Меню

Работа электрической цепи переменного тока с различными нагрузками



§ 51. ЦЕПЬ ПЕРЕМЕННОГО ТОКА С РАЗЛИЧНОЙ НАГРУЗКОЙ

В реальных цепях могут протекать нестационарные токи различного характера, но наиболее широко используется ток, зависящий от времени по гармоническому закону.

Реальные приборы, устройства и элементы электрических цепей, объединяемые общим термином «нагрузка», могут обладать как свойствами активного сопротивления, так и емкостными и индуктивными свойствами.

Рассмотрим, как связаны между собой ток и напряжение при различном характере нагрузки, включенной на некотором участке электрической цепи.

АКТИВНАЯ НАГРУЗКА (резистор).

Пусть на участке цепи с активным сопротивлением R и пренебрежимо малыми емкостью и индуктивностью (рис.129) течет квазистационарный переменный ток . В этом случае можем применить закон Ома для мгновенных значений тока и напряжения: .

Следовательно, напряжение на резисторе также совершает гармонические колебания с теми же фазой и частотой, что и сила тока, а амплитудные значения силы тока и напряжения связаны законом Ома: . Графики зависимости силы тока и напряжения от времени представлены на рис.130.

РИС.129 РИС.130 РИС.131 РИС.132

Для более наглядного представления используем метод векторных диаграмм. Согласно этому методу, каждой гармонически изменяющейся со временем величине: можно сопоставить вектор длиной А, который равномерно вращается в плоскости XOY с угловой скоростью и начальной фазой . Мгновенное значение гармонической величины, в этом случае, представляет собой проекцию вектора А на ось OY (рис.131).

Для резистора в рассмотренном случае соответствующие вектора для представления силы тока и напряжения на векторной диаграмме совпадают (рис.132).

ЕМКОСТНАЯ НАГРУЗКА

Рассмотрим участок цепи с конденсатором емкостью С, активное сопротивление которого и индуктивность пренебрежимо малы (рис.133). Пусть на участке течет ток .

Чтобы рассчитать напряжение на конденсаторе, найдем функциональную зависимость заряда на пластинах конденсатора от времени: ,

Постоянную интегрирования примем равной нулю, так как нас интересует лишь заряд конденсатора, обусловленный переменным током.

Тогда напряжение на конденсаторе изменяется по закону:

, т. е. напряжение совершает колебания с той же частотой, что и сила тока, но отстает по фазе от силы тока на (по времени – на четверть периода).

Амплитудные значения силы тока и напряжения связаны постоянным, при данных условиях, коэффициентом , который, при сравнении с законом Ома для резистора, играет роль сопротивления и поэтому называется емкостным сопротивлением.

Следовательно, при чисто емкостной нагрузке закон Ома для мгновенных значений тока и напряжения НЕ ВЫПОЛНЯЕТСЯ, но амплитудные значения тока и напряжения подчиняются закону Ома: .

РИС.133 РИС.134 РИС.135

Полученные соотношения отчетливо проявляются на графиках зависимости силы тока и напряжения от времени (рис.134), а также на векторной диаграмме (рис.135).

ИНДУКТИВНАЯ НАГРУЗКА.

Рассмотрим участок цепи с катушкой индуктивности L и пренебрежимо малыми активным сопротивлением и емкостью (рис.136). Пусть по участку протекает ток .

Так как ЭДС самоиндукции, согласно правилу Ленца, препятствует изменению протекающего тока, то .

Следовательно, напряжение на индуктивности совершает гармонические колебания с той же частотой, что и сила тока, но опережает по фазе силу тока на (по времени – на четверть периода). Амплитудные значения силы тока и напряжения также связаны соотношением, аналогичным закону Ома: , где — называется индуктивным сопротивлением.

Графики зависимости силы тока и напряжения, а также векторная диаграмма, представлены на рис.137 и рис.138.

Источник

Активная и реактивная электроэнергия

При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы — потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.

Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это — лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.

Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее — её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. — для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.

По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:

1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).

2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) — реактивная составляющая мощности обычно считается вредной характеристикой цепи.

Читайте также:  Дать определение однофазной электрической цепи переменного тока

Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю.
Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением — угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока.
Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.

none Опубликована: 2011 г. 0 3
Вознаградить Я собрал 0 1

Источник

Виды нагрузки в цепи переменного тока.

В цепях переменного тока нагрузка, которая потребляет электрическую мощность, называется активным сопротивлением, нагрузка, которая не потребляет электрической мощности – называется реактивным сопротивлением.

Активное сопротивление – проводники, растворы, газы и т.д.

Реактивное сопротивление – катушки индуктивности и конденсаторы.

Активное сопротивление.При включении в цепь переменного тока активного сопротивления проходящий по этому сопротивлению ток изменяется по такому же закону, как и напряжение, создаваемое источником переменного тока. Следовательно, Iи U изменяются по волнообразной кривой – синусоиде, причем они будут иметь одинаковый период, одновременно достигать максимума и проходят через ноль, то принято называть такой характер изменения – совпадением по фазе.

При включении в цепь переменного тока активного сопротивления, Iи U совпадают по фазе.Закон ОмаI =

Индуктивное сопротивление.При включении катушки в цепь переменного тока в ней возникает ЭДС самоиндукции, которая по закону Ленца стремится препятствовать изменению вызывающего её тока. Это означает, что катушка индуктивности оказывает сопротивление прохождению переменного тока, которое называется индуктивным сопротивлением XL и зависит от L катушки и частоты тока.

XL = L = 2 fL,

где L— индуктивность

— угловая частота = 2 f

F — частота в Гц

Закон Ома. I = = = 2 f

При включении в цепь переменного тока индуктивного сопротивления ток отстает по фазе от напряжения на четверть периода или напряжение опережает ток по фазе на четверть периода ( .

За период индуктивное сопротивление не отдает и не потребляет электрической энергии и среднее значении мощности за период равно нулю, т.к. происходит непрерывная циркуляция электрической энергии между источником тока и RL не создающая никакой работы.

Для того чтобы подчеркнуть указанную особенность индуктивного сопротивления, его относят к группе реактивных сопротивлений, т.е. сопротивления, которые в цепи переменного тока не потребляют электрической мощности.

Емкостное сопротивление.Конденсатор оказывает прохождению переменного тока сопротивление, т.к. происходит непрерывный процесс его заряда и разряда: при этом через конденсатор проходит переменный ток, это и называется емкостным сопротивлениемХс — зависит от величины емкости конденсатора и частоты изменения тока. Чем больше емкость конденсатора, тем меньшее сопротивления оказывает конденсатор прохождению переменного тока, чем больше частота, тем меньше его Хс.

Xc = =

C = , [Ф] – фарад

емкость конденсатора

Ток в цепи конденсатора опережает по фазе напряжение на четверть периода (угол 90 градусов) или напряжение отстает по фазе от тока на четверть периода (на угол 90 градусов).

Конденсатор, как и катушка индуктивности в цепи переменного тока не потребляет активной мощности. Средняя мощность, потребляемая конденсатором за период равна нулю.

При последовательном соединении:При параллельном соединении:

Источник

Реферат: Электрические цепи переменного тока

Федеральное агентство по образованию РФ

Курского государственного политехнического колледжа

по дисциплине: «Электротехника»

на тему: «Электрические цепи переменного тока»

Асеев Евгений Сергеевич

студент 2 курса специальности

«Атомные станции и установки»

Проверил: Горлов А.Н.

Принцип получения переменной ЭДС. Действующее значение тока и напряжения

Метод векторных диаграмм

Цепь переменного тока с активным сопротивлением и индуктивностью

Цепь переменного тока с разной нагрузкой

Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Резонанс напряжений и токов

Проводимость и расчет электрических цепей

До конца 19 века использовались только источники постоянного тока – химические элементы и генераторы. Это ограничивало возможности передачи электрической энергии на большие расстояния. Как известно, для уменьшения потерь в линиях электропередачи необходимо использовать очень высокое напряжение. Однако получить достаточно высокое напряжение от генератора постоянного тока практически невозможно. Проблема передачи электрической энергии на большие расстояния была решена только при использовании переменного тока и трансформаторов.

1. Принцип получения переменной ЭДС

Переменный ток имеет ряд преимуществ по сравнению с постоянным: генератор переменного тока значительно проще и дешевле генератора постоянного тока; переменный ток можно трансформировать; переменный ток легко преобразуется в постоянный; двигатели переменного тока значительно проще и дешевле, чем двигатели постоянного тока.

В принципе переменным током можно назвать всякий ток, который с течением времени изменяет свою величину, но в технике переменным током называют такой ток, периодически изменяет и величины и направление. Причем среднее значение силы такого тока за период Т равно нулю. Периодическим переменный ток называется потому, что через промежутки времени Т, характеризующие его физические величины принимают одинаковые значения.

В электротехнике наибольшее распространение получил синусоидальный переменный ток, т.е. ток, величина которого изменяется по закону синуса (или косинуса), обладающий рядом достоинств по сравнению с другими периодическими токами.

Переменный ток промышленной частоты получают на электростанциях с помощью генераторов переменного тока (трехфазных синхронных генераторов). Это довольно сложные электрические машины, рассмотрим только физические основы их действия, т.е. идею получения переменного тока.

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью ω рамка площадью S .(рис. 1).

Магнитный поток через рамку будет равен:

где α – угол между нормалью к рамке n и вектором магнитной индукции B. Поскольку при равномерном вращении рамки ω= α/t, то угол α будет изменяться по закону α= ω t и формула(1.1) примет вид:

Поскольку при вращении рамки пересекающий ее магнитный поток все время меняется, то по закону электромагнитной индукции в ней будет наводиться ЭДС индукции Е :

Е= -dФ/dt =BSωsinωt =E0sinωt (1.3)

где Е0 = BSω – амплитуда синусоидальной ЭДС. Таким образом, в рамке возникнет синусоидальная ЭДС, а если замкнуть рамку на нагрузку, то в цепи потечет синусоидальный ток.

Величину ωt = 2πt/Т = 2πft, стоящую под знаком синуса или косинуса, называют фазой колебаний, описываемых этими функциями. Фаза определяет значение ЭДС в любой момент времени t. Фаза измеряется в градусах или радианах.

Время Т одного полного изменения ЭДС (это время одного оборота рамки) называют периодом ЭДС. Изменение ЭДС со временем может быть изображено на временной диаграмме (рис. 2).

Читайте также:  Расчет мощности лампы по току

Величину, обратную периоду, называют частотой f = 1/T. Если период измеряется в секундах, то частота переменного тока измеряется в Герцах. В большинстве стран, включая Россию, промышленная частота переменного тока составляет 50Гц (в США и Японии – 60 Гц).

Величина промышленной частоты переменного тока обусловлена технико-экономическими соображениями. Если она слишком низка, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление; заметным становится мигание света в электрических лампочках. При слишком высоких частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах. Поэтому наиболее оптимальными оказались частоты 50 – 60 Гц. Однако, в некоторых случаях используются переменные токи как с более высокой, так и более низкой частотой. Например, в самолетах применяется частота 400 Гц. На этой частоте можно значительно уменьшить габариты и вес трансформаторов и электромоторов, что для авиации более существенно, чем увеличение потерь в сердечниках. На железных дорогах используют переменный ток с частотой 25 Гц и даже 16,66 Гц.

Действующие значения тока и напряжения

Для описания характеристик переменного тока необходимо избрать определённые физические величины. Мгновенные и амплитудные значения для этих целей неудобны, а средние значения за период равны нулю. Поэтому вводят понятие действующих значений тока и напряжения. Они основаны на тепловом действии тока, не зависящем от его направления.

Действующими значениями тока и напряжения называют соответствующие параметры такого постоянного тока, при котором в данном проводнике за данный промежуток времени выделяется столько же теплоты, что и при переменном токе. Найдем соотношение между действующими и амплитудными значениями.

В активном сопротивлении R при постоянном токе I за период постоянного тока T по закону Джоуля-Ленца выделится следующее количество теплоты:

При переменном токе i в том же сопротивлении R за бесконечно малый промежуток времени dt выделится следующее количество теплоты:

где мгновенное значение тока i определяется формулой:

Тогда теплота, выделяемая переменным током за период Т равна:

Интеграл (1.7) вычисляется следующим образом:

Второй интеграл равен нулю, поскольку это интеграл от периодической функции за один период. Приравняв, согласно определению (1.4) и (1.8), получим:

Таким образом, действующее значение переменного тока в √2 раз меньше его амплитудного значения. Аналогично вычисляются действующие значения напряжения и ЭДС:

U = U0/√2; E = E0/√2 (1.10)

Действующие значения обозначаются прописными латинскими буквами без индексов.

2. Метод векторных диаграмм

Метод векторных диаграмм – то есть изображение величин, характеризующих переменный ток векторами, а не тригонометрическими функциями, чрезвычайно удобен.

Переменный ток, в отличие от постоянного, характеризуется двумя скалярными величинами – амплитудой и фазой. Поэтому для математического описания переменного тока необходим математический объект, также характеризуемый двумя скалярными величинами. Существуют два таких математических объектов – это вектор на плоскости и комплексное число. В теории электрических цепей и те и другие используются для описания переменных токов.

При описании электрической цепи переменного тока с помощью векторных диаграмм каждому току и напряжению сопоставляется вектор на плоскости в полярных координатах, длина которого равна амплитуде тока или напряжения, а полярный угол равен соответствующей фазе. Поскольку фаза переменного тока зависит от времени, то считается, что все векторы вращаются против часовой стрелки с частотой переменного тока. Векторная диаграмма строится для фиксированного момента времени.

Более подробно построение и использование векторных диаграмм будет изложено ниже на примерах конкретных цепей.

3. Цепь переменного тока с активным сопротивлением и индуктивностью

Рассмотрим цепь (рис. 3), в котором к активному сопротивлению (резистору) приложено синусоидальное напряжение:

U (t) = U0sin ωt (1.11)

Тогда по закону Ома ток в цепи будет равен:

I (t) = U (t)/R = U0sin ωt/R = I0 sin ωt (1.12)

Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рисунке 4:

Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

p (t) = i(t)u(t) = I0 U0 sin ωt = I0 U0(1- cos2 ωt)/2 (1.13)

Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис. 5):

Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.

Вычислим среднее значение мощности за период:

Pср = 1/T ∫ p(t)dt = I0U0/2T ∫ dt − I0U0/2T ∫ cos2ωt dt = (I0U0/2T) ∙T = IU = I R

поскольку второй интеграл равен нулю как интеграл от периодической функции за период.

Мы видим, что в цепи с резистором вся электрическая энергия необратимо превращается в тепловую энергию. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в тепловую), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление.

Рассмотрим цепь (рис. 6), в котором к катушке индуктивности L, не обладающей активным сопротивлением (R=0), приложено синусоидальное напряжение (1.11):

Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции eL. Тогда в соответствии со вторым правилом Кирхгофа можно записать:

Согласно закону Фарадея, ЭДС самоиндукции равна:

Подставив (1.16) в (1.15), имеем:

dI/dt = − eL/L = U/L = U0 sin ωt/L (1.17)

Интегрируя это уравнение, получим:

I =− U0cos ωt/ω L + const = U0sin (ωt − π/2)/ ωL+ const (1.18)

где const – постоянная интегрирования, которая говорит о том, что в цепи может быть и постоянный ток. При отсутствии постоянного тока она равна нулю. При отсутствии постоянного тока она равна нулю. Окончательно имеем:

I = I0 sin (ωt − π/2) (1.19)

где I0 = U0/ ωL. Деля обе части на √2, получим:

I = U/ ωL= U/ XL (1.20)

Соотношение (1.20) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL= ωL называется индуктивным сопротивлением.

Из формулы (1.19) мы видим, что в рассмотренной цепи ток отстает по фазе от напряжения на π/2. Векторная диаграмма для этой цепи изображена на рисунке 7.

Вычислим мощность, потребляемую цепью с чисто индуктивным сопротивлением.

Мгновенная мощность равна:

p (t)= I0 U0 sin ωt(ωt − π/2)= − I0 U0 sin2 ωt/2 (1.21)

Мы видим, она изменяется по закону синуса с удвоенной частотой (рис. 8).

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику.

Средняя за период мощность равна:

Pср = 1/T ∫ p(t)dt = (− I0 U0 /2T) ∫ sin2 ωt dt = 0 (1.22)

Мы видим, что цепь с индуктивностью мощности не потребляет – это чисто реактивная нагрузка.

5. Цепь переменного тока с разной нагрузкой

Цепь переменного тока с активно-индуктивной нагрузкой

Читайте также:  Как определить порогового тока

Рассмотрим электрическую цепь (рис. 9), в котором через катушку индуктивности L, обладающую активным сопротивлением R, протекает переменный ток:

I = I0 sin ωt (1.23)

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе:

Напряжение на резисторе, как показано выше, совпадает по фазе с током:

UR = U0R sin ωt (1.25)

а напряжение на индуктивности равно ЭДС самоиндукции со знаком “минус” (по второму правилу Кирхгофа):

UL = L(dI/dt)= I0 ωLcos ωt = U0Lsin(ωt + π/2) (1.26)

где U0L= I0 ωL (1.27)

Напряжение на индуктивности опережает ток на π/2. Переходя к формуле (1.27) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи с идеальной индуктивностью (т.е. не обладающей активным сопротивлением), а величина XL= ωL называется индуктивным сопротивлением. Построив векторы I, UR и UL и воспользовавшись формулой (1.24), мы найдем вектор U.

Как видно из векторной диаграммы, модуль вектора U равен

U= √ UR + UL = √ I R + I (ωL) = I√ R + (ωL) = IZ (1.29)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением также определяется из векторной диаграммы:

tg φ = UL/ UR = ωL/ R (1.31)

В данной цепи угол сдвига фаз между током и напряжением зависит от значений R и L и изменяется в пределах от 0 до π/2.

Теперь рассмотрим как изменяется со временем мощность в цепи с активно-индуктивной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

U(t) = U0 sin ωt (1.32)

I(t) = I0 sin(ωt − φ)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt − φ)=(I0 U0/2)[cosφ − cos(2ωt − φ)] = =(I0 U0/2)(1− cos2ωt) cosφ − (I0 U0/2) sin2ωt sin φ (1.33)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, и второе — реактивная (индуктивная). Поэтому средняя за период мощность не равна нулю:

Pср = 1/T ∫ pdt = (I0 U0/2T) cosφ ∫dt − (I0 U0/2T) cosφ ∫ cos2ωt dt −

−(I0 U0/2T) sin φ ∫ sin2ωt dt = (I0 U0/2) cosφ (1.34)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

Цепь переменного тока с емкостью

Рассмотрим электрическую цепь, в которой переменное напряжение (1.11) приложено к емкости С (рис. 11). Мгновенное значение тока в цепи с емкостью равно скорости заряда на обкладках конденсатора:

I = C (dU/dt) = ωCU0 cos ωt = I0 sin (ωt + π/2) (1.36)

В этой цепи ток опережает напряжение на π/2. Переходя в формуле (1.37) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи переменного тока с емкостью, а величина

Xc= 1/ωC называется емкостным сопротивлением. Векторная диаграмма для этой цепи показана на рис. 12.

Найдем мгновенную и среднюю мощность в цепи, содержащей емкость. Мгновенная мощность равна:

p(t)= i(t) u(t) = I0U0 sin (ωt + π/2) sin ωt = IUsin2 ωt (1.39)

Мгновенная мощность изменяется с удвоенной частотой (рис. 13). При этом положительные значения мощности соответствуют заряду конденсатора, а отрицательные — его разряду и возврату запасенной энергии в источник. Средняя за период мощность здесь равна нулю

Pср = 1/T ∫ p(t)dt = IU/T ∫ sin2 ωt dt = 0 (1.40)

т.к. в цепи с конденсатором активная мощность не потребляется, а проходит обмен электрической энергией между конденсатором и источником.

Цепь переменного тока с активно-емкостной нагрузкой

Реальная цепь переменного тока с емкостью всегда содержит активное сопротивление — сопротивление проводов, активные потери в конденсаторе и т.п. Рассмотрим реальную цепь, состоящую из последовательно соединенных конденсатора С и активного сопротивления R (рис. 14). В этой цепи протекает ток I = I0 sin ωt .

В соответствии со вторым правилом Кирхгофа, сумма напряжений на резисторе и на емкости равна приложенному напряжению:

Напряжение на резисторе совпадает по фазе с током:

UR = U0R sin ωt (1.42)

а напряжение на конденсаторе отстает от тока:

UC = U0C sin (ωt − π/2) (1.43)

Построив векторы I,UR и UC и воспользовавшись формулой (1.41), найдем вектор U. Векторная диаграмма для этой цепи показана на рисунке 15.

Как видно из векторной диаграммы, модуль вектора U равен

U =√ UR + UC =√ I R + I (1/ωC) = I √ R + (1/ωC) = IZ1 (1.44)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением в данной цепи также определяется из векторной диаграммы:

tg φ = UC/ UR = (1/ωC)/ R (1.46)

В рассмотренной цепи угол сдвига фаз между током и напряжением зависит от значений R и C и изменяется в пределах от 0 до π/2.

Рассмотрим теперь, как изменяется со временем мощность в цепи с активно – емкостной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

I (t) = I0 sin (ωt + φ) (1.47)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt + φ)=(I0 U0/2)[cosφ − cos(2ωt + φ)] = =(I0 U0/2)(1− cos2ωt) cosφ + (I0 U0/2) sin2ωt sin φ (1.48)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, а второе — реактивная (емкостная). Поэтому средняя за период мощность не равна нулю:

Pср =1/T ∫ pdt = I0U0/2T cosφ ∫ dt − I0U0/2T cosφ ∫ cos2 ωtdt + I0U0/2T ∙

sin φ ∫ sin2ωt dt = I0U0/2T cosφ (1.49)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

6. Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Теперь рассмотрим цепь переменного тока, содержащую индуктивность, емкость и резистор, включенные последовательно (рис. 16).

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности, на емкости и на резисторе:

U = UL + UC + UR (1.50)

Напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π/2, а напряжение на емкости отстает от тока по фазе на π/2. Можно записать эти напряжения в следующем виде:

UR = U0R sin ωt = I0R sin ωt

UL = U0Lsin (ωt + π/2) = I0 ωL (ωt + π/2) (1.51)

UC = U0C sin (ωt − π/2) = (I0/ωC) sin (ωt − π/2)

Поскольку нам известны амплитуды и фазы этих векторов, мы можем построить векторную диаграмму и найти вектор U (рис. 17)

Из полученной векторной диаграммы мы можем найти модуль вектора приложенного к цепи напряжения U и сдвиг по фазе φ между током и напряжением:

U = √ UR + (UL − UC) = I √ R +( ωL− 1/ωC) = IZ (1.52)

Z = √ R +( ωL− 1/ωC) (1.53)

называется полным сопротивлением цепи. Из диаграммы видно, что сдвиг по фазе между током и напряжением определяется уравнением:

Источник