Меню

Проводит ли хлеб электрический ток



Жир обладает низкой электропроводностью

Прибор BF508 измеряет процентное содержание жира в организме методом биоэлектрического импеданса

(БИ). Такие ткани организма, как мышцы, кровеносные сосуды и кости, содержат много воды, хорошего

проводника электричества. Жир . это ткань, которая обладает плохой электропроводностью. Чтобы

определить количество жировой ткани, прибор BF508 пропускает через тело чрезвычайно слабый

электрический ток с частотой 50 кГц и силой менее 500 мкА. При работе прибора BF508 этот слабый

электрический ток не ощущается.

Для создания шкалы по определению состава тела прибор учитывает полное электрическое

сопротивление, а также Ваш рост, вес, возраст и пол, и выдает показатели состава тела на основе данных

Чтобы избежать влияния перемещения жидкости в организме, прибор

Измеряет все тело целиком

В течение дня содержащаяся в теле вода постепенно смещается к нижним конечностям. Вот почему у

некоторых людей вечером или ночью отекают голени и лодыжки. Соотношение воды в верхних и нижних

частях тела различается утром и вечером, а это означает, что полное электрическое сопротивление тела

также варьирует. Так как при измерении прибором BF508 используются электроды для рук и ног, это дает

возможность уменьшить влияние этих отклонений на получаемые результаты.

Рекомендуемое время проведения измерений

Понимание нормальных изменений процентного содержания жира в Вашем организме помогает

предотвратить или уменьшить ожирение. Зная о том, когда и как в зависимости от Вашего режима дня

меняется процентное содержание жира в организме, можно точно оценивать тенденции его изменения.

Рекомендуется использовать прибор в одних и тех же условиях и в одно и то же время дня.

Не выполняйте измерений при следующих условиях:

— Сразу после интенсивных упражнений, принятия ванны или сауны.

— После употребления алкоголя или воды в большом количестве, после еды (должно пройти не менее

Если выполнять измерение при этих физических условиях, расчетный состав тела может существенно

отличаться от фактического из-за изменения содержания воды в организме.

Информация о составе тела

Что такое индекс массы тела (ИМТ)?

ИМТ использует следующую простую формулу расчета соотношения веса и роста человека.

ИМТ = вес (кг)/рост (м)/рост (м)

OMRON BF508 использует данные о росте, хранящиеся под номером личного профиля или введенные в

режиме Guest Mode (гостевой режим), для расчета классификации по ИМТ.

Если уровень жира, оцениваемый по ИМТ, превышает международный стандарт, существует

предрасположенность к общим заболеваниям. Однако индекс ИМТ позволяет оценивать количество не

всех типов жира.

Что такое процентное содержание жира в организме?

Процентное содержание жира в организме . это отношение массы жира в организме к общей массе тела,

выраженное в процентах.

Процентное содержание жира в организме: (%) =

Прибор BF508 для оценки процентного содержания жира в организме использует метод биоэлектрического

В зависимости от места накопления жира в организме он делится на висцеральный (внутренний) и

Что такое уровень висцерального жира?

Висцеральный жир . это жир, окружающий внутренние

Органы

Считается, что повышенное количество висцерального жира непосредственно

связано с увеличением содержания жира в кровотоке, что может приводить к

таким распространенным заболеваниям, как гиперлипемия и диабет, которые

не позволяют инсулину передавать энергию из кровотока и использовать ее в

клетках. Чтобы избежать распространенных заболеваний или повысить

иммунитет, необходимо понижать количество висцерального жира до

приемлемого уровня. Люди с повышенным уровнем висцерального жира

обычно имеют большой желудок. Однако это не всегда так, и высокий уровень

висцерального жира может приводить к развитию ожирения из-за нарушения

обмена веществ. Ожирение из-за нарушения обмена веществ (висцеральное

ожирение при нормальном весе) характеризуется уровнями жира, которые

выше среднего значения, даже если вес человека приблизительно

соответствует стандартному значению для его роста или ниже.

Источник

Почему электризуются шерсть, шелк, вискоза? Как избавиться от статического электричества?

Миф о том, что натуральные ткани не электризуются, а только синтетика способна накапливать статическое электричество, чрезвычайно устойчив. Но так ли это? Еще за 600 лет до н. э. Фалес Милетский заинтересовался необычным явлением: если янтарь потереть о шерсть, то он обретет способность притягивать легковесные предметы: перышки, мелкие соринки.

Статическое электричество и натуральные материалы

Ежедневно каждый из нас ощущает на себе проявления статического электричества: выходим ли из машины, гладим ли кошку или снимаем шерстяной свитер через голову, мы отчетливо слышим треск и чувствуем неприятное покалывание в кончиках пальцев. Электрическая активность является неотъемлемой составляющей всего живого на Земле. Однако, не смотря на многолетние опыты и открытия, загадка воздействия электричества на живые организмы до сих пор остается до конца неразгаданной.

Какие материалы электризуются больше, а какие меньше?

Степень, в которой различные предметы способны накапливать статическое электричество, принято отображать с помощью трибоэлектрической шкалы. На ней различные материалы располагаются вертикально по обе стороны – в низ и вверх, от нулевой отметки в центре в зависимости от их способности накапливать статическое электричество.

Для удобства мы сделали небольшое упрощение, сделав шкалу цветной и оставив только те натуральны и синтетические текстильные волокна, материалы и предметы, с которыми сталкиваемся в повседневной жизни.

Трибоэлектрическая шкала

Положительный заряд на шкале отмечен красным цветом, отрицательный – синим. Чем ярче оттенки этих цветов, тем сильнее электризуется материал. А чем дальше они находятся друг от друга на этой шкале, тем сильнее образуется статическое электричество при их соприкосновении.

Нас с вами изначально волнует вопрос, в какой степени домашний текстиль, а именно – постельное белье, полотенца, покрывала – обладают способностью накапливать статическое электричество. Ведь наш полноценный отдых, здоровый сон и ощущение домашнего уюта напрямую зависит от того, насколько комфортно нам будет пользоваться этими вещами.

Лен, хлопок и дерево – это инертные материалы, они обозначаются на шкале зеленым цветом, т. е. не электризуются даже при соприкосновении с такими электрически активными материалами, как полиэтилен или нейлоном. Именно поэтому мы бессознательно чаще всего выбираем хлопковое постельное белье.

Постельное белье из хлопка Elegante

Однако, не стоит забывать, что вся деревянная мебель обычно покрывается либо лаком либо воском, поэтому свойства предметов из дерева могут кардинально меняться. Точно также любое воздействие на натуральные волокна – лен и хлопок (отбеливание, окрашивание, мерсеризация), меняет их физико-химические свойства.

И чем сильнее окрашивание, чем дальше от идеальной нейтральной позиции.

Постельное белье из хлопка Elegante, дизайн Gepard

А как ведут себя другие текстильные волокна?

Увы, натуральная шерсть способна накапливать статическое электричество – это ее природное свойство. И в причинах этого явления мы попробуем разобраться.

Шерсть служит животным не только для того, чтобы согревать в зимние морозы, а также чтобы получать информацию о переменах во внешних условиях обитания: повышении влажности, изменении давления, появлении мелких электрических разрядов – предвестников землетрясений или извержений вулканов. Воспринимать подобные сигналы животные могут благодаря изменению электрического заряда их шерсти. В природе «животное электричество» необходимо только для самозащиты или охоты, точнее для выживания в суровых условиях.

Почему электризуется шерсть

Даже шелк, хоть его и плетут гусеницы шелкопряда, и тот электризуется! Если взять во внимание теорию, говорящую о том, что если шелк электризуется, то это кому-нибудь нужно, можно представить, что гусеницы шелкопряда реагируют на изменения окружающей среды и передают это качество шелку. Поэтому шелк, пусть в минимальной степени, но при взаимодействии с противоположно заряженными предметами, способен электризоваться.

Читайте также:  Мощность сила тока напряжение стартера

Вискоза считается «условно натуральной» тканью, так как производится из волокна целлюлозы искусственным путем. Вискоза склонна накапливать статическое электричество в минимальном количестве. Это говорит о том, что постельные принадлежности, белье, пледы и полотенца из данных тканей не притягивают пыль, не вызывают раздражений кожи и не бьют разрядами электричества при соприкосновении с телом человека.

И все же, эти материалы: шерсть, шелк и вискоза находятся в «красной» зоне, т.е. накапливают положительный заряд. Соответственно, наиболее опасно для них соседство с синтетическими материалами, и особенно, с полиэтиленом.

Полиэтилен и другие синтетические материалы «награждаются» этим свойством случайно. Этот «побочный» эффект никто специально не планирует, но тем он не становится приятнее.

Внешние и внутренние факторы, влияющие на степень наэлектризованности

Гидрофильные свойства волокна также имеют значение. Например, вискозные волокна – бамбук и тенсел хорошо впитывают воду и по гигроскопичности схожи с хлопком. Это отчасти объясняет почему вискоза мало электризуется.

Данная закономерность распространяется и на ткани: чем лучше волокно впитывает влагу, тем меньше его наэлектризованность. Поэтому высоко гигроскопичные хлопок и лен не накапливают статическое электричество. Отсюда следует, что постельные принадлежности, полотенца и покрывала из льна и хлопка не выступают магнитом для пыли и грязи, не вызывают раздражения на коже и не искрят разрядами электричества в виде неприятного покалывания.

Гидрофильные хлопковые полотенца

То, насколько сильно электризуются вещи, напрямую зависит от сухости воздуха в помещении: чем он суше, тем сильнее электризуются предметы. Особенно это явление заметно зимой, когда на улице холодно, мы почти не открываем форточки, а батареи топят на всю мощь. В это время воздух становится очень сухим, и степень электризации вещей заметно повышается.

Статическое электричество и влажность воздуха

Как бороться со статическим электричеством?

Внимательно следите за тем, чтобы разно заряженные материалы не находились в близком соседстве друг с другом. Исключайте касания натуральной шерсти с пластиком (полиэтиленом). Не храните текстиль из натуральных волокон, особенно из шерсти или шелка, в полиэтиленовых мешках. Лучше использовать для этой цели хлопковые чехлы или бумажные пакеты.

Повышайте влажность в комнате всеми возможными способами. Используйте увлажнители воздуха, регулярно проветривайте, делайте влажную уборку.

Снижают накопление статического электричества в помещениях емкости с водой – вазы с цветами и открытые аквариумы. Иногда достаточно просто полить цветы в горшках.

Как снизить наэлектризованность предметов

И, наконец, бесспорно радикальное средство для снятия статического электричества – это антистатик. А если вам не по душе его запах, то легонько пройдите влажной салфеткой по пледу или мебели, этим простым способом вы сможете до нуля понизить уровень наэлектризованности вещей.

И еще один совет: выбирайте натуральные материалы. Даже если какие-то из них и обладают способностью накапливать статическое электричество, то воздействие его все-таки не такое агрессивное, как от синтетических материалов.

Источник

Самоучитель по химии

Пособие для тех, кто не знает, но хочет узнать и понять химию

Часть I. Элементы общей химии
(первый уровень сложности)

Продолжение. Cм. в № 13, 18, 23/2007;
6, 8/2008

Глава 6. Электролитическая диссоциация

Всем известно, что металлы проводят электрический ток. А проводят ли электрический ток растворы? Если бы мы попытались ответить на этот вопрос при помощи опыта, то убедились бы, что раствор сахара не проводит электрический ток, а раствор поваренной соли проводит. Почему? Может быть, исходные веществавода или сухой хлорид натрияэлектропроводны? Но тот же опыт показываетэти вещества, каждое само по себе, электрический ток не проводят.

Для того чтобы объяснить результаты этих опытов и понять смысл явления, необходимо ответить на вопрос: почему вообще некоторые вещества, например металлы, проводят электрический ток? Это происходит потому, что в металлах имеются «свободные» заряженные частицыэлектроны. С направленным движением этих заряженных частиц связана электропроводность металлов. Таким образом, если раствор NаСl проводит электрический ток, то, значит, в этом растворе тоже образуются какие-то заряженные частицы. Если раствор сахара не проводит электрический ток, значит, в растворе сахара заряженных частиц не образуется. Исходя из этого такие вещества называют: NаСlэлектролит, сахарнеэлектролит.

Электролитыэто вещества, растворы (и расплавы) которых проводят электрический ток.

Теперь нам осталось выяснить: откуда в растворе NаСl появились заряженные частицы? Вспомните, какой тип химической связи имеется в кристалле поваренной соли? Ионная связь! То есть связь между заряженными частицамиионами. Значит, хлорид натрия состоит из разноименно заряженных частиц! Но почему тогда сухой хлорид натрия не проводит электрический ток? Потому что между ионами в кристалле существуют достаточно сильные электростатические взаимодействия. А в воде? Посмотрите на рис. 1:

Какая связь между атомами Н–О?

Рис. 1.
Взаимодействие диполей воды
с кристаллом поваренной соли

Между ионами соли и молекулами воды возникают довольно значительные силы электростатического взаимодействия. В результате молекулы воды «растаскивают» кристалл на «кусочки» (ионы). Будут ли возникать такие взаимодействия в следующих случаях (рис. 2):

Рис. 2.
Варианты взаимодействия веществ
с растворителями

Очевидно, нет! В обоих случаях или растворитель (случай I), или вещество (случай II) неполярны, и взаимодействия, притяжение частиц друг к другу, ничтожны.

В ы в о д. Взаимодействие между веществом и растворителем возможно, если и вещество, и растворитель имеют достаточно полярные связи.

Следствием такого взаимодействия является диссоциацияраспад вещества на ионы. При этом образуются положительно заряженные ионыкатионы и отрицательно заряженные ионыанионы.

Электролитическая диссоциацияпроцесс распада электролитов на ионы под действием полярных молекул растворителя (чаще всего воды).

Задание 6.1. Будут ли проводить электрический ток:

а) раствор НСl в воде;

б) раствор NаСl в бензине;

в) раствор азота в воде;

г) концентрированная серная кислота?

Итак, еще раз повторим: вещества, способные в растворах или расплавах распадаться на ионы и, как следствие, проводить в этом состоянии электрический ток, называются электролитами.

Среди неорганических веществ к электролитам относят:

Проверяя электропроводность растворов электролитов одного класса, например кислот, можно заметить, что в одном случае лампочка горит ярко, в другомеле светится. Если принять во внимание, что концентрация веществ в растворах одинакова, как можно объяснить наблюдения?

Объяснение однов первом случае образуется большее число ионов (заряженных частиц), во второмменьшее, т.е. в первом случае электролитическая диссоциация идет в значительной степени. Такие электролиты называются сильными, в их растворах много ионов и почти нет (а иногда и совсем нет) молекул.

К сильным электролитам относятся:

В растворах слабых электролитов много молекул вещества и мало ионов; электролитическая диссоциация идет не полностью.

К слабым электролитам относятся:

– NН4ОН и нерастворимые основания.

Фосфорная и сернистая кислотыэлектролиты средней силы.

Задание 6.2. Выучите наизусть формулы сильных и слабых электролитов. Вспомните их названия.

Как же происходит электролитическая диссоциация?

снования диссоциируют на катион металла (или аммония NH4 + ) и анион ОН – :

П о м н и т е! 1) Заряд иона совпадает по величине с валентностью данного атома (группы атомов).

2) Число катионов и анионов может быть различным, но суммарный положительный заряд катионов равен суммарному отрицательному заряду анионов. Раствор остается электронейтральным!

Читайте также:  Как правильно соединить трансформаторы тока

Задание 6.3. Составьте уравнения диссоциации гидроксида калия, гидроксида аммония, гидроксида бария.

Кислоты диссоциируют на катион водорода и анион кислотного остатка:

Задание 6.4. Составьте уравнения диссоциации соляной, серной, фосфорной кислот.

Для многоосновных кислот диссоциация может происходить ступенчато. Это означает, что на каждой стадии отщепляется только один ион водорода. Например:

II ступень: HSO4 – H + + SO4 2– .

Задание 6.5. Составьте уравнения ступенчатой (постадийной) диссоциации фосфорной кислоты.

Соли диссоциируют на катион металла (или аммония) и анион кислотного остатка. При составлении таких уравнений следует учитывать вышеизложенные правила (см. «Помните!»):

Проверьте: 2•(3+) + 3•(2–) = (6+) + (6–) = 0.

В ы в о д. Для составления уравнений электролитической диссоциации:

• составьте химическую формулу соединения, укажите валентность составных частей;

• укажите число образовавшихся ионов (по индексам):

• укажите заряды ионов (по валентностям):

Задание 6.6. Составьте уравнения электролитической диссоциации нитрата хрома(III), карбоната натрия, сульфида калия, сульфата железа(III), сульфата железа(II).

Из вышеизложенного следует, что в растворах большинства неорганических веществ наряду с молекулами находится значительное число ионов. В таком случае уравнения реакций, которые показывают состав молекул реагирующих веществ, весьма условны. Более точно отражают состав реагирующих частиц ионно-молекулярные уравнения. Для того чтобы составить ионно-молекулярное уравнение реакции, нужно записать в виде ионов химические формулы сильных и одновременно растворимых электролитов. Состав всех остальных веществ изображается в виде молекул.

Алгоритм составления ионно-молекулярных уравнений

1) Определить силу реагирующих электролитов:

2) Для сильных электролитов определить растворимость (по таблице растворимости):

3) Формулы сильных и одновременно растворимых электролитов записать в виде ионов, остальные формулы не изменять!

4) Одинаковые ионы «вычеркнуть», т.к. они не участвуют в реакции (не изменили ни состава, ни заряда). Получаем краткое ионно-молекулярное уравнение:

H2S + Cu 2+ = CuS + 2H + .

Краткое ионно-молекулярное уравнение показывает:

– что реакция возможна;

– что в результате реакции образуется осадок (СuS; в других случаяхгаз или слабый электролит или ион нового состава);

– какие ионы или молекулы должны участвовать в аналогичном процессе.

Например, для того, чтобы осуществить процесс

H2S + Cu 2+ = CuS + 2H + ,

вместо нитрата меди можно взять любую другую растворимую соль меди(II), т.к. она при электролитической диссоциации посылает в раствор ион меди, а анион соли в реакции не участвует:

Задание 6.7. Составьте ионно-молекулярные уравнения реакции для процессов, указанных выше, и убедитесь, что краткие ионно-молекулярные уравнения у них одинаковые.

При составлении ионно-молекулярных уравнений может получиться так, что все частицы будут вычеркнуты, т.к. не изменят ни состава, ни заряда. В этом случае говорят, что реакция в растворе не идет. В принципе можно заранее предсказать возможность такого процесса. Реакция ионного обмена в растворе возможна, если происходит связывание ионов, т.е. образуется осадок, газ, слабый электролит или ион нового состава.

Задание 6.8. Составьте ионно-молекулярные уравнения реакций:

а) фосфат натрия + хлорид кальция;

б) карбонат бария + азотная кислота;

в) гидроксид железа(III) + серная кислота;

г) сульфат аммония + гидроксид калия;

д) нитрат алюминия + хлорид натрия.

Сделайте заключение: возможны ли эти процессы. Укажите признаки возможных процессов (осадок, газ, слабый электролит).

6.1. Понятие о рН (водородном показателе)

Водаочень слабый электролит: при обычных условиях лишь одна молекула воды из 10 000 000 распадается на ионы:

Это уравнение показывает, что при диссоциации 1 моль молекул воды образуется 1 моль ионов водорода Н + и 1 моль гидроксид-анионов ОН – . Другими словами, в чистой воде концентрация ионов водорода равна концентрации гидроксид-анионов:

[Н + ] = [OH – ] = 10 –7 моль/л,

где [Н + ]концентрация ионов водорода, моль/л; [OH – ] – концентрация гидроксид-анионов, моль/л. Такой раствор (среда) называется «нейтральный».

Расчеты показывают, что произведение концентраций этих ионов есть величина постоянная:

[Н + ]•[OH – ] = const = 10 –14 .

Поэтому уменьшение концентрации ионов водорода влечет за собой увеличение концентрации гидроксид-анионов, и наоборот.

Пусть, например, к чистой воде добавили кислоту, т.е. увеличили концентрацию ионов водорода. Теперь эта концентрация составит, например: 10 –6 моль/л или 10 –2 моль/л. Такая среда (раствор) называется «кислая», или «кислотная».

Характер средыкислый, нейтральныйможно оценить количественно при помощи рН («пэ-аш»).

Водородный показатель рН равен логарифму концентрации ионов водорода, взятому с обратным знаком:

Для нейтральной среды:

Для кислой среды:

т.е. рН – . Пусть эта концентрация составит 10 –5 моль/л или 10 –3 моль/л.

Помня, что [OH – ]•[H + ] = 10 –14 , имеем:

[H + ] = = 10 –9 , рН = 9;

[H + ] = = 10 –11 , рН = 11, т. е. рН > 7.

рН = 7среда нейтральная,

Задание 6.9. Определите характер среды, т.е. ее рН, если:

а) [Н + ] равна (в моль/л): 0,01; 10 –8 ; 10 –4 ;

б) [ОН – ] равна (в моль/л): 10 –9 ; 10 –1 ; 0,001.

В о п р о с. Как можно определить реакцию среды опытным путем?

О т в е т. Реакцию среды можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее часто используемым индикатором является лакмус, который в щелочной среде приобретает синюю окраску, а в кислойкрасную.

Задание 6.10. Какую окраску будет иметь индикатор лакмус, если:

а) рН + ] = 10 –4 моль/л;

в) в растворе есть избыток ОН – ;

д) [ОН – ] = 10 –8 моль/л;

е) в растворе есть НNО3;

ж) [ОН – ] = 0,1 моль/л.

6.2. Гидролиз солей

Попробуйте ответить на вопрос: изменится ли окраска лакмуса в растворе серной кислоты, гидроксида натрия, сульфата натрия, карбоната натрия? В первых двух случаях можно уверенно сказать «да», т.к. при диссоциации образуются ионы водорода или гидроксид-анионы:

H2SO4 2H + + ,

А индикаторы реагируют именно на избыток ионов Н + или ОН – . Но при диссоциации упомянутых солей ионы Н + и ОН – не образуются:

Na2SO4 2Na + + ,

Тем не менее раствор карбоната натрия изменяет окраску индикатора, а сульфата нат- риянет! Почему? Видимо, причина в том, что ионы карбоната натрия вступают в какую-то реакцию с молекулами воды, ведь только из молекулы воды может образоваться избыток Н + или ОН – .

Гидролиз солейэто процесс взаимодействия ионов соли с молекулами воды, в результате чего изменяется рН раствора.

Какой ион карбоната натрия реагирует с водой? Предположим, что оба. Тогда в растворе происходят процессы:

Na + + HOH NaOH + H + , (А)

Вспомните, что такое «сильный электролит», «слабый электролит» и ответьте на вопрос: какой из этих процессов (А или Б) невозможен в растворе?

Очевидно, невозможен процесс (А), т.к. молекул сильного электролита NаОН в растворе нет, есть только ионы Na + и ОН – .

Следовательно, происходит процесс (Б), и краткое ионно-молекулярное уравнение гидролиза карбоната натрия выглядит так:

рН > 7, среда щелочная, лакмус синий.

И действительно, лакмус становится синим в растворе карбоната натрия. Почему именно карбонат-анион вступает в реакцию гидролиза? Потому что это ион, соответствующий слабому электролиту, и в результате его взаимодействия с водой образуется слабый электролит (вспомните условия протекания ионных процессов).

В ы в о д. Гидролизу подвергаются соли, содержащие остаток слабого электролита.

гидролиз происходит, т.к. в состав соли входит остаток слабого электролита HNO2;
гидролиз происходит, т.к. в состав соли входит остаток слабого электролита Al(OH)3.

Задание 6.11. Определите, происходит ли гидролиз в растворах хлорида железа(III), силиката натрия, нитрата калия. Ответ поясните.

Алгоритм составления уравнения реакции гидролиза

1. Определить, какие электролиты образуют соль, отметить их силу:

2. Составить уравнение диссоциации соли, подчеркнуть ион, соответствующий слабому электролиту:

3. Для иона слабого электролита составить уравнение реакции взаимодействия с молекулой воды (уравнение гидролиза):

а) Из молекулы воды притягивается противоположно заряженный ион, в данном случае ОН – ;

б) сумма зарядов до и после реакции равна: (3+) = (2+) + (1+).

4. Определить реакцию среды в образовавшемся растворе: в данном случае образовались ионы Н + – значит, среда кислая, рН 2+ + 2OH – Cu(OH)2;

Какой из предложенных процессов соответствует реакции нейтрализации?

8. Какие из перечисленных ниже веществ, попадая в воду, изменяют окраску индикатора: сернистый газ, аммиак, натрий, сульфат цинка, поваренная соль, негашеная известь, стиральная сода, железо. Почему? Ответ подтвердить составлением необходимых уравнений реакций.

Источник

Электрический ток: польза и опасность

Электрический ток

Что такое электрический ток знает каждый старшеклассник. Более того, современную жизнь просто невозможно представить без использования электрической энергии. Электрический ток дарит нам и свет (электрические лампы), и тепло (электронагревательные приборы). В своей жизни мы используем самые разные электротехнические устройства, которые делают ее комфортнее (телевизор, радиоприёмник, телефон, стиральная машина, пылесос и так далее). Промышленность просто перестала бы существовать, если бы не было электричества. Однако, при всей той пользе, которую несет в себе использование электрического тока, он вместе с тем содержит в себе и опасность. Давайте попробуем разобраться, что нужно учитывать, чтобы это использование было безопасным.

Сначала следует отметить, что электрический ток может оказать на человеческий организм негативное воздействие:

Механическое: электрический ток приводит к сильному и резкому сокращению мышц вплоть до их разрыва.

Термическое: температурный нагрев тканей организма (ожог) вызывает функциональное расстройство органов.

Электролитическое: физико-химические процессы электролиза, происходящие под действием электрического тока в живых тканях, приводят к нарушению баланса.

Световое: вспышки света и ультрафиолетовое излучение, созданное электрическим током приводят к негативному воздействию на глаза.

Биологическое: действие электрического тока может привести к раздражению и перевозбуждению нервной системы человека.

Электрический ток в проводнике описывается законом Ома для участка цепи:

Закон Ома

где I – сила тока в проводнике, измеряемая в амперах (А), U – электрическое напряжение на концах проводника, измеряемое в вольтах (В), R – электрическое сопротивление проводника, измеряемое в омах (Ом).

Действие электрического тока на организм человека в первую очередь определяется силой тока. Переменный электрический ток частоты 50 Гц, используемый для работы бытовой техники, является смертельно опасным, если сила тока равна или больше, чем 0,1А. К потере сознания приводят токи силой 0,05–0,1 А. Токи силой менее 0,05 А считаются сравнительно неопасными и приводят лишь покалыванию и к неприятным ощущениям в организме. Однако, даже при небольших токах силой 0,005–0,02 А мышцы теряют способность самопроизвольно сокращаться, и человек может оказаться долгое время под воздействием электрического тока, что не безопасно.

Действие электрического тока на человека

Согласно закону Ома сила тока обратно пропорциональна электрическому сопротивлению, которое может быть различным. Если кожа человека сухая и огрубевшая сопротивление равно примерно 100000–200000 Ом. Если кожа влажная и тонкая, то – 30000–50000 Ом. Самая неблагоприятная ситуация будет, если человек стоит на хорошо проводящей поверхности, в этом случае сопротивление уменьшается до 10000–20000 Ом. В условиях повышенной влажности сопротивление может быть очень небольшим: 1000–2000 Ом.

Котроткое замыкание

Таким образом, если человеческий организм оказался под воздействием бытового напряжения 220 В, то в самом неблагоприятном случае при сопротивлении в 1000 Ом, согласно закону Ома, сила тока будет 0,22 А. Такая сила тока может привести к параличу дыхания. В самом лучшем случае при сопротивлении в 200000 Ом сила тока будет 0,0011 А. Действие такого тока приведет лишь к неприятным ощущениям.

Поэтому никогда не нужно касаться оголенных проводов или неисправных электроприборов, если нет абсолютной уверенности в том, что они не находятся под напряжением. Особенно опасно прикосновение двумя руками, так как в этом случае электрический ток пройдет через область сердца.

По предложенному методу мы предлагаем вам решить задачу:

Определите, силу тока через резиновые перчатки толщиной 1мм, если площадь соприкосновения с электрическим проводом, находящимся под напряжением 220В, равна 1мм 2 .Удельное сопротивление резины 10 13 Омм.

Автор: Матвеев К.В., методист ГМЦ ДО г.Москвы

Источник

Бьет ли током в море, когда в него ударяет молния?

Бьет ли током в море, когда в него ударяет молния?

Природа

Гроза бывает не только над сушей, но и посреди моря. Когда тучи собираются над водой, и начинается ливень – это смотрится зрелищно, особенно если все это сопровождается громом и молниями. Причем иногда последняя может угодить прямиком в море. Ударит ли молния в этот момент воду током?

Какая вода проводит ток?

Вода в чистом виде не способна проводить электричество. В ее состав входят кислород и водород, которые не имеют заряда. Соответственно, ток через них проходить не может. Однако дистиллированная вода довольно редко встречается в природе. В большинстве случаев в ней находятся посторонние вещества. И вот с добавлением в жидкость различных примесей ситуация в корне меняется.

В воде, что течет из-под крана, находится в морях и озерах, встречаются примеси, содержащие положительно заряженные частицы: железо, магний, кальций, натрий, и отрицательно: карбонат, хлор, сульфат. Благодаря ним жидкость прекрасно проводит электричество, причем чем больше в ней концентрация солей, тем сильнее это свойство.

Наглядная демонстрация проводимости воды в зависимости от концентрации проводящих веществ

Наглядная демонстрация проводимости воды в зависимости от концентрации проводящих веществ

Когда в воду попадает ток, он начинает передаваться от атомов с отрицательным зарядом к тем, что имеют положительный. Так электричество постепенно распространяется по воде. Первым о том, что на распространение тока влияет состав жидкости, догадался химик Теодор Гротус. Однако он не смог проверить это экспериментальным путем из-за отсутствия нужного оборудования. В будущем ученые смогли подтвердить его догадки.

Бьет ли током в море, когда в него ударяет молния?

Когда в море ударяет молния, она действительно бьет его током. Из-за содержащихся в жидкости солей и других примесей электричество быстро распространяется в пространстве, взаимодействуя со всем, что встречает на своем пути.

Оказаться в радиусе поражения молнии посреди моря не так опасно, как в озере. Вода в последнем обладает худшей проводимостью, т.к. не содержит солей. Поэтому большая часть тока пройдет через проплывающего мимо человека.

Попадание молнии также губительно и для рыбы. Однако гораздо больший вред она получит не от тока, а от звуковых волн грома. В месте попадания молнии их интенсивность составляет 240 дБ. Этой силы хватает, чтобы оглушить всю рыбу, находящуюся в радиусе нескольких десятков метров.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник