилам Кирхгофа

Полученные уравнения объединяем в систему уравнений. Количество уравнений должно быть равно количеству неизвестных. Далее решаем систему уравнений любым известным способом.

Правильность расчета проверяется составлением уравнения баланса мощностей.

p.s. Правила Кирхгофа необязательно использовать в виде систем уравнений. Они справедливы для любого узла и для любого замкнутого контура электрической цепи.

Рассмотрим пример составления уравнений по законам Кирхгофа для разветвленной электрической цепи постоянного тока. Для данной электрической цепи необходимо рассчитать токи в каждой ветви. Для расчета токов будет пользоваться законами Кирхгофа.

Составляем уравнения по первому закону кирхгофа. Согласно алгоритма задаемся направлением токов в ветвях электрической схемы.

Количество уравнений равно количеству узлов минус один. У нас в схеме два узла. Значит будет одно уравнение. Т.к. все токи втекают в узел, то берем их с одним знаком, например плюс. В результате уравнение по первому закону будет таким.

Составим уравнения по второму правилу Кирхгофа. По алгоритму необходимо задаться обходом независимых контуров.

В электрической цепи три контура. Контура обозначены стрелочками.

Из них только любые два являются независимыми контурами.

Для каждого независимого контура составляем уравнение по второму закону Кирхгофа.

В первом уравнении перед током I1 поставлен минус, т.к. направление обхода первого (слева) контура не совпадает с направление протекающего тока I1.

Перед током I2 в первом уравнении поставлен плюс, т.к. направление обхода первого контура совпадает с направление протекающего тока I2.

Перед ЭДС 1 поставлен минус, т.к. направление действия ЭДС 1 не совпадает с направление обхода первого контура.

Во втором уравнении перед током I2 поставлен минус, т.к. направление обхода второго контура не совпадает с направление протекающего тока I2.

Перед током I3 во втором уравнении поставлен плюс, т.к. направление обхода второго контура совпадает с направление протекающего тока I3.

Перед ЭДС 2 поставлен минус, т.к. направление действия ЭДС 2 не совпадает с направление обхода второго контура.

Выполняем объединение уравнений в систему. Решаем систему уравнений с тремя неизвестными I1, I2, I3 любым известным способом.

Контрольные задания

Задача № 1
Расчет разветвленной цепи постоянного тока
с одним источником питания

Определить эквивалентное сопротивление электрической цепи постоянного тока (рис. 1, а) и распределение токов по ветвям. Вариант электрической цепи (включая ее участок 1–2 (рис. 1.1, би), ограниченный на схеме рис. 1.1, а пунктиром), положение выключателей В1 и В2 в схемах, величины сопротивлений резисторов и питающего напряжения U для каждого из вариантов задания представлены в табл. 1.1.

а б в г
д е
жи

Рис. 1.1. Варианты электрической цепи к задаче № 1

Исходные данные к задаче № 1

Вариант Величины Положение выключателей Схема участка, ограниченного пунктиром
, Ом , Ом , Ом , Ом , Ом , Ом , Ом , Ом , Ом , Ом , Ом , Ом U, В В1 В2
Рис. 1.1, а
Рис. 1.1, а
Рис. 1.1, а
Рис. 1.1, б
Рис. 1.1, б
Рис. 1.1, б
Рис. 1.1, в
Рис. 1.1, в
Рис. 1.1, в
Рис. 1.1, д
Рис. 1.1, д
Рис. 1.1, д
Рис. 1.1, ж
Рис. 1.1, д
Рис. 1.1, г
Рис. 1.1, г
Рис. 1.1, г
Рис. 1.1, е
Рис. 1.1, е
Рис. 1.1, е
Рис. 1.1, ж
Рис. 1.1, ж
Рис. 1.1, и
Рис. 1.1, и
Рис. 1.1, и
Читайте также:  Сила тока для меднения

Неразветвленная электрическая цепь характеризуется тем, что на всех ее участках протекает один и тот же ток, а разветвленная содержит одну или несколько узловых точек, при этом на участках цепи протекают разные токи.

При расчете неразветвленных и разветвленных линейных электрических цепей постоянного тока могут быть использованы различные методы, выбор которых зависит от вида электрической цепи.

При расчетах сложных электрических цепей во многих случаях целесообразно производить их упрощение путем свертывания, заменяя отдельные участки цепи с последовательным, параллельным и смешанным соединениями сопротивлений одним эквивалентным сопротивлением с помощью метода эквивалентных преобразований (метода трансфигураций) электрических цепей.

Электрическая цепь с последовательным соединением сопротивлений (рис. 1.2) заменяется при этом цепью с одним эквивалентным сопротивлением (рис. 1.3), равным сумме всех сопротивлений цепи:

где – сопротивления отдельных участков цепи.

Рис. 1.2. Последовательное соединение сопротивлений Рис. 1.3. Эквивалентная схема замещения

При этом ток I в электрической цепи сохраняет неизменным свое значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

При параллельном соединении сопротивлений все сопротивления находятся под одним и тем же напряжением U (рис. 1.4). Электрическую цепь, состоящую из параллельно соединенных сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением , которое определяется из выражения

где – сумма величин, обратных сопротивлениям участков параллельных ветвей электрической цепи (сумма проводимостей ветвей цепи); – сопротивление параллельного участка цепи; – эквивалентная проводимость параллельного участка цепи, ; n – число параллельных ветвей цепи.

При параллельном соединении двух сопротивлений и эквивалентное сопротивление , а токи распределяются обратно пропорционально их сопротивлениям, при этом .

Рис. 1.4. Параллельное
соединение сопротивлений

При смешанном соединении сопротивлений (рис. 1.5), т. е. при наличии участков электрической цепи с последовательным и параллельным соединением сопротивлений, эквивалентное сопротивление цепи определяется в соответствии с выражением

Рис. 1.5. Смешанное

Задача № 2
РАСЧЕТ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА
МЕТОДОМ ЗАКОНОВ КИРХГОФА

Для электрической цепи постоянного тока (рис. 2.1), используя данные, приведенные в табл. 2.1, определить токи в ветвях резисторов методом уравнений Кирхгофа, режимы работы источников питания, составить баланс мощностей. Эдс и напряжения источников, сопротивления резисторов и положение выключателей для соответствующих вариантов задания приведены в табл. 2.1. Внутренним сопротивлением источника пренебречь.

Рис. 2.1. Сложная электрическая цепь постоянного тока

Ход решения задачи

В любой электрической цепи в соответствии с первым законом Кирхгофа алгебраическая сумма токов, направленных к узлу разветвления, равна нулю: , где Ik – ток k-й ветви.

В соответствии со вторым законом Кирхгофа алгебраическая сумма эдс в любом замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений в этом контуре:

где – сопротивление участка цепи рассматриваемого контура; – ток в цепи сопротивления .

Метод уравнений Кирхгофа сводится к решению системы уравнений, количество которых равно числу неизвестных токов.

Источник

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

или в комплексной форме

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_\textrm<у>-1 $, где $ N_\textrm <у>$ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_\textrm<в>-N_\textrm<у>+1 $, где $ N_\textrm <в>$ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Читайте также:  Модуль ток в вакууме

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ направление токов и обход контуров

Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ \underline_ <1>$, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_<1>— \underline_<2>— \underline_ <3>= 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0; $$

$$ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0; $$

$$ \underline_<3>— \underline_<5>— \underline_ <1>= 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_<1>; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_<2>; $$

для контура «3 к.»:

$$ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_<3>; $$

где $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ \begin \underline_<1>— \underline_<2>— \underline_ <3>= 0 \\ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0 \\ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0 \\ \underline_<3>— \underline_<5>— \underline_ <1>= 0 \\ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_ <2>\\ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_ <3>\end $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin 1 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ \underline_ & R_ <2>& 0 & -\underline_ & 0 & 0 & 0 \\ 0 & -R_ <2>& R_ <4>& 0 & \underline_ & 0 & 0 \\ 0 & 0 & 0 & \underline_ & 0 & R_<1>+\underline_ & R_ <3>\\ \end \cdot \begin \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \underline_ <4>\\ \underline_ <5>\\ \underline_ <6>\\ \underline_ <7>\\ \end = \begin 0 \\ 0 \\ 0 \\ \underline_ <1>\\ \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Закон Кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

Читайте также:  Постоянный ток тестера ц4353

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Схема параллельного соединения проводников

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа в комплексной форме

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

Рассмотрим применение 1 закона Кирхгофа

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

участок электрической цепи

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Формула второго закона Кирхгофа в комплексной форме уравнение для постоянных напряженийУравнение для переменных напряжени — Формула второго закона Кирхгофа в комплексной форме уравнение для переменных напряжений

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

2 закон Кирхгофа для электрической цепи e_1-e_2+e_3=I_1 R_1-I_2 R_2+I_3 R_3-I_4 R_4.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

пример применения второго правила Кирхгофа

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник