- Приводы постоянного тока
- Принцип действия двигателя постоянного тока
- Управление двигателем постоянного тока
- Менять ли привод постоянного тока?
- Характеристики и сфера применения преобразователей постоянного тока
- Технические характеристики
- Сфера применения
- Технология прямого привода: меньше деталей, больше точности
- Общие сведения
- Преимущества прямых приводов
- Серии прямых приводов Kollmorgen
- Заключение
- Прямой привод в стиральной машине: что это такое, плюсы и минусы
- Особенности устройства
- Плюсы и минусы
- Отличия от ременного привода
- Тонкости ремонта
- Бренды
- Трёхфазный бесколлекторный двигатель
- 1. Двигатель стиральной машины с прямым приводом
- 2. Устройство двигателя
- 3. Ротор
- 4. Статор
- 5. Система управления трёхфазным двигателем (BLDC)
- 6. Неисправности и диагностика двигателя
- 7. Преимущества и недостатки BLDC двигателей
Приводы постоянного тока
собстенный склад по приводам и двигателям в России .
самый совершенный привод на рынке, склад от 45 до 1200А .
до 5400А, для построения многоосевых систем, склад до 900А .
до 1000А, компактные и многофункциональные .
до 1000А; Не производится — подбор аналогов .
Ток до 3000А; Новое поколение DC приводов Siemens .
Ток до 3000А; Для станкостроения и машиностроения .
Ток до 2700А; Сопровождение при в воде в эксплуатацию .
Ток до 1200А; Сняты с производства — подбор аналогов .
Сняты с производства — подбор аналогов, согласование с АСУ .
Ток до 1850А; Приводы PL, PLX, PLXD, 200XLV, SLE, 340i, 680i .
ток до 2700 А, поставка запасных частей .
Приводы постоянного тока служат для управления двигателями постоянного тока. Правда не везде, а лишь там, где требуется плавное и точное регулирование скорости и вращающего момента электромотора в достаточно широких пределах.
Где же конкретно могут использоваться приводы постоянного тока? Для того, чтобы ответить на данный вопрос, нам надо вначале сказать несколько слов о принципе работы двигателя постоянного тока.
Вообще надо заметить, что электродвигатели — очень распространенный объект управления в различных устройствах и технических системах. Причем настолько, что без них вся наша современная жизнь очевидно вовсе не была бы такой уж и современной. Точнее мы бы так и не ушли далее технологий начала 19 века. И не имели бы не только компьютеров, с их гаджетами, но и вообще не знали бы, например, даже столь привычного нам электрического освещения, поскольку сами электрогенераторы – это, по сути, те же самые электродвигатели, но только преобразующие различные виды неэлектрической энергии (механическая, химическая или тепловая) в электрическую энергию.
Сами электродвигатели при этом, как известно, делятся на электродвигатели постоянного тока и электродвигатели переменного тока. Причем сегодня в силу бурного развития научно-технической мысли, которая предлагает более совершенные алгоритмы векторного управления и довольно дешевые и удобные в использовании частотники, именно последние приобретают все большую популярность в промышленности.
Однако, нельзя не сказать, что и двигатели постоянного тока рано еще списывать со счетов. Они имеют свои весьма важные и существенные преимущества. Дело в том, что один из «глобальных» минусов двигателя постоянного тока – это коллектор, его низкая механическая прочность, а также слабая механическая прочность щеток.
Но зато у двигателя постоянного тока можно менять скорости в достаточно широком диапазоне при относительном постоянстве момента на валу. При этом количество оборотов двигателя постоянного тока пропорционально величине напряжения, которое подается на якорную обмотку. А это значит, что в диапазоне скоростей от нуля до номинального значения электродвигатель может развивать полный крутящий момент. Именно поэтому двигатель постоянного тока широко используют в тех случаях, когда необходимо обеспечить большой момент при низких скоростях электродвигателя почти до его остановки при наличии полной нагрузки с последующим стартом. К таковым областям относятся электроприводы лифтов, кранов, ленточных конвейеров, смесителей, экструдеров и топу подобных механизмов.
Принцип действия двигателя постоянного тока
Вообще надо заметить, что самой первой из всех изобретенных в XIX веке вращающихся электромашин был именно электродвигатель постоянного тока. Сам принцип действия его известен с середины прошлого столетия и основан на том, что крутящий момент здесь создаётся путём взаимодействия между двумя магнитными полями — полем обмотки возбуждения и полем, создающимся обмотками во вращающемся якоре.
Впрочем, в некоторых моделях двигателей постоянного тока нет обмотки возбуждения, вместо нее установлены постоянные магниты, сохраняющее стационарное магнитное поле при любых рабочих условиях.
Принцип работы двигателя постоянного тока заключается в том, что ток, проходя через якорь, создаёт магнитное поле, которое пытается выровняться со стационарным полем. Происходит вращение двигателя/
Рис. 1. Схема двигателя постоянного тока
При этом коллектор (так называется набор сегментированных медных планок), разрывает электрический контакт с уже «выровненной» обмоткой и возбуждает другую обмотку (или как в простом примере, показанном выше, перевозбуждает ту же цепь в противоположном направлении), создавая другое не выровненное магнитное поле, которое продолжает вращать якорь. Электрический контакт между вращающимися сегментами коллектора и стационарным источником питания в этом случае происходит через угольные щетки. Поскольку здесь постоянно имеет место механическое трение, то эти щетки изнашиваются через определенное время (как и сам коллектор) и соответственно требуют своей периодической замены.
Впрочем, следует заметить, что большинство промышленных электродвигателей постоянного тока изготавливаются с несколькими обмотками якоря, а не с одной, как показано на упрощенной иллюстрации сверху.
В электродвигателях постоянного тока проявляются следующие отношения между механическими и электрическими величинами:
Крутящий момент. Он прямо пропорционален силе магнитного поля якоря, которая, в свою очередь, прямо пропорциональна току, проходящему через обмотки якоря. Так же момент прямо пропорционален силе постоянного магнитного поля, которое, в свою очередь, прямо пропорционально току, проходящему через возбуждающую обмотку (в двигателе без магнитов).
Скорость. Скорость ограничена ЭДС, генерируемой якорем при вращении в постоянном магнитном поле. Эта ЭДС прямо пропорциональна скорости вращения якоря, и также прямо пропорциональна силе постоянного магнитного поля (которая прямо пропорциональна току возбуждающей обмотки в электродвигателе без магнитов). Это значит, что скорость прямо пропорциональна напряжению якоря, а также обратно пропорциональна силе постоянного магнитного поля, которая прямо пропорциональна току, проходящему через возбуждающие обмотки (в двигателе без магнитов).
Управление двигателем постоянного тока
Последнее же означает, что, меняя тока обмотки, можно изменять соотношение между скоростью и моментом. Однако этого недостаточно для управления общей мощностью двигателя. Чтобы управлять выходной мощностью электродвигателя постоянного тока также необходимо управлять напряжением и током якоря. Для этой цели можно было бы использовать переменные резисторы, но этот метод не используется в настоящее время, так как приводит к потере мощности. Лучшим решением здесь будет применение электронной схемы регулирования мощности на транзисторных ключах быстро отключающих и включающих якорь двигателя в цепь. Такой тип управления называется широтно-импульсной модуляцией, или ШИМ.
Рис.2. Схема управления скоростью и моментом ДПТ
По традиционной технологии для импульсного питания двигателя постоянного тока используют схему управляемого выпрямителя, в котором для преобразования переменного тока в постоянный вместо обычных выпрямляющих диодов используют тиристоры (управляемая схема Ларионова). Основным источником питания промышленных двигателей постоянного тока остается переменный ток, и этот переменный ток должен быть преобразован в постоянный в некотором узле системы; управление имеет смысл интегрировать прямо в этот выпрямительный узел.
Рис.3. Схема управляемого выпрямителя
Схема управляемого выпрямителя работает по принципу изменения времени «пускового» импульса относительно импульсов колебаний переменного тока. Чем раньше в каждом периоде переменного тока откроется тиристор, тем дольше он будет пропускать ток к двигателю. Схема фазового управления отвечает за генерацию импульсов и их длительность.
Отсюда следует, что привод постоянного тока просто регулирующий подводимую мощность к двигателю был бы трудно регулируемым и не применим в большинстве задач. Для управления двигателем необходимо управлять скоростью. Поэтому на двигателях постоянного тока устанавливают тахогенераторы, механически соединённые с валом двигателя.
Тахогенератор представляет собой небольшой генератор, создающий постоянное напряжение, прямо пропорциональное скорости вращения вала, обычно с выходом 0-10В постоянного тока, реже 0-220В переменного тока. По его показаниям регулируемый привод постоянного тока регулирует электрическую мощность, подводимую к двигателю так, чтобы скорость вращения совпала с заданной управляющим сигналом. Имея датчик обратной связи для регулирования скорости, привод постоянного тока точно регулирует скорость вращения двигателем.
Рис. 4. Схема управления двигателем постоянного тока
Менять ли привод постоянного тока?
Следует заметить, что в силу длительного периода широкого применения двигателей постоянного тока, на протяжении довольно долгого времени для регулировки скорости вала двигателя использовались приводы постоянного тока. Тем самым, данные приводы имели широкое распространение и были установлены на огромном количестве различных машин, механизмов и оборудовании. Но вот в чем проблема – дело в том, что раньше приводы постоянного тока выпускались с управлением на аналоговых микросхемах. А это вело к длительной настройке оборудования, необходимости постоянного обслуживания привода и частой его перенастройки. В результате против двигателей постоянного тока и соответственно приводов постоянного тока сложилось предубеждение о ненужности и даже вредности установки таких систем. Повсеместно обозначилась тенденция к замене «постоянников» на «переменники». И где-то это и правда оказалось оправдано, но…
Увы, но часто «дьявол кроется в деталях»!
Следует заметить, что сейчас приводы постоянного тока выпускаются с фазными схемами управления, основанными на современных микропроцессорах. А это значит, что они стали значительно более надежны и, ГЛАВНОЕ, не нуждаются в необходимости постоянного обслуживания привода и частой перенастройки приводов. А поскольку вопреки публикациям в СМИ и доводам производителей приводов переменного тока, существует еще немало таких применений, где приводы постоянного тока являются предпочтительными по своему функционалу (а в конечном счете и по деньгам), то возможно при модернизации оборудования следует обратить внимание на приводы постоянного тока.
Более того, сегодня необходимо учитывать, что очень часто, при модернизации систем управления, простая замена устаревших приводов постоянного тока новыми современными приводами постоянного тока, является экономически более выгодной!
Подумайте! Возможно это Ваш случай? Причем в данном случае имеет смысл обратить именно на лидеров по производству приводов постоянного тока, одним из которых является фирма Siemens, выпускающая приводы постоянного тока серии SINAMICS DCM — современный мощный привод постоянного тока со многими дополнительными модулями расширения, интеграции в промышленные сети и встроенными функциями для решения типовых технологических задач (намотка-размотка и т. д.).
Обращайтесь к нам, и мы поможем Вам приобрести немецкое качество по разумным ценам!
Настройка, монтаж и обслуживание от высококлассных специалистов.
Характеристики и сфера применения преобразователей постоянного тока
Еще десяток лет назад регулируемый привод постоянного тока применялся только для установки на крупных промышленных станках, предназначенных для резки металла. В последние годы подход к их работе немного изменился, теперь установки можно встретить на самых разнообразных станках всех размеров и конфигураций.
Технические характеристики
Привод постоянного тока обеспечивает эффективную работу двигателей за весьма привлекательную цену. Он позволяет:
- управлять рабочим моментом двигателя;
- корректировать работу двигателей с постоянными магнитами;
- обеспечивать работу станков и рабочих узлов разного предназначения;
- обеспечивать безопасность работы приборов и электротехнического оборудования в сложных условиях и т.д.
Наряду с приводом часто применяется регулятор постоянного тока. Его задачей является обеспечение подачи нужного количества тока в рабочий узел двигателя. Позволяет продлить срок эксплуатации мотора, обеспечивая его нужным количеством энергии для работы, исключая волны и резкие падения напряжения.
Наша компания предлагает вам лучшую продукцию от мировых производителей по самым доступным ценам. Здесь вы можете купить не только приводы и регуляторы тока, но и преобразователи.
Преобразователь постоянного тока – оборудование, служащее для преобразования постоянного тока в ток с необходимым напряжением. Может применяться в качестве самостоятельного устройства или в цепи системы электрического питания. Наиболее часто используемым оборудованием является тиристорный преобразователь, который переводит напряжение из сети питания в выпрямленное регулируемое напряжение, используя для этого фазоимпульсное управление тиристорами.
Сфера применения
Преобразователи являются простыми в применении и широко используются в главных рабочих механизмах режущих станков, электротехнического оборудования, где необходимо поддерживать постоянное напряжение, меняя при этом частотность вращения двигателя.
Для бытового применения используется электропривод постоянного тока, который применяется в автомобилях, где необходимо создать безопасное функционирование зарядного оборудования для мобильной техники, в частных домах и коттеджах для поддержания постоянного напряжения и т.д.
Привод постоянного тока также используется при работе со станками различной мощности, автоматами, промышленным оборудованием.
Источник
Технология прямого привода: меньше деталей, больше точности
Общие сведения
Термин «сервопривод» происходит от латинского слова servus, которое переводится как «слуга» или «помощник». Так называют любой тип механического привода с устройством обратной связи по положению, скорости или усилию, а также сам привод, который выполняет функцию автоматического регулирования заданного параметра. Сервоприводы находят широкое применение в станкостроении, производстве упаковочных, фасовочных и разливных машин, робототехнике — в общем, когда требуется высокая точность передвижения исполнительного органа.
В данной статье мы не будем рассматривать гидравлические сервоприводы и под сервоприводом будем понимать электропривод с отрицательной обратной связью.
Есть два типа таких сервоприводов: вращательного и линейного движения. Для вращательного движения используют асинхронные и синхронные электродвигатели, а для линейного в основном применяют механическую передачу в виде шариковинтовой пары с кареткой, перемещающейся по рельсам, линейные актуаторы и линейные серводвигатели.
Как мы уже отмечали выше, сервоприводы обеспечивают точное передвижение исполнительного органа. Но о какой степени точности может идти речь? Если точность вращательного движения измеряется в градусах, то целесообразнее применять сервоприводы на базе асинхронных электродвигателей, где роль устройства обратной связи играет встроенный или помещенный на вал энкодер, а роль привода исполняет всем нам знакомый преобразователь частоты. Но если речь заходит о точности вращательного движения, исчисляемой в угловых минутах, и при этом переключение с прямого на обратное вращение происходит с высокой интенсивностью, то в таком случае оптимальным вариантом станут синхронные электродвигатели на постоянных магнитах. На рис. 1 показаны конструктивные особенности синхронных электродвигателей на примере продуктов компании Kollmorgen.
Рис. 1. Конструктивные особенности синхронных серводвигателей Kollmorgen
Управляются серводвигатели электронными устройствами, которые чаще всего называются сервоусилителями. По своим свойствам сервоусилители похожи на преобразователи частоты, только с той разницей, что в них заложены сложные алгоритмы контура регулирования скорости, позиции и момента. Сервоусилители содержат цифровые входы для устройств обратной связи и чаще всего работают лишь с определенными серводвигателями конкретного производителя.
Однако возможности современных сервоусилителей могут быть более широкими. Например, к устройствам Kollmorgen можно легко, по принципу plug and play, подключить серводвигатели (в том числе асинхронные и индуктивные, с устройствами обратной связи и без них) не только того же производителя, но и других компаний — при использовании моделей SERVOSTAR S700 (рис. 2).
Рис. 2. Электродвигатели, сопрягаемые с сервоусилителями Kollmorgen S700
Рис. 3. Технологии передачи движения
Преимущества прямых приводов
Развитие промышленного машиностроения и роботехники не стоит на месте, поэтому с каждым днем требования к точности и производительности устройств возрастают. Мы все чаще сталкиваемся с задачами, где точность измеряется уже в угловых секундах. С этим современные сервоприводы справляются. Но также необходимо помнить об особенностях передаточных механизмов, таких как редуктор, ремень/шкив или кулачковый механизм. Любой, даже самый прецизионный редуктор имеет люфт, у ременчатой передачи и кулачковых механизмов тоже есть погрешности, не говоря о том, что они увеличивают размеры привода, что в некоторых применениях особенно критично. В связи с этим стоит задуматься о более высокоточной технологии передачи движения — технологии прямого (безредукторного) привода (рис. 3), которую мы рассмотрим на примере продукции Kollmorgen.
Само понятие «прямой привод» означает, что исполнительный орган непосредственно подключен к приводящему его в движение электродвигателю, т. е. не имеет передаточных элементов. Это относится как к вращательному, так и к линейному передвижению. Точность прямого привода можно оценить на следующем примере. Серводвигатель с прецизионным редуктором имеет люфт в одну угловую минуту: это означает, что при полностью неподвижном приводе может произойти смещение исполнительного органа на такую величину. В то же время повторяемость серводвигателя со сквозным валом Kollmorgen DDR составляет более одной угловой секунды. Таким образом, получается, что у серводвигателей с прямым приводом точность позиционирования в 60 раз выше, чем у мотора-редуктора.
Используя прямой привод, можно улучшить качество изготавливаемой продукции за счет следующих особенностей:
- более точная печать;
- раскрой и длина протяжки становятся точнее;
- более точная координация с другими осями машины;
- высокая точность при позиционировании;
- исключаются проблемы при настройке компенсации люфта.
Прямым приводам Kollmorgen свойственны и другие преимущества. Например, компоненты механической передачи накладывают ограничения на то, как быстро мы можем произвести запуск и останов исполнительного механизма. Из-за этих факторов понижается возможная пропускная способность машины, что напрямую влияет на ее производительность.
Прямой привод устраняет эти ограничения, позволяет значительно ускорить цикл «запуск/останов» и уменьшить время простоев. При этом пропускная способность оборудования может повыситься в два раза.
Следующим преимуществом является повышение надежности машины из-за исключения дополнительных элементов и механических передач. При использовании прямого привода не нужно периодически обслуживать ремни и шкивы, заниматься их протягиванием, менять смазочные материалы в редукторе. Необходимы только серводвигатель со сквозным валом и крепежные болты. Таким образом, исключаются многие детали, такие как: кронштейны, ограждения, ремни, шкивы, натяжители, муфты и др. В результате это позволяет:
- уменьшить количество деталей в спецификации;
- упростить сборку и сэкономить время на монтаж;
- снизить затраты (за счет того, что не требуется докупать лишние детали и их устанавливать).
Наконец, еще одним преимуществом прямых приводов можно считать уменьшение шума. К примеру, прямые приводы Kollmorgen имеют уровень шума всего лишь 20 дБ, что превосходит показатели сервосистем с механическими передачами.
Серии прямых приводов Kollmorgen
Рассмотрим особенности нескольких типов прямых приводов Kollmorgen.
Серия KBM (рис. 4) предназначена для непосредственного встраивания в машину, станок или робот.
Рис. 4. Конструктивные особенности сервомоторов со сквозным валом в бескорпусном исполнении серии KBM
- полностью инкапсулированные обмотки статора;
- рабочая температура внутренней обмотки +155 °C;
- защита от перегрузки — PTC-термистор (лавинного типа);
- отказобезопасные ленты над роторными магнитами;
- соответствует RoHS;
- дополнительные блокирующие цифровые датчики Холла с предварительным выравниванием.
Сервомоторы Kollmorgen Cartridge DDR (рис. 5) сочетают в себе преимущества бескаркасного двигателя с простой установкой. Они оснащены устройством обратной связи с высоким разрешением. Уникальная конструкция без подшипников соединяется непосредственно с нагрузкой, используя собственные подшипники машины для поддержки ротора. Большинство моделей можно установить менее чем за пять минут.
Рис. 5. Конструктивные особенности сервомоторов со сквозным валом в корпусе и с датчиком обратной связи серии Cartridge DDR
Основные характеристики данных сервомоторов:
- 5 типоразмеров;
- доступны обмотки с напряжением 230/400/480 В переменного тока;
- 4,5–510 Нм непрерывного крутящего момента;
- скорость до 2500 об/мин;
- номинальные мощности 775–11 700 Вт;
- встроенный датчик обратной связи синусоидального сигнала обеспечивает разрешение более 134 млн меток на оборот;
встроенный термистор обеспечивает защиту от перегрева.
Последний пример — линейные прямые приводы Kollmorgen серии ICH (рис. 6). Они увеличивают пропускную способность на 40% по сравнению с другими системами привода и обеспечивают уменьшение веса и габаритов машины, станка или робота, в которых применяются.
Рис. 6. Конструктивные особенности линейных сервомоторов серии ICH
- сила подачи 405–12726 Н (пик) и 175–5341 Н (непрерывная работа);
- рабочее напряжение — до 480 В переменного тока;
- встроенные цифровые датчики;
- совместим со всеми сервоусилителями и модулями безопасности и энергосбережения Kollmorgen.
Заключение
Сегодня на российском рынке представлено множество брендов, которые предлагают свои решения в области сервоприводов. Одной из таких компаний является Kollmorgen. Используя прямые приводы ее производства, можно повысить точность технологии передачи движения и пропускную способность оборудования, а также снизить затраты на детали и исправления погрешностей передаточных элементов.
Источник
Прямой привод в стиральной машине: что это такое, плюсы и минусы
- Особенности устройства
- Плюсы и минусы
- Отличия от ременного привода
- Тонкости ремонта
- Бренды
Выбор надежной и качественной стиральной машины – дело не из простых. Найти идеально подходящую модель сложно из-за огромного и постоянно растущего ассортимента многофункциональных агрегатов разных типов. Подбирая идеальную машинку, нужно учитывать ее технические характеристики и особенности конструкции. Важно знать, работает техника от ремня или прямого привода. В этой статье мы поговорим о втором варианте и узнаем, в чем заключаются его плюсы и минусы.
Особенности устройства
В наше время автоматические стиральные машинки представлены в огромном ассортименте. Каждый потребитель имеет возможность подобрать для себя идеальную модель со всеми необходимыми функциями и конфигурациями. Очень популярны сегодня устройства с прямым приводом двигателя.
Прямой привод означает непосредственное соединение ротора с осью барабана. В подобном устройстве отсутствует ременная система.
Вместо нее предусмотрена специальная муфта. На поверхности движка в подобных стиральных машинках нет щеток, поскольку в данном случае в них нет необходимости.
Указанная технология называется Direst drive. Такое наименование дается, поскольку инверторный движок отвечает за вращение бака, а частота оборотов устанавливается электромагнитными волнами от платы управления. Располагаясь под люком, двигатель «считывает» массу всех загруженных для стирки вещей и в автоматическом режиме регулирует оптимальные показатели мощности.
Плюсы и минусы
Прямой привод в современных стиральных машинках наиболее предпочтителен. Такие системы востребованы, потребители выбирают их чаще ременных. В популярности прямого привода в бытовой технике нет ничего удивительного, ведь он имеет массу преимуществ. Ознакомимся с ними.
- Один из главных плюсов прямого привода заключается в отсутствии большого количества мелких деталей, быстро выходящих из строя. Ременные разновидности такой особенностью похвастать не могут.
- Машинки, оснащенные прямым приводом, работают тихо, не вызывая раздражение у домочадцев. Все, что можно услышать от подобной техники, это легкие шуршание вещей, крутящихся в барабане. Ременные же модели обычно работают громко и с сильными вибрациями.
- Стиральные машины с прямым приводом отличаются высокой устойчивостью. За счет этого работа барабана в устройстве оказывается более сбалансированной и качественной.
- В процессе работы машинки с прямым приводом очень мало вибрируют. Такой положительный эффект достигается благодаря качественной сбалансированности и устойчивости агрегата. В таких условиях вещи лучше простирываются и избавляются от загрязнений.
- Мотор в подобной бытовой технике нет необходимости регулярно подвергать очистке, смазывать и ремонтировать, а также вызывать профессиональных ремонтников или посещать сервис фирмы, которая выпустила агрегат.
- В автоматическом режиме есть возможность определить уровень загруженности барабана и массу размещенного внутри белья. Это помогает выбрать идеально подходящие показатели мощности и необходимый объем воды, чтоб избежать лишних трат.
- Машинки с прямым приводом отличаются компактными габаритами в сочетании с неплохой вместимостью. В их конструкции нет ни ремней, ни щетки, ни шкифа, за счет чего появляется возможность расширения барабана с одновременным уменьшением корпусной основы.
- При покупке техники с прямым приводом часто дается 10-летняя гарантия на двигатель. Конечно, кроме движка в конструкции стиральных машин присутствует и много других важных деталей, поэтому этот плюс можно считать спорным.
- В машинках с прямым приводом обычно предусмотрена ускоренная стирка. Цикл здесь может прокручиваться гораздо быстрее за счет работы движка инверторного типа.
- При эксплуатации стиральных машин с прямым приводом можно существенно сэкономить на тратах электроэнергии. Это преимущество обеспечивается благодаря исключению из цепочки вращения определенных элементов и возможности автоматического контроля требуемой мощности.
Современные стиральные машины, оснащенные прямым приводом, имеют не только плюсы, но и минусы. Рассмотрим их подробнее.
- Такие агрегаты стоят дороже ременных экземпляров. Это относится и к самой стиральной машине, и к ее запчастям.
- Такая техника отличается зависимостью от бесперебойного электричества. Инверторный движок управляется благодаря электронным системам, которые очень уязвимы к скачкам напряжения. Пользователям желательно подстраховаться и подсоединить в агрегаты специальный стабилизатор.
- В подобных стиральных машинах часто имеется сальник. При прямой трансмиссии мотор находится под баком, поэтому при несвоевременно проведенной замене сальника часто возникают протечки. Вода, попадающая на движок, приводит к серьезным неполадкам вплоть до полного выгорания. Обычно гарантия на такую поломку не распространяется, и пользователям приходится самим платить за дорогой ремонт бытовой техники.
- В машинках с прямым приводом подшипники изнашиваются намного быстрее. Без шкива и ремня абсолютно вся нагрузка от крутящегося барабана приходится на подшипники, находящиеся в непосредственной близости. Это приумножает их стирание, из-за чего указанные детали приходится часто менять на новые.
Покупая стиральную машинку с прямым приводом, необходимо учитывать все его преимущества и недостатки.
Зная о них, человек сможет правильно пользоваться техникой и будет внимательнее относиться к уязвимым деталям.
Отличия от ременного привода
Стиральные машинки, в которых имеется прямой привод или специальный ремень, имеют много различий. Сосредоточимся на основных пунктах.
- В прямом приводе имеется прямое соединение ротора и барабанной оси. В случае с ременными экземплярами ремень соединяет шкив бака и движка, за счет чего происходит вращение и остановка барабана.
- Движок в моделях с прямым приводом располагается под баком и приводит к сильному трению расположенных рядом деталей – подшипников. В ременных вариантах используются специальные щетки, которые призваны сглаживать трение, а также ограничивать передачу тока.
- Разница между ременными и моделями с прямым приводом кроется и в цене. Первые варианты обычно стоят дешевле вторых.
- Стиральные машинки с прямым приводом обычно оказываются более вместительными. А вот ременные экземпляры этим похвастать не могут, поскольку в конструкции техники много места отводится для установки щеток, ремней и шкива.
- Модели стиральных машин ременного типа обычно работают довольно громко, создавая сильные вибрации. Для агрегатов с прямым приводом эта проблема не характерна.
- В машинках с прямым приводом устанавливаются более мощные движки по сравнению с бесприводными устройствами.
- Конструкции без ременной передачи являются более устойчивыми, поэтому модели с прямым приводом оказываются более сбалансированными, нежели экземпляры, в конструкции которых присутствует ремень.
- Ремонт ременной машинки всегда обходится дешевле, нежели ремонт современных экземпляров с прямым приводом.
И у техники с прямым приводом, и у ременных экземпляров есть свои слабые и сильные стороны. Каждый покупатель сам решает, какой вариант подходит ему больше.
Тонкости ремонта
Бывает так, что в машинах с прямым приводом не крутится барабан. Подобная проблема может возникнуть по таким причинам:
- вышел из строя датчик;
- неисправность кроется в модуле управления или движке машинки;
- износился подшипник барабана.
Подшипник можно заменить самостоятельно на новый, подходящий к конкретной модели устройства. Если же речь идет о более сложных системных поломках или проблемах с движком, то лучше доверить ремонт устройства специалистам. В устройствах с прямым приводом может прекратить работать отжим. Это случается из-за поломки датчика или движка, проблем с модулем управления. Подобные проблемы простой пользователь сам устранить сможет вряд ли, поэтому поход в сервис неизбежен.
Если же отжим не происходит из-за перегрузки бака, то достаточно убрать лишние вещи. Либо доложить, если их слишком мало в барабане.
В случае какой-либо неисправности автоматические машинки с прямым приводом обычно сигнализируют об этом на информативном дисплее. Так пользователь может узнать, в чем именно кроется проблема, какие действия следует предпринимать. Не следует самостоятельно ремонтировать подобную технику, если вы ничего не понимаете в ее устройстве, и машина еще находится на гарантии. В таких случаях вам нужно посетить сервисный центр.
Бренды
Качественные машинки с прямым приводом выпускают такие известные бренды.
- LG. Выпускает прекрасные машинки с электронным управлением, экономичным расходом воды и электроэнергии. Техника качественная и долговечная, оснащенная большим количеством нужных режимов и программ.
- Samsung. Этот бренд предлагает долговечные и практичные устройства с привлекательным дизайном, большой вместимостью бака, высоким уровнем всесторонней безопасности.
- Bosch. Выпускает высококачественные машинки с прямым приводом, имеющие улучшенную функциональную «начинку», хорошую мощность отжима, экономный расход воды и электроэнергии. Техника может иметь не только крупные, но и компактные габариты.
Какой мотор лучше, или какая разница в моторах стиральных машин, смотрите далее.
Источник
Трёхфазный бесколлекторный двигатель
1. Двигатель стиральной машины с прямым приводом
Пожалуй уже каждый слышал о стиральных машинах с прямым приводом барабана. Но до сих пор, даже не все специалисты по ремонту стиральных машин знают как устроен и как работает двигатель в такой машине.
Сама идея конечно не новая, ведь за основу взят шаговый двигатель, который уже давно получил распространение во многих электротехнических устройствах. А вот первое применение его в конструкции стиральной машины в качестве привода барабана, принадлежит корейскому концерну LG. С середины 2005 года, компания LG начала активно продвигать свою продукцию, заявляя о 10-ти летней гарантии на двигатель для стиральных машин с прямым приводом.
Сегодня, помимо LG, компании Samsung, Haier и Whirpool в ряде моделей стиральных машин стали применять подобные двигатели. Забегая вперёд, можно сказать, что компания LG не просчиталась и двигатель для прямого привода барабана действительно довольно надёжный и имеет преимущество по сравнению с более традиционным и распространённым коллекторным двигателем.
2. Устройство двигателя
Двигатель стиральной машины с прямым приводом, представляет собой трёхфазный бесколлекторный двигатель постоянного тока, отчасти похожий на шаговый двигатель, но это не совсем так. В иностранной литературе его ещё часто называют BLDC (Brushless Direct Current Motor — бесщёточный мотор постоянного тока), для удобства мы тоже будем применять эту аббревиатуру.
Такой двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Различают два вида подобных двигателей:
Inrunner, у которых магниты ротора находятся внутри статора с обмотками, и Outrunner, у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. В стиральных машинах с прямым приводом применяется Outrunner тип двигателя.
В этой статье мы ознакомим с устройством двигателя от стиральной машины LG.
3. Ротор
Рис.2 Ротор двигателя стиральной машины LG с прямым приводом
Ротор BLDC — вращающаяся часть двигателя (Рис.2) По форме напоминает чашу, к внутренней стороне которой специальным клеем крепятся магниты прямоугольной формы. Магниты всегда имеют чётное количество и установлены с чередованием полюсов. В нашем случае установлено 12 магнитов, размер которых зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. В центре ротора есть специальное посадочное отверстие с насечками, что позволяет, при помощи болта или гайки, закрепить ротор напрямую к валу барабана. С внешней стороны ротора, продавлено 10 щелей образующих на обратной его стороне небольшие лопасти для охлаждения обмоток статора.
4. Статор
Рис.3 Статор двигателя стиральной машины LG с прямым приводом
Статор BLDC — неподвижная часть двигателя и крепится к задней части бака стиральной машины (Рис.3) Статор состоит из нескольких листов магнитопроводящей стали заключённый в пластиковый каркас, который служит изолятором. В целом, каркас статора напоминает круг с прямоугольными зубьями. На каждый зуб статора наматывается катушка.
Обмотка трёхфазного бесколлекторного двигателя изготовлена из медной проволоки толщиной 1 мм. Классическая обмотка выполняется одним проводом для одной фазы, то есть все обмотки на зубьях одной фазы соединены последовательно. В данном случае статор имеет 36 зубьев — это значит по 12 зубьев на одну фазу. Сопротивление обмотки каждой фазы порядка 10 Ом.
Как известно, в трёхфазных двигателях, обмотки соединяют по схеме звезда или треугольник.
В нашем случае, обмотки статора соединены по схеме звезда, т.е. концы фаз имеют общую точку (Рис.4)
Поскольку в каждый момент времени работают только две фазы (при включении звездой), магнитные силы воздействуют на ротор неравномерно по всей окружности (Рис.5).
Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее (Рис.6)
В двигателе стиральной машины LG, распределение фазных обмоток, а также относительное положение ротора и статора можно увидеть ниже (см. Рис.7). На схеме производителя, фазные обмотки обозначают буквами : V, W, U
Рис.7 Трёхфазный двигатель постоянного тока (BLDC) стиральной машины LG (общий вид)
Для контроля положения ротора применяется датчик работающий на эффекте Холла. Датчик реагирует на магнитное поле и поэтому его располагают на статоре таким образом, чтобы магниты ротора воздействовали на него.
5. Система управления трёхфазным двигателем (BLDC)
Стоит отметить, что система управления двигателем BLDC и схема её реализации аналогична схеме управления трёхфазным асинхронным двигателем описанной в другой нашей статье. Что бы в точности не повторяться, поясним всё же немного по другому.
Управление двигателем с прямым приводом построено на инверторе напряжения с широтно-импульсной модуляцией. Инвертор — (от лат. inverto — поворачивать, переворачивать) — элемент вычислительной схемы, осуществляющий определённые преобразования сигнала изменяемой амплитуды и частоты. К примеру, в инверторе, сетевое напряжение 220 вольт с частотой 50 Гц, преобразуется в постоянное напряжение, а параметры питания обмоток статора двигателя могут колебаться от 0 до 120 вольт с частотой до 300 Гц.
Двигатель постоянного тока имеет три вывода (т.е. три фазы), на которые в разный момент времени подаётся «+» и «-» питания. Это реализуется при помощи IGBT (биполярных транзисторов с изолированным затвором) представляющие электронные силовые ключи, включённые по мостовой схеме (Рис.8)
Рис.8 Условная схема силовой части инвертора и обмоток двигателя подключённых по схеме «звезда»
Замыкая ключ SW1 подаётся «+» на фазу V , а замыкая SW6 подаётся «-» на фазу U . Таким образом, ток потечет от «+» выпрямителя через фазы V и U . Для обеспечения обратного направления, открывается SW5 и SW2. В этом случае ток потечет от «+» выпрямителя через фазы U и V в обратном направлении. При работе двигателя одновременно должен быть открыт только один верхний и один нижний ключ.
При включении ключей, как показано выше, на двигатель подается полное напряжение питания. При этом двигатель развивает максимальные обороты (мощность). Чтобы обеспечить управление двигателем, нужно регулировать напряжение питания двигателя. Изменение действующего напряжения осуществляется с помощью широтно-импульсной модуляции (ШИМ).
Дадим определение этим терминам:
Широтно-импульсная модуляция (ШИМ) — это управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом. А скважность — это отношение периода следования (повторения) сигнала к длительности (широте) его импульса.
На (Рис.9) представлен график, иллюстрирующий применение трёхуровневой ШИМ для управления электродвигателем, которая используется в приводах асинхронных электродвигателей с переменной частотой. Напряжение от ШИ-модулятора, подаваемое на обмотку двигателя показано в виде прямоугольных импульсов. Пунктирной линией грубо изображён магнитный поток в статоре двигателя. Магнитный поток имеет приблизительно синусоидальную форму, благодаря соответствующему закону ШИМ.
Поэтому, ключи открыты не все время, а открываются, и закрываются с фиксированной частой, но изменяемой скважностью. Таким образом, изменяется действующее напряжение от нулевого до напряжения питания.
Назревает вопрос: зачем нужно менять скважность, зачем эта частота и для чего это всё нужно? Дело в том, что слишком малая частота может быть не эффективной или не обеспечивать необходимой плавности регулирования оборотов двигателя.
Рис.9 График иллюстрирующий напряжение от ШИ-модулятора, подаваемое на обмотку двигателя.
Например: если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный реальный оборот.
При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот.
В нашем случае, имеется 12 магнитов на роторе. Для того, чтобы провернуть ротор на один оборот, потребуется 12/2=6 электрических оборотов поля. Поэтому, учитывая особенность конструкции двигателя и инверторную систему управления, для питания фаз двигателя необходима электрическая частота значительно выше 50Гц.
Чтобы добиться управления оборотами двигателя нужно наложить сигнал ШИМ, на сигналы, подаваемые на ключи. Для этого, микроконтроллер электронного блока управления, программно формирует ШИМ для каждого из ключей (IGBT). В программу контроллера, производитель закладывает определённый алгоритм и все данные для управления конкретным двигателем.
Мы пояснили немного суть системы управления двигателем, а вот детальный обзор устройства и принцип работы инверторного блока управления — очень объёмный материал и в рамках данной статьи мы рассматривать не будем.
6. Неисправности и диагностика двигателя
Как и говорилось выше, сам по себе двигатель довольно надёжный, относительно простой и в практике известны единичные случаи выхода из строя обмоток статора. Магниты на статоре имеют конечно не самое высшее качество, но их отклеивание или расколы почти не встречались.
Уязвимая деталь, пожалуй только датчик Холла. При возникновении его неисправности, отсутствует сигнал положения ротора, что приводит к некорректной работе системы питания фаз двигателя. В этом случае можно наблюдать, как ротор двигателя стопорится и издаёт дребезжащий металлический звук. В стиральных машинах LG, эта проблема зачастую сопровождается кодом неисправности «SE» на модуле интерфейса.
В отличие от коллекторного двигателя, запустить и проверить трёхфазный двигатель напрямую вне стиральной машины без каких-либо специальных приспособлений не получится, поскольку статор крепится к баку, а ротор к валу барабана стиральной машины. Поэтому, при наличии обычного цифрового мультиметра, можно проверить только сопротивление обмоток фаз статора. В связи с этим, на практике, при диагностировании неисправности, проблемную деталь двигателя или модуль управления, выявляют путём замены детали на заведомо исправную.
7. Преимущества и недостатки BLDC двигателей
Более ярким получится сравнение трёхфазного двигателя (BLDC) с традиционным коллекторным двигателем, которым оснащено большинство стиральных машин.
К преимуществу двигателей BLDC стоит отнести:
- низкий уровень шума
- относительно простая конструкция
- особое позиционирование двигателя в стиральной машине, позволяющее снизить колебание бака
- отсутствие приводного ремня, из-за которого терялась часть полезной энергии двигателя на преодоление сил трения ремня, между шкивом двигателя и шкивом барабана
- отсутствие уязвимого коллекторно-щёточного узла, имеющего ограниченный ресурс и требующего обслуживания
К недостаткам двигателя BLDC относятся:
- достаточно сложная система управления ( по сравнению с коллекторным двигателем)
Справедливости ради, стоит отметить, что двигатель стиральной машины LG с прямым приводом не идеально бесшумный. В момент пуска двигателя, из-за взаимодействия магнитных полей статора с магнитами ротора, возникают колебания последнего, сопровождающиеся характерным металлическим звоном. По мере увеличения оборотов ротора, звук становится более мягким, но всё-равно своеобразным и характерным для всех стиральных машин LG с прямым приводом барабана.
Источник