Меню

Расчет тока в параллельного колебательного контура



Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная частота. Формула. Рассчитать. Схематические решения.

Расчет и применение колебательных контуров. Явление резонанса. Последовательные и параллельные контура. (10+)

Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная частота

(А) — последовательный колебательный контур, (Б) — параллельный колебательный контур.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Последовательный колебательный контур

Если соединить последовательно электрический конденсатор и катушку индуктивности, то для синусоидального сигнала определенной частоты указанная схема будет демонстрировать нулевое реактивное сопротивление. Этот эффект называется резонансом колебательного контура, сама схема из конденсатора и индуктивности — последовательным колебательным контуром, а частота, на которой проявляется этот эффект — частотой резонанса.

Хотя и катушка индуктивности, и конденсатор имеют некоторое реактивное сопротивление, вместе они реактивного сопротивления не проявляют. Причина проста. Конденсатор и катушка накапливают и отдают энергию, но делают это по-разному. В тот момент, когда катушка накапливает энергию, конденсатор ее отдает, и наоборот. Конечно, этот эффект проявляется только для синусоидального сигнала, на определенной частоте, в установившемся режиме. Если частота сильно отличается от резонансной, то схема теряет свои чудесные качества и проявляет себя, как катушка и конденсатор. Если последовательный колебательный контур не был запитан, а теперь на него подали синусоидальный сигнал резонансной частоты, то сопротивление будет уменьшаться постепенно, по мере перехода контура в стационарный режим работы.

Если пропускать через последовательный колебательный контур синусоидальный электрический ток резонансной частоты, то падение напряжения на контуре будет равно нулю. Но падение напряжения на конденсаторе отдельно, индуктивности отдельно будет иметь место. Просто эти напряжения компенсируют друг друга в каждый момент времени. Напряжения на конденсаторе и катушке могут быть очень значительными. Одной из популярных ошибок при проектировании последовательного колебательного контура является неправильная оценка напряжения на конденсаторе. Напряжение может в разы, десятки, сотни раз превышать напряжение источника питания. На основе этого эффекта даже разработаны схемы повышающих преобразователей напряжения.

[Амплитудное значение напряжения на конденсаторе, В] = [Амплитудное значение силы тока через контур, А] * [ZC], где [ZC] = 1 / (2 * ПИ * [Частота сигнала, Гц] * [Емкость конденсатора, Ф])

Необходимо также обратить внимание, чтобы ток через последовательный контур не приводил к насыщению сердечника катушки индуктивности.

В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие. Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д.

Параллельный колебательный контур

Другой интересной резонансной схемой является параллельный колебательный контур. В нем конденсатор и катушка индуктивности соединены параллельно. Если снабдить такой контур энергией, например, зарядив конденсатор, или вызвав ток в катушке индуктивности, то далее энергия будет перетекать из конденсатора в катушку и обратно. На конденсаторе будет формироваться синусоидальное напряжение. Его частота называется частотой резонанса параллельного колебательного контура. Если бы не было потерь, то колебания продолжались бы бесконечно, но из-за потерь колебания постепенно затухают.

Что произойдет, если к параллельному колебательному контуру приложить переменное напряжение резонансной частоты. Сначала будут переходные процессы, но потом колебания установятся, и будет складываться такая ситуация. Напряжение на контуре, возникающее за счет собственных колебаний, будет равно напряжению, подводимому извне, так что ток через цепь подачи переменного напряжения протекать не будет. Так что можно считать, что на этой частоте параллельный колебательный контур имеет бесконечное сопротивление. Сказанное верно для идеального случая, когда потери отсутствуют. Если учесть потери, то некоторый ток от источника синусоидального сигнала будет проходить и компенсировать эти потери, но все равно реактивное сопротивление параллельного колебательного контура на резонансной частоте будет высоким.

То, что через внешние цепи на данной частоте ток практически не протекает, не должно вводить в заблуждение инженера — электронщика. В катушке индуктивности течет электрический ток значительной силы. Этот ток сначала разряжает конденсатор, потом заряжает его, не вытекая во внешние цепи. Катушка индуктивности должна быть спроектирована так, чтобы не входить в насыщение и выдерживать указанный ток, конденсатор также должен быть рассчитан на этот ток.

[Амплитудное значение тока в контуре, А] = [Амплитудное значение напряжения на контуре, В] / [ZL], где [ZL] = 2 * ПИ * [Частота сигнала, Гц] * [ Индуктивность катушки, Гн]

Параллельный колебательный контур применяется, если необходимо воспрепятствовать прохождению сигнала определенной частоты, пропуская другие сигналы, например, убрать помеху на определенной частоте (фильтр — пробка) или наоборот, заземлить все сигналы, кроме нужного, данной частоты. С помощью таких контуров радиоприемники выделяют нужную радиостанцию из бесчисленного множества других и эфирных помех.

Резонансная частота

Резонансные частоты последовательного и параллельного колебательных контуров, если в них использованы одинаковые катушка и конденсатор, равны между собой. Резонанс достигается на той частоте, на которой модуль реактивного сопротивления катушки индуктивности равен модулю реактивного сопротивления конденсатора.

Читайте также:  Уоки токи 44 котенка

[Резонансная частота контура, Гц] = 1 / (2 * ПИ * корень_квадратный([Емкость конденсатора, Ф] * [Индуктивность катушки, Гн]))

Применение колебательных контуров

Хорошим примером применения силовых последовательного и параллельного колебательных контуров является силовой резонансный фильтр для получения синусоидального напряжения

Еще интересные схемы:

(А), (Б), (В) — фильтры сигнала заданной частоты, (Г) — фильтр-пробка, (Д) — входная цепь радиоприемника, (Е) — стабилизатор переменного напряжения. Катушка L2 специально сделана насыщающейся при некотором нужном переменном напряжении на ней, что обеспечивает поддержание этого выходного напряжения по форме близкого к синусоиде.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Позвольте не согласиться с вашим выражением (Если последовательный колебательный контур не был запитан, а теперь на него подали синусоидальный сигнал резонансной частоты, то сопротивление будет уменьшаться постепенно, по мере перехода контура в стационарный режим работы). Что означает ‘постепенно’? Читать ответ.

Насколько я помню в контуре (и последовательном, и в параллельном) на резонансной частоте сопротивление носит активный характер, вы же при рассмотрении параллельного контура допустили выражение реактивное сопротивление контура на резонансной частоте. На частотах ниже резонансной (в параллельном контуре) сопротивление носит индуктивный характер, на частотах выше резонансной соп Читать ответ.

Расчет дросселя, катушки индуктивности. Рассчитать, посчитать онлайн, .
Форма для онлайн расчета дросселя, катушки индуктивности. Для изготовления индук.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Силовой резонансный фильтр для получения синусоиды от инвертора.
Для получения синусоиды от инвертора нами был применен самодельный силовой резон.

Металлоискатель самодельный. Сделать, собрать самому, своими руками. С.
Схема металлоискателя с высокой разрешающей способностью. Описание сборки и нала.

Источник

В помощь изучающему электронику

Формулы, вычисления, .

— Колебательный контур —

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка «Массовой радиобиблиотеки» изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Основные зависимости

Rое = 6,28 f L Q = 159 10 3 Q / f C (1);

rое = 6,28 f L / Q = 159 10 3 / C Q (2);

Последовательный колебательный контур

L индуктивность, гн,

L индуктивность, мгн,

L индуктивность, мкгн,

b абсолютная полоса пропускания, заключенная между двумя точками резонансной кривой, взятыми на уровне 0,707 от максимальной амплитуды.

d — потери колебательного контура,

L индуктивность, гн;

Параллельный колебательный контур

Rs активное сопротивление потерь, ом;

L индуктивность, гн;

С емкость, ф.

d коэффициент потерь контура.

ΔС — изменение емкости, ф.

L индуктивность, гн;

С емкость, ф;

Rs последовательное сопротивление потерь, ом;

Rl — последовательное сопротивление потерь катушки, необходимое для получения требуемой полосы пропускания, ом

В случае использования нескольких колебательных контуров с одинаковой резонансной частотой, например в многоконтурных приемниках прямого усиления, ширина полосы пропускания уменьшается (по сравнению с полосой одиночного контура) В двухконтурном приемнике она составляет 0,642 b, а в трехконтурном0,51 b
Изменять частоту контура в пределах определенного диапазона можно посредством конденсатора переменной емкости.

Смакс — конечная емкость конденсатора, пф;

Смин — начальная емкость конденсатора, пф.

Снач — начальная емкость колебательного контура, пф;

Скон— конечная емкость колебательного контура, пф.

fмакс — максимальная частота, кгц;

Снач — начальная емкость, пф

Источник

Формулы расчета параллельного колебательного контура

Параллельный колебательный контур в радиотехнике используется как основа частотно-избирательных цепей и встречается намного чаще последовательного. Реальные элементы контура обладают потерями и при анализе цепи используется реалистичная модель из идеальных сосредоточенных элементов в которой потери учитываются с помощью «виртуальных» последовательных активных сопротивлений R L и R C .

Собственная паразитная емкость катушки обычно не учитывается, т. к. она просто суммируется с контурной. Программа Coil32 рассчитывает потери в проводе катушке RL без учета потерь в каркасе, экране, сердечнике и во всех предметах, с которыми взаимодействует окружающая катушку электромагнитная волна. Однако, учитывается скин-эффект и эффект близости. Эти же потери учитывает параметр «конструктивная добротность катушки» — QL. Это не добротность всего контура, а добротность катушки, которая связана с ее сопротивлением потерь следующим соотношением:

Потери в контурном конденсаторе на порядок меньше и характеризуются добротностью конденсатора. Поскольку потери конденсатора сосредоточены в основном в диэлектрике, можно считать, что его добротность QC и сопротивление потерь RC связаны с параметром, учитывающем потери в диэлектрике tgδ, следующим образом:

При анализе цепи часто ее преобразуют в эквивалентную параллельную RLC-цепь. В этом случае, заменяя сопротивления проводимостями, мы упрощаем анализ и получаем формулы идентичные формулам последовательного контура. Многие радиолюбители полагают, что последовательные RL и RC просто преобразуются в параллельное R. Это не так:

Читайте также:  Постоянный электрический ток его действие в организме

Как видим активные сопротивления и реактивности при таком преобразовании «перепутались», поэтому для наглядности проведем анализ без использования проводимостей, прямо по исходной схеме. Входное сопротивление двухполюсника получается следующим:

Активная и реактивная (мнимая) составляющие:

При резонансе токи в реактивных элементах (IL, IC) в Q раз больше общего тока цепи (I), поэтому для параллельного контура явление носит название резонанса токов.

Резонансная частота параллельного колебательного контура — это частота, при которой реактивная составляющая входного сопротивления равна нулю, входное сопротивление чисто активно, и, соответственно, фазовый сдвиг между током и напряжением на входных зажимах цепи тоже равен нулю. Приравняв Xвх к нулю и проведя соответствующие преобразования получим следующую формулу для резонансной частоты параллельного колебательного контура:

резонансная частота параллельного колебательного контура [3]

Один из важнейших параметров контура — его характеристическое сопротивление:

ρ = √ L/C [4]

Формулу резонансной частоты можно представить иначе:

ω — резонансная частота последовательного колебательного контура.

Как видим резонансная частота параллельного колебательного контура равна резонансной частоте последовательного колебательного контура, составленного из тех же элементов, с добавкой поправочного коэффициента √ [(L/C — RL^2)/(L/C — RC^2)] . На практике этот коэффициент всегда близок к единице и равен единице если RL=RC или RL=RC=0.

Имеем контур с индуктивностью 3μГн и емкостью 42пФ, сопротивление потерь катушки — RL=2 Ом, конденсатора — RC=0.1 Ом. По формуле Томпсона резонансная частота контура равна 14.178649 МГц, точно вычисляем по формуле [1] — 14.178253 МГц. Как видим, активные сопротивления потерь вносят в идеальный контур дополнительную ре а ктивность и уводят его частоту вниз, в данном случае почти на 400 Гц.

Это совсем небольшое отклонение нужно иметь ввиду, но оно намного меньше отклонений, вносимых неучтенными паразитными емкостями. Поэтому при выполнении условий: R L C , что обычно бывает на практике, можно считать, что условия резонанса токов совпадают с условиями резонанса напряжений в последовательном контуре, составленном из тех же элементов L и C,

ω = 1/√ LC или ƒ = 1/(2π√ LC )

На этом «родственная схожесть» последовательного и параллельного контуров не заканчивается.
При выполнении тех же условий: R L , R C
где Z вх.посл = (R L + R C ) + j(ωL — 1 ⁄ ωC) – входное сопротивление последовательного контура, составленного из тех же элементов.

Как видим, можно считать, что сопротивления потерь катушки и конденсатора суммируются, поэтому общую добротность контура Q можно определить следующим выражением:

На резонансной частоте ω:

Поскольку реактивные сопротивления взаимно компенсируются, контур на резонансной частоте имеет чисто активное сопротивление равное Rэ (эквивалентное или эффективное сопротивление контура).

Из последней формулы следует, что:

Т.е. добротность контура равна отношению его характеристического сопротивления к сопротивлению потерь. Иначе говоря, на данной частоте более добротным будет контур с меньшей емкостью и большей индуктивностью. Как же тогда соотносится добротность контура с конструктивной добротностью катушки? Чтобы понять это, следует иметь ввиду, что характеристическое сопротивление контура численно равно модулю реактивного сопротивления индуктивности или емкости на резонансной частоте. Последние, как известно, в этом случае равны и отличаются лишь знаком. Если мы пренебрежем потерями в конденсаторе, тогда формула [8] сводится к формуле [1]. Ведь на резонансной частоте ρ = |XL|, а в сумме RΣ = RL + RC, последнее слагаемое мы не учитываем. Другими словами, если пренебречь потерями в конденсаторе, то добротность контура равна конструктивной добротности катушки. В итоге мы приходим к выводу, что формулы [1] и [8] в этом случае эквивалентны. Если же нам необходимо учесть потери в конденсаторе, то следует использовать формулу [6].

Необходимо отметить два важных момента:

  1. Coil32 рассчитывает конструктивную добротность для «голой катушки в вакууме». Наличие экрана увеличивает распределенную емкость и уменьшает индуктивность. Характеристическое сопротивление контура падает, добротность уменьшается. Кроме этого добавляются потери на вихревые токи в экране. Каркас катушки также снижает ее добротность и добротность контура соответственно.
  2. Добротность катушки растет с ростом частоты только на «низких» частотах, далеких от частоты собственного резонанса катушки. При приближении к собственному резонансу добротность достигает максимума на частотах 60-85% от Fsrf и затем плавно снижается. Это происходит от того, что на этих частотах начинает проявлятся зависимость индуктивности и собственной емкости катушки от частоты.

Амплитудно-частотная характеристика имеет такой же вид, как и резонансная кривая последовательного контура; ФЧХ представляет собой зеркальное отображение ФЧХ последовательного контура.

Важно понятие полоса пропускания контура Это частотный интервал в пределах которого импеданс Z вх не ниже 1 ⁄ √ 2 (или 0,707) от максимального на резонансной частоте. Справедлива следующая формула, которую можно использовать для измерения добротности:

Q = f /Δf [9]

В практике представляет интерес величина ослабления контуром нежелательных частот:

Для расстроек более трех полос пропускания формула упрощается:

где знак не учитывается.

В реальной схеме контур связан с источником колебаний и нагрузкой, которые вносят в него дополнительные потери, снижающие добротность. Эквивалентная добротность Q параллельного колебательного контура :

  • Q — добротность ненагруженного контура
  • Ri — входное сопротивление источника
  • Rэ — эквивалентное сопротивление ненагруженного котура
Читайте также:  Ток ускорителя электронов равно 1 мкс

Эту формулу можно использовать для учета влияния любых подключенных к контуру сопротивлений (например, нагрузки) на его добротность.

Для уменьшения влияния внешних цепей, а также для трансформации сопротивлений применяют частичное включение нагрузки в контур

Как видно из рисунка это можно сделать различными способами, отводом от катушки, с помощью катушки связи, емкстным делителем. Тогда выходное сопротивление контура:
R вых = p 2 R э
где p коэффициент связи. Для емкостного делителя:
p = C 1 ⁄ (C 1 + C 2 )
Для индуктивной связи:
p = M ⁄ L
где M — полная взаимоиндуктивность между L c и L (это относится как к случаю с отводом катушки так и к случаю с катушкой связи). Следует отметить, что коэффициент связи не равен отношению числа витков, как в трансформаторе, поскольку каждый виток катушки L c пересекается не всеми силовыми линиями катушки контура вследствие рассеяния магнитного поля.
При подключении внешней нагрузки к контуру с помощью частичного включения, результирующая добротность определяется:
Q = Q ·R u ⁄ (R э + R u )

R u = p 2 R i (R i – внешняя нагрузка)

Следует отметить, что для максимального коэффициента передачи электромагнитной энергии, выходное сопротивление контура должно быть равно сопротивлению нагрузки. Все вышесказанное справедливо и в случае согласования контура с источником сигнала.

Источник

Радиолюбитель

Последние комментарии

  • Pit на Компьютер – осциллограф, генератор, анализатор спектра
  • Владислав на Новогодние схемы
  • Алек на Светодиодный ночник
  • Владимир на Программа “Компьютер – осциллограф”
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах

Радиодетали – почтой

Расчет колебательного контура

Расчет колебательного контура

Практический расчет последовательного или параллельного LC контура.

Доброго дня уважаемые радиолюбители!
Сегодня мы с вами рассмотрим порядок расчета LC контура.

Некоторые из вас могут спросить, а на черта нам это нужно? Ну, во-первых, лишние знания никогда не помешают, а во-вторых, бывают в жизни моменты, когда вам знание этих расчетов может понадобиться. К примеру, очень многие начинающие радиолюбители (естественно, в основном молодые), увлекаются сборкой так называемых “жучков” – устройств позволяющих на расстоянии прослушивать что-нибудь. Конечно я уверен, что это делается без всяких нехороших (даже грязных) мыслей подслушать кого-нибудь, а в благих целях. Например устанавливают “жучок” в комнате с малышом, а на радиовещательный приемник прослушивают не проснулся ли он. Все схемы “радиожучков” работают на определенной частоте, но что делать, когда эта частота вас не устраивает. Вот тут вам придет на помощь знание нижеприведенной статьи.

LC колебательные контура применяются практически в любой аппаратуре, работающей на радиочастотах. Как известно из курса физики, колебательный контур состоит из катушки индуктивности и конденсатора (емкости), которые могут быть включены параллельно (параллельный контур) или последовательно (последовательный контур), как на рис.1:

Реактивные сопротивления индуктивности и емкости, как известно, зависят от частоты переменного тока. При увеличении частоты реактивное сопротивление индуктивности растет, а емкости – падает. При уменьшении частоты, наоборот, индуктивное сопротивление падает, а емкостное – растет. Таким образом, для каждого контура есть некоторая частота резонанса, на которой индуктивное и емкостное сопротивления оказываются равными. В момент резонанса резко увеличивается амплитуда переменного напряжения на параллельном контуре или резко увеличивается амплитуда тока на последовательном контуре. На рис.2 показан график зависимости напряжения на параллельном контуре или тока на последовательном контуре от частоты:

На частоте резонанса эти величины имеют максимальное значение. А полоса пропускания контура определяется на уровне 0,7 от максимальной амплитуды, которая есть на частоте резонанса.

Теперь перейдем к практике. Предположим нам нужно сделать параллельный контур, имеющий резонанс на частоте 1 МГц. Прежде всего нужно сделать предварительный расчет такого контура. То есть, определить необходимую емкость конденсатора и индуктивность катушки. Для предварительного расчета есть упрощенная формула:

L=(159,1/F) 2 /C где:
L – индуктивность катушки в мкГн;
С – емкость конденсатора в пФ;
F – частота в МГц

Зададимся частотой 1 МГц и емкостью, к примеру, 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом, если мы захотим контур на частоту 1 МГц, то нужен конденсатор на 1000 пФ и индуктивность на 25 мкГн. Конденсатор можно подобрать,, а вот индуктивность нужно сделать самостоятельно.

Рассчитать число витков для катушки без сердечника можно по такой формуле:

N=32 *√(L/D) где:
N – требуемое число витков;
L – заданная индуктивность в мкГн;
D – диаметр каркаса в мм, на котором предполагается намотать катушку.

Предположим, диаметр каркаса – 5 мм, тогда:

N=32*√(25/5) = 72 витка.

Данная формула является приближенной, она не учитывает собственную межвитковую емкость катушки. Формула служит для предварительного вычисления параметров катушки, которые затем настраиваются при настройке контура.

В радиолюбительской практике чаще используются катушки с подстроечными сердечниками из феррита, имеющими длину 12-14 мм и диаметр 2,5 – 3 мм. Такие сердечники, например, применяются в контурах телевизоров и приемников. Для предварительного расчета числа витков для такого сердечника есть другая приближенная формула:

N=8,5*√L , подставляем значения для нашего контура N=8,5*√25 = 43 витка . То есть, в таком случае на потребуется намотать на катушку 43 витка провода.

Источник