Меню

Расчет токов по схеме звезда



Расчет токов по схеме звезда

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

где определяется характером нагрузки .

Тогда на основании вышесказанного

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

Тогда для искомых токов можно записать:

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Определить ток в нейтральном проводе.

В схеме предыдущей задачи ; . Остальные параметры те же.

Определить ток в нейтральном проводе.

В задаче 8 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

В задаче 9 нейтральный провод оборван.

Источник

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).

Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).

Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.

а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

UAB = 2UА cos 30º = UА = UФ.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.

Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

По первому закону Кирхгофа

Для симметричной нагрузки

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22

Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.

Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

При отключении нейтрального провода ток I становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).

Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

Р = UI ∙ cos (U ^ I) , (50)

где U — напряжение, приложенное к обмотке напряжения ваттметра;

I — ток, протекающий по токовой обмотке ваттметра;

U ^ I = φ — угол сдвига между напряжением и током.

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Р = 3∙UФIФ ∙ cos φ или

Р = ∙UЛIФ ∙ cos φ . (51)

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Обозначим через α и β соответственно углы (UAB ^ IA) и (UCB ^ IC) . Для определения α и β построим векторную диаграмму для случая симметричной активно-индуктивной нагрузки (рис.27). Согласно построению α = 30º + φ, β = 30º – φ.

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Р = Р1 + Р2 = UЛIЛ ∙ [cos (30º + φ) + cos (30º – φ)] = UЛIЛ ∙ cos φ. (53)

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.

Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Q = ( Р1Р2) = UЛIЛ ∙ [cos (30º + φ) – cos (30º – φ)] = UЛIЛ ∙sin φ. (54)

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).

Рис.29. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3, А — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).

Рис.30. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3 — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В; W1 и W2 — ваттметры на напряжение 75−150−300−600 В и ток 1−2,5−5 А.

2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Измеренные величины Вычисленные величины
IA IВ IС I UA UВ UС UAВ UВС UСА UЛ/ UФ РА РВ РС Р
А А А А В В В В В В В Вт Вт Вт Вт
0,6 0,6 0,6
0,6 0,45 0,35 0,21
Измеренные величины Вычисленные величины
IA IВ IС UA UВ UС UAВ UВС UСА Р1(W1) Р2(W2) UЛ/ UФ РА РВ РС Ррасч Р(W1+W2)
А А А В В В В В В Вт Вт В Вт Вт Вт Вт Вт
0,6 0,6 0,6
0,525 0,475 0,375

1. Как относятся друг с другом ЭДС, составляющие трехфазную систему?

2. Как соединяются обмотки генератора при соединении «звездой»?

3. Чем отличается схема четырехпроводной системы трехфазного тока от схемы трехпроводной системы?

4. Что соединяет нулевой (нейтральный) провод?

5. Что такое линейные и фазные токи и напряжения и каковы соотношения между ними при соединении звездой в векторной форме?

6. Как связаны линейные и фазные напряжения в четырехпроводной системе трехфазного тока?

7. Что такое симметричная и несимметричная нагрузка?

8. Чему равна геометрическая сумма токов в четырехпроводной трехфазной системе при симметричной нагрузке?

9. Чему равен ток в нулевом проводе при симметричной нагрузке?

10. отличаются ли токи и напряжения в четырехпроводной и трехпроводной системах трехфазного тока при одинаковой симметричной нагрузке?

11. При какой нагрузке необходимо включить в трехфазную систему нулевой провод и зачем?

12. Как определить ток в нулевом проводе четырехпроводной системы при несимметричной нагрузке, зная линейные токи?

13. При каких условиях будут равны напряжения на всех фазах нагрузки в трехпроводной трехфазной системе?

14. Каков характер нагрузки в осветительных сетях?

15. Какую систему трехфазного тока нужно использовать в осветительных сетях и почему?

16. какую мощность можно определить методом двух ваттметров?

17. Чему равна активная мощность цепи при применении метода двух ваттметров?

18. В каких системах трехфазного тока может быть применен метод двух ваттметров?

19. Можно ли определить полную мощность трехфазной системы, используя метод двух ваттметров?

20. Можно ли определить коэффициент мощности трехфазной системы, используя метод двух ваттметров?

Источник

Расчет трехфазных цепей

Расчет трехфазных цепей ведется известными методами расчета цепей гармонического тока, т.к. они представляют собой частный случай сложной цепи, в которой действуют несколько источников ЭДС. Рассмотрим особенности расчета трехфазных цепей при соединении источников и приемников по схеме «звезда-звезда» и «треугольник-треугольник».

1. Схема «звезда-звезда»

Схема трехфазной цепи представлена на рис.3.6. Сопротивления линейных проводов включены в сопротивления фаз нагрузки. Сопротивление нулевого провода обозначено Соотношения между напряжениями в цепи устанавливаются ЗНК:

Напряжения являются напряжениями на зажимах генератора и равны соответствующим ЭДС. Поэтому они образуют симметричную звезду векторов (рис. 3.7). Линейные напряжения также образуют симметричную систему. На векторной диаграмме рис. 3.7 в соответствии с выражениями (3.5) изображены и остальные векторы напряжений схемы.

Рис. 3.6. Расчетная схема трехфазной цепи «звезда-звезда»

Рис. 3.7. Векторная диаграмма при несимметричной нагрузке

Величина падения напряжения в нулевом проводе зависит от параметров нагрузки, поэтому соответствующий вектор по величине и направлению на диаграмме рис. 3.7 изображен произвольно.

Как следует из векторной диаграммы, фазные напряжения на нагрузке не одинаковы и отличаются от фазных напряжений источника на величину падения напряжения в нулевом проводе . Такое положение недопустимо в реальных системах электроснабжения. Поэтому нулевой провод выполняют с минимальным сопротивлением, величиной которого можно пренебречь. Тогда падение напряжения в нулевом проводе можно считать равным нулю, и на векторной диаграмме точка n совпадет с точкой N. При этом вектора фазных напряжений совпадут с векторами фазных напряжений источника, а система станет симметричной.

Таким образом, основная роль нулевого провода − выравнивание фазных напряжений при несимметричной нагрузке фаз.

Если нулевой провод отсутствует, то векторная диаграмма при несимметричной нагрузке подобна диаграмме рис. 3.7, в которой вектор представляет собой напряжение между нейтральными точками генератора и нагрузки. Соотношения между напряжениями цепи при этом также описываются выражениями (3.5).

Рассмотрим два аварийных режима работы трехфазной цепи:

− короткое замыкание одной из фаз нагрузки;

− обрыв одной из фаз,

которые исследуются в лабораторном практикуме.

Короткое замыкание одной из фаз нагрузки, (например, фазы b)

Это означает, что сопротивление фазы стало равно нулю: .

При наличии нулевого провода такая ситуация приведет к замыканию накоротко фазы В источника, что, в свою очередь, приведет к срабатыванию автомата защиты в данной фазе. В других же фазах ничего не изменится, т.к. их фазные напряжения не изменились. Ток в нулевом проводе станет равен сумме токов фаз А и С .

В том случае, когда нулевой провод отсутствует, замыкание в фазе b приведет к изменению фазных напряжений. Схема цепи при замыкании фазы b приведена на рис. 3.8.

Из схемы видно, что для принятых положительных направлениях напряжений имеют место соотношения:

Векторная диаграмма, соответствующая данному режиму, приведена на рис. 3.9. Звезда фазных и треугольник линейных напряжений источника образуют соответственно симметричную звезду и треугольник, в то время как звезда фазных напряжений приемника изменилась.

Рис. 3.8. Схема цепи при коротком замыкании фазы b

Рис. 3.9. Векторная диаграмма при коротком замыкании фазы b

По сравнению с диаграммой рис. 3.7 произошли следующие изменения:

− точка n совместилась c точкой B(b) , т.к. а звезда фазных ЭДС источника не изменилась;

− фазные напряжения неповрежденных фаз совпали по величине с линейными напряжениями;

− напряжение стало равно напряжению закороченной фазы.

Если повышение фазного напряжения и соответственно тока в нагрузке в раз недопустимо по условиям эксплуатации, то в случае замыкания накоротко одной из фаз сработают аварийные выключатели.

Обрыв одной из фаз нагрузки, например, фазы b

При наличии нулевого провода в фазах А и С ничего не произойдет, т.к. фазные напряжения в нагрузке останутся прежними. Ток же в нулевом проводе станет равным сумме токов фаз А и С.

Схема цепи без нулевого провода приведена на рис. 3.10. Рассмотрим случай чисто активной симметричной нагрузки.

Рис. 3.10.Схема цепи при обрыве фазы b

Фазы a и c нагрузки (сопротивления Ra и Rb) оказываются соединенными последовательно, и к ним прикладывается линейное напряжение В соответствии с ЗНК согласно принятым положительным направлениям оно уравновешивается фазными напряжениями

Поскольку нагрузка фаз активная и симметричная, фазные напряжения будут одинаковыми по величине, а вектора, их изображающие, и вектор линейного напряжения будут параллельны. Векторная диаграмма при этом примет вид, как на рис. 3.11.

Звезда фазных и треугольник линейных напряжений источника останутся без изменения, поскольку они определяются источником, в то время как фазные напряжения нагрузки изменились, и появилось напряжение .

Рис. 3.11. Векторная диаграмма цепи при обрыве фазы b

По сравнению с диаграммой рис. 3.7 здесь произошли следующие изменения:

− точка n заняла серединное положение на векторе линейного напряжения при этом фазные напряжения по величине равны половине линейного напряжения;

− напряжение на разомкнутой фазе возросло (в данном случае в 1,5 раза);

− напряжение в данном случае по величине равно половине фазного напряжения источника.

Таким образом, рассмотрение несимметричных режимов показывает, что отсутствие нулевого провода в аварийных режимах приводит к существенному перекосу фазных напряжений по сравнению с симметричным режимом.

Расчет симметричного режима несложен. Поскольку система симметрична, то напряжение между нейтральными точками и ток в нулевом проводе равны нулю, а фазные напряжения на нагрузке равны соответствующим фазным напряжениям источника. Тогда токи в фазах найдутся по выражениям:

Несимметричный режим цепи с нулевым проводом конечного сопротивления целесообразно вести по методу узловых напряжений.

Если в качестве нулевого принять потенциал узла N, то можно записать

где комплексные проводимости фаз и нулевого провода соответственно.

Тогда токи в фазах нагрузки определятся с учетом (3.5)

Ток в нулевом проводе

В предельном случае, когда сопротивление нулевого провода равно нулю, т.е. Yn=∞, напряжение между нулевыми точками также равно нулю. Тогда фазные напряжения на нагрузке равны соответствующим фазным напряжениям источника, и расчет можно вести по формулам (3.6).

Если нулевой провод отсутствует, то в выражении (3.7) следует положить

а расчет фазных токов вести по выражениям (3.8).

2.Схема при соединении нагрузки треугольником

При соединении нагрузки треугольником не принципиально, по какой схеме соединены обмотки генератора, т.к. к нагрузке подводятся линейные напряжения, а нулевой провод отсутствует. Поэтому для расчета достаточно рассмотреть схему со стороны нагрузки, представленную на рис. 3.5.

Токи в фазах определяются по закону Ома:

Линейные токи определяются по формулам (3.3).

Источник

Значения напряжения, тока и мощности при соединениях звездой и треугольником

Открытие великим Фарадеем закономерности: при пересечении проводником силовых линий магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник, — послужило основой для создания электрогенераторов с вращающимся ротором — магнитом. ЭДС наводится при этом в обмотках статора (смотрите — Практическое применение закона электромагнитной индукции Фарадея).

Получаемые напряжения могут быть самые разные: все зависит от конструкции генератора, от числа обмоток в статоре и способах их соединения. Однако в практической электротехнике самое широкое распространении получила трехфазная система синусоидального тока, предложенная выдающимся русским инженером М.О. Доливо-Добровольским в 1888 году (через 57 лет после открытия Фарадея).

Из всех многофазных систем трехфазная обеспечивает наиболее экономичную передачу электрической энергии на дальние расстояния и позволяет создать надежные в работе и простые по устройству генераторы, электродвигатели и трансформаторы. Но и три обмотки могут быть соединены двумя способами: «треугольником» (рис. 1) и «звездой» (рис. 2).

Схема соединения треугольником

схема соединения звездой

Фазным называют напряжение Uф создаваемое одной обмоткой, линейным Uл — напряжение между двумя линейными проводами. Другими словами, фазное напряжение — это напряжение между каждым из линейных проводов и нулевым проводом.

При соединении симметричного генератора в звезду линейное напряжение по значению в 1,73 раз больше фазного, т.е. Uk = 1,73•Uф. Это следует из того, что Uл — основание равнобедренного треугольника с острыми углами по 30°: Uл = UАВ = Uф 2 cos 30° = 1,73•Uф.

При соединении и нагрузки в звезду соответствующий линейный ток равен фазному току нагрузки. Если трехфазная нагрузка симметричная, то ток в нулевом проводе будет равен 0. В этом случае надобность в нулевом проводе вообще отпадает и трехфазная цепь превращается в трехпроводную. Это соединение называют «звезда-звезда без нулевого провода». При симметричной нагрузке фаз линейные токи по величине в 1,73 больше фазных токов, Iл = 1,73•3Iф.

При соединении трехфазного генератора звездой используются два напряжения, что выгодно отличает это соединение от соединения треугольником. Но при соединении нагрузки треугольником все фазы находятся под одним и тем же по числовому значению линейным напряжением независимо от сопротивления фаз, что важно для осветительной нагрузки — ламп накаливания.

Трехфазная система с нулевым проводом применяется для питания приемников двух напряжений, различающихся в 1,73 раз, например, лапм, включаемых на фазное напряжение, и двигателей, включаемых на линейное напряжение.

Номинальное напряжение определяется конструкцией генераторов и способом соединения его обмоток.

На рисунке 3 показаны зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником.

Зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником

По виду формулы одинаковы, казалось бы нет ни выигрыша, ни проигрыша в мощности для этих двух разновидностей электроцепей. Но не спешите с выводами.

При пересоединении из треугольника в звезду на каждую фазную обмотку приходится в 1,73 раза более низкое напряжение, хотя напряжение в сети остается прежним. Уменьшение напряжения приводит к уменьшению и тока в обмотках в те же 1,73 раза. И еще — при соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь эти токи равны. В итоге линейный ток при пересоединении в звезду уменьшился в 1,73 • 1,73 = 3 раза.

Новую мощность вычисляют действительно по той же формуле, но подставляя иные величины!

Асинхронные электродвигатели

При пересоединении электродвигателя с треугольника на звезду и питании его от той же сети мощность, развиваемая этим двигателем, снижается в 3 раза. При переключении со звезды на треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например, с 380 до 220 В.

Мощность генератора или трансформатора остается прежней, потому что напряжение и ток в каждой фазной обмотке сохраняются, хотя ток в линейных проводах возрастает в 1,73 раза. При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника на звезду происходят обратные явления: линейное напряжение сети повышается в 1,73 раза, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Источник

Читайте также:  Система независимого возбуждения с возбудителем постоянного тока