Меню

Работа постоянного электрического тока формула



09-г. Работа электрического тока

§ 09-г. Работа электрического тока

Изучая применение электрического тока, нужно уметь вычислять количество электроэнергии, которое расходуется на то или иное действие тока. Например, подъём лифта, нагревание чайника и тому подобное. Поэтому выведем формулу для подсчёта работы тока.

В предыдущем параграфе
мы узнали формулу:

В левых частях этих равенств стоят разные символы, но они обозначают одну и ту же физическую величину – мощность. Следовательно, правые части формул можно приравнять: I · U = A / t . Выразим работу:

Формула для вычисления работы электрического тока или, что то же самое, для расчета потреблённой электроэнергии.

A – работа электрического тока, Дж
I – сила электрического тока, А
U – электрическое напряжение, В
t – время наблюдения, с

По этой формуле вычисляется работа тока или, что то же самое, израсходованная электроэнергия. Поясним, что выделенные нами термины – синонимы.

В момент замыкания цепи электрическое поле источника энергии приводит в движение заряженные частицы в проводнике (электроны и/или ионы), и их энергия возрастает. Сумма энергий всех частиц тела является внутренней энергией тела (см. § 7-д), значит, внутренняя энергия проводника в момент возникновения в нём тока возрастает. Согласно первому закону термодинамики, внутренняя энергия может расходоваться на теплопередачу или совершение работы (см. § 6-з). Но, расходуясь, она постоянно пополняется от источника энергии.

Вспомним, что прохождение тока по проводнику всегда сопровождается действиями тока (см. § 8-з). При этом обязательно происходит превращение электроэнергии в другие виды энергии. Например, внутреннюю (утюг или чайник), механическую (пылесос или вентилятор) и так далее. Поэтому под выражением «ток совершает работу» мы будем понимать превращение электроэнергии в другие виды энергии. В таком смысле работа тока и израсходованная электроэнергия – выражения-синонимы.

Для измерения потреблённой электроэнергии служат специальные измерительные приборы – счётчики электроэнергии.

Для учёта электроэнергии вместо джоуля используется более крупная единица – киловатт-час (обозначение: 1 кВт·ч). Например, счётчик на рисунке показывает значение 254,7 кВт·ч. Это может означать, что за всё время учёта потребитель мощностью 254,7 кВт работал 1 час или что потребитель мощностью 2547 Вт работал 100 часов (и так далее, соблюдая пропорцию).

Найдём связь киловатт-часа с более привычной нам единицей для измерения работы – джоулем.

1 кВт · ч = 1000 Вт · 60 мин =
= 1000 Дж/с · 3600 с = 3 600 000 (Дж/с)·с =
= 3 600 000 Дж = 3,6 МДж

Итак, 1 кВт·ч = 3,6 МДж.

Примечание. Формула для работы тока A = I·U·t поможет выяснить физический смысл электрического напряжения. Выразим его:

U = A Следовательно, 1 В = 1 Дж
I·t А·с

Отсюда видно, что 1 вольт – это такое напряжение, при котором ток силой 1 ампер способен за 1 секунду производить 1 джоуль работы. Другими словами, электрическое напряжение показывает работу, которую ежесекундно совершают силы электрического поля для поддержания в цепи тока силой 1 ампер.

Кроме того, из формулы I = q / t (см. § 9-б) следует: q = I · t. Тогда:

U = A Следовательно, 1 В = 1 Дж
q Кл

Исходя из этой формулы, 1 вольт может рассматриваться и как такое напряжение, при котором работа сил электрического поля при перемещении заряда в 1 Кл будет равна 1 Дж. Обобщённо мы скажем: электрическое напряжение является одной из характеристик электрического поля, перемещающего заряды по проводнику.

Источник

РАБОТА ПОСТОЯННОГО ТОКА

date image2015-02-27
views image7966

facebook icon vkontakte icon twitter icon odnoklasniki icon

Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.


МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

Закон Ома для неоднородного участка цепи .
— знаки «+» или «-» выбираются в зависимости от того, в одну или в противоположные стороны направлены токи создаваемые источником ЭДС и электрическим полем.

Источники ЭДС— это такие элементы электрической цепи, у которых разность потенциалов на выходе не зависит от величины и направления протекания тока, т.е. их вольтамперные характеристики (ВАХ) представляют собой прямые линии параллельные оси I (см. таблицу 2).

Направление стрелки в условном обозначении источника ЭДС указывает направление действия ЭДС, поэтому направление падения напряжения на выходных зажимах источника всегда противоположно.

Так как на ВАХ электрическое сопротивление соответствует котангенсу угла наклона характеристики, то сопротивление источника ЭДС равно нулю, а проводимость, соответственно, бесконечности.

Правила Кирхгофа. Расчет разветвленных электрических цепей

Электрическая цепь представляет собой совокупность источников тока, проводников и потребителей электроэнергии. Электрическая цепь чаще всего является разветвленной (сложной) и содержит узлы (рис. 1). Расчет разветвленной электрической цепи заключается в том, чтобы по заданным сопротивлениям участков цепи и ЭДС найти силы токов и напряжения на каждом участке цепи.

Для расчета разветвленных цепей постоянного тока применяют правила Кирхгофа.

Согласно первому правилу Кирхгофа:

алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

где n — число проводников, образующих узел.

При этом токи считаются положительными, если они входят в узел, и отрицательными, если выходят из узла. Для узла, изображенного на рисунке 1, I1I2I3 = 0.

Согласно второму правилу Кирхгофа:

в любом простом замкнутом контуре, произвольно выбираемом в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков равна алгебраической сумме ЭДС, имеющихся в контуре:

где m — число источников в контуре, n — число сопротивлений в нем.

Если направления токов совпадают с выбранным направлением обхода контура, то силы токов Ik считаются положительными. ЭДС εi считаются положительными, если они создают токи, сонаправленные с направлением обхода контура.

Правила Кирхгофа не выражают никаких новых свойств стационарного электрического поля в проводниках с током по сравнению с законом Ома. Первое из них является следствием закона сохранения электрических зарядов, второе — следствием закона Ома для неоднородного участка цепи. Однако их использование значительно упрощает расчет токов в разветвленных цепях.

Расчет разветвленной электрической цепи постоянного тока выполняется в следующем порядке:

1. произвольно выбирают направление токов во всех участках цепи:

2. записывают n — 1 независимых уравнений, согласно первому правилу Кирхгофа, где n — количество узлов в цепи;

3. выбирают произвольно замкнутые контуры так, чтобы каждый новый контур содержал хотя бы один участок цепи, не входящий в ранее выбранные контуры. Записывают для них второе правило Кирхгофа.

В разветвленной цепи, содержащей n узлов и m участков цепи между соседними узлами, число независимых уравнений, соответствующих правилу контуров, составляет mn+ 1.

На основе правил Кирхгофа составляют систему уравнений, решение которой позволяет найти силы токов в ветвях цепи.

Работой выхода электрона из металла называется минимальная энергия, которую надо сообщить электрону в металле, чтобы он преодолел поле двойного электрического слоя и вылетел за пределы металла:
,

где е – значение заряда электрона.

Разность потенциалов принято называть поверхностным скачком потенциала, или контактной разностью потенциалов между металлом и окружающей средой.

Электронная эмиссия —явление испускания электронов из металлов при сообщении электронам энергии, равной или большей работы выхода.

1. Термоэлектронная эмиссия — испускание электронов нагретыми металлами. Пример использования – электронные лампы.

2. Фотоэлектронная эмиссия — эмиссия электронов из металла под действием электромагнитного излучения. Пример использования — фотодатчики.

3. Вторичная электронная эмиссия — испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Отношение числа вторичных электронов n2 к числу первичных n1 , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии: ? = n2 n1 . Пример использования — фотоэлектронные умножители.

4. Автоэлектронная эмиссия — эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля.

Источник

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Источник

Все формулы

Все формулы по физике и математике

Темы по физике

  • Механика (56)
    • Кинематика (19)
    • Динамика и статика (32)
    • Гидростатика (5)
  • Молекулярная физика (25)
    • Уравнение состояния (3)
    • Термодинамика (15)
    • Броуновское движение (6)
    • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
    • Геометрическая оптика (3)
    • Физическая оптика (5)
    • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)

Темы по математике

  • Квадратный корень, рациональные переходы (1)
  • Квадратный трехчлен (1)
  • Координатный метод в стереометрии (1)
  • Логарифмы (1)
  • Логарифмы, рациональные переходы (1)
  • Модуль (1)
  • Модуль, рациональные переходы (1)
  • Планиметрия (1)
  • Прогрессии (1)
  • Производная функции (1)
  • Степени и корни (1)
  • Стереометрия (1)
  • Тригонометрия (1)
  • Формулы сокращенного умножения (1)

Работа постоянного тока

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Работа постоянного тока — работа электрического поля по переносу электрических зарядов вдоль проводника.

\LARGE A=Uq=UIt=I^2Rt=\frac<U^2 data-lazy-src=

 U — Напряжение в проводнике

I — Сила тока в проводнике

t— Время

R— Сопротивление

Источник

Читайте также:  Амплитуда колебании плотности тока смещения

Счетчики и показания © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.