Меню

Проверка аппаратуры по токам кз



Проверка выбранной аппаратуры на действие токов КЗ

Сети напряжением до 1 кВ характеризуются большой протяжённостью и наличием большого количества коммутационно-защитной аппаратуры. Согласно [5] при расчете токов КЗ в сетях напряжением ниже 1000 В необходимо учитывать индуктивные и активные сопротивления короткозамкнутой цепи. В таких сетях, особенно выполненных кабельными линиями или проводами в трубах, активные сопротивления значительно превышают индуктивные. На суммарную величину сопротивления короткозамкнутой цепи значительно влияют активные сопротивления электрических аппаратов, катушек трансформаторов тока, токовых обмоток автоматов и реле, переходные сопротивления контактов коммутационных аппаратов.

Необходимо учитывать активные сопротивления обмоток силовых трансформаторов мощностью до 1000 кВА, питающих место КЗ. При расчете токов КЗ, если Sсист>50∙Sном т, можно считать, что периодическая составляющая тока КЗ практически не изменяется во времени и остается постоянной до момента отключения КЗ (I» =I), т. е. можно считать, что данная электроустановка питается от системы неограниченной мощности. В этом случае сопротивления системы до вводов трансформаторов можно не учитывать и считать, что питание силовых трансформаторов осуществляется от системы неограниченной мощности, при этом согласно [5] подведенное напряжение всегда равно номинальному первичному напряжению трансформатора.

При равенстве сопротивлений во всех трех фазах значение периодической составляющей тока трехфазного КЗ в трехпроводной или четырехпроводной сети определяется по формуле:

где гΣ и xΣ— суммарные активное и индуктивное сопротивления цепи КЗ, мОм.

Ударный ток КЗ определяется по формуле:

где Ку – ударный коэффициент.

Согласно [5] значение ударного коэффициента Kу для определения ударного тока короткого замыкания следует принимать на шинах РУ-0,4 кВ трансформаторных подстанций Kу =1,1; в остальных точках сети Kу =1.

Для расчёта токов короткого замыкания составляется расчётная схема (рис. 2.4) и схема замещения.

В [12] приведены средние величины сопротивлений в миллиомах для силовых трансформаторов 10/0,4/0,23 кВ, приборов, аппаратов и т.д.

Если отсутствуют данные о переходных сопротивлениях контактных соединений, можно ориентировочно принять:

а) для распределительных щитов на подстанциях — 15 мОм;

б) на шинах вводно-распределительного устройства здания—20 мОм;

в) на последних распределительных щитах —25 мОм.

Сопротивление линии, выполненной кабелем, равно:

где r и х0к1 – активное и индуктивное сопротивления 1 м токоведущей жилы кабеля, мОм/м;

l – длина линии, м.

Сопротивление шин определяется следующим образом:

где r и х – активное и индуктивное сопротивления 1 м шины, мОм/м.

В четырехпроводных сетях (Зф + N) при замыкании одной фазы на нулевой провод или металлический корпус электрооборудования защитный аппарат должен автоматически отключить аварийный участок цепи.

В четырехпроводных сетях (Зф + N) при замыкании одной фазы на нулевой провод или металлический корпус электрооборудования защитный аппарат должен автоматически отключить аварийный участок цепи.

В четырехпроводных сетях при замыкании одной фазы на нулевой провод или металлический корпус электрооборудования

Рис. 2.4. Однолинейная схема для расчёта токов КЗ

защитный аппарат должен автоматически отключить аварийный участок цепи.

Для надежного срабатывания защитного аппарата в возможно короткое время ПУЭ [1] требуют, чтобы ток однофазного замыкания в установках, не опасных по взрыву, был не менее трехкратной величины номинального тока плавкой вставки предохранителя или теплового расцепителя автоматического выключателя.

Для проверки срабатывания защитного аппарата при замыкании между фазным и нулевым проводами необходимо определить расчетный ток однофазного КЗ.

Ток однофазного КЗ определяется по приближенной формуле:

где Uф — номинальное фазное напряжение сети, В;

zп — полное сопротивление петли, созданной фазным и нулевым проводами, Ом;

zт — полное сопротивление трансформатора току КЗ на корпус, Ом.

Для проводов или жил кабеля полное сопротивление петли составит:

где — суммарное активное сопротивление фазного rф и нулевого rn проводов, Ом;

xп — индуктивное сопротивление петли проводов или жил кабеля, Ом.

Значения zт/3 трансформаторов, отнесенные к напряжению 0,4 кВ, приведены в Приложении 2 и [14].

Результаты расчётов представляются в виде таблицы (Приложение 1).

Контрольные вопросы

1. Перечислите этапы расчета токов короткого замыкания.

2. Какие упрощения допустимы при расчете токов короткого замыкания в сети напряжением до 1000 В?

3. Какие особенности расчета токов КЗ в сети напряжением до 1 кВ?

4. С какой целью производится расчет однофазного короткого замыкания в сети до 1000 В?

5. Как производится проверка защитной аппаратуры на срабатывание при однофазном КЗ?

Дата добавления: 2014-11-13 ; просмотров: 29 ; Нарушение авторских прав

Источник

5.4. Проверка оборудования на действия токов коротких замыканий

5.4.1 Общие сведения

Коротким замыканием (КЗ) называется непосредственное соединение любых точек разных фаз или фазы и нулевого провода электрической цепи, которое не предусмотрено нормальными условиями работы установки.

Причинами коротких замыканий чаще всего являются пробой изоляции электрических проводов и электрооборудования из-за перенапряжений и постепенного старения изоляционных материалов, схлестывания и набросы голых проводов воздушных линий, механические повреждения кабельных линий, а иногда и ошибочные действия персонала станций, подстанций и сетей.

Короткие замыкания вызывают резкое увеличение токов в электрических установках. Электрооборудование, выбранное по условиям нормального режима, должно быть также устойчивым при динамических и термических действиях токов короткого замыкания.

ПУЭ предписывают, какие виды электрического оборудования должны выбираться с учетом динамической и термической устойчивости при коротких замыканиях. К ним в первую очередь относятся электрические аппараты высокого напряжения станций и подстанций, шины, кабели, изоляторы. Провода воздушных линий, как правило, по условиям короткого замыкания не проверяются.

В установках напряжением до 1000 В требования устойчивости при коротких замыканиях предъявляются только к главным и распределительным щитам, предохранителям и автоматическим выключателям.

5.4.2 Термические и динамические процессы в элементах СЭС

При возникновении КЗ общее сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются. За время КЗ с момента его возникновения до момента отключения поврежденного участка в цепи протекает переходный процесс с большими мгновенными токами, вызывающими электродинамическое воздействие на электрооборудование. При длительном, более 0,01 с, КЗ токи оказывают термическое действие, которое может привести к значительному повышению температуры нагревания электрооборудования.

В нормальных эксплуатационных режимах электродинамические силы невелики. Однако при КЗ токи увеличиваются в 10-20 раз, а электродинамические силы увеличиваются в 100-400 раз. Последствием воздействия этих сил могут быть разрушения аппаратов и конструкций распределительных устройств. Поэтому для проверки динамической устойчивости аппаратуры и токопроводящих конструкций важно знать величину этих механических сил.

Электродинамическое воздействие заключается в том, что проводники с токами притягиваются или отталкиваются друг от друга. Силу, с которой взаимодействуют проводники (электродинамическая сила), пропорциональна произведениювзаимодействующихтоков

Величина динамического усилия, возникающего при протекании тока короткого замыкания, может быть определена на основании закона Био-Савара

Источник

Проверка аппаратов и токоведущих устройств по режиму КЗ

Выбранные по условиям длительной работы электрические аппараты, изоляторы и проводники следует проверить на электродинамическую и термическую стойкость при КЗ. Отключающие аппараты, кроме того, проверяют и по отключающей способности относительно токов КЗ. В электрических установках напряжением выше 1000 В согласно ПУЭ по режиму КЗ проверяют электрические аппараты, токопроводы, кабели и другие проводники, опорные и несущие конструкции для них, а также воздушные линии электропередачи при ударном токе КЗ более 50 кА и расстояния между распорками расщепленных проводов. В электрических установках напряжением до 1000 В по режиму КЗ проверяют только распределительные щиты, токопроводы и силовые шкафы. По режиму КЗ при напряжении выше 1000 В согласно ПУЭ не проверяют:
аппараты и проводники, защищенные плавкими вставками независимо от их номинального тока и типа,— по термической стойкости, а на номинальный ток до 60 А,— по электродинамической стойкости;
проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2500 кВ • А и с высшим напряжением до 20 кВ, если соблюдены одновременно условия: в электрической или технологической частях предусмотрена необходимая степень резервирования, повреждение проводника при КЗ не может вызвать взрыва или пожара, возможна замена проводника без значительных затруднений;
трансформаторы тока в цепях до 220 кВ, питающих трансформаторы или реактированные линии, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформаций, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов;
провода воздушных линий электропередачи при ударном токе КЗ менее 50 кА, за исключением линий, оборудованных АПВ;
аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере или за добавочным резистором.
Согласно ПУЭ расчетным видом КЗ является: для определения электродинамической стойкости аппаратов, жестких шин и опорных изоляторов — трехфазное КЗ; для определения термической стойкости аппаратов и проводников — трехфазное КЗ; на генераторном напряжении электростанций— трехфазное или двухфазное КЗ в зависимости от того, какое из них приводит к большему нагреву; для выбора аппаратов по коммутационной способности в сетях напряжением до 35 кВ — трехфазное КЗ; в сетях напряжением 110 кВ и выше — трехфазное и однофазное, а проверку отключающей способности ведут по более тяжелому режиму с учетом условий восстановления напряжения.
При выборе аппаратов и проводников в цепи реактированной линии необходимо учесть, что выбор шинных разъединителей, выключателей, трансформаторов тока, проходных изоляторов и ошиновки, устанавливаемых до реактора, следует выполнять по значениям токов КЗ за реактором; выбор ошиновки ответвлений от сборных шин до разделяющих полок и проходных изоляторов в разделяющих полках следует выполнять по значениям токов КЗ до реактора; секционные выключатели, включенные последовательно с реакторами, следует рассчитывать на отключение КЗ на участке между выключателем и реактором.
По методике расчета токов КЗ для выбора электрооборудования в расчетах принимают средние значения UK трансформаторов в соответствии с ГОСТ или каталогами (средние ответвления РПН). Учитывая это положение, а также неточности исходной информации и допущения методики расчетов КЗ, запас по токам КЗ при выборе отключающего оборудования целесообразно иметь порядка 15—20 %.
Проверка на электродинамическую стойкость
Электродинамическая стойкость аппаратов в общем случае определяется соотношениями: Iн дин > /п0; /„ дин > /уд, где Iн д|ш — действующее значение периодической составляющей полного тока КЗ; iH дин — мгновенное амплитудное значение полного тока КЗ; /п0 — начальное действующее значение периодической составляющей тока КЗ; /уд — ударный ток КЗ. Выключатели проверяют по обоим условиям, так как для конкретной схемы расчетное значение ударного коэффициента может отличаться от значения £уд=1,8, указанного в ГОСТ для выключателей. Отключающая способность выключателя существенно зависит от амплитуды и скорости восстанавливающегося напряжения.

Читайте также:  Частотно регулируемый электропривод постоянного тока

Проверка на термическую стойкость

Термическая стойкость аппаратов и проводников определяется условием:
где Iн-тер — номинальный ток термической стойкости — действующее значение незатухающего периодического тока КЗ, которое по данным завода-изготовителя аппарат может выдержать в течение номинального времени термической стойкости; Вк — тепловой импульс тока КЗ (импульс квадратичного тока КЗ), характеризующий количество тепла, выделяющегося в аппарате за время действия тока КЗ.

Источник

Расчет токов короткого замыкания для выбора и проверки аппаратуры и защитных аппаратов

По электрической сети и электрооборудованию в нормальном режиме работы протекают токи, допустимые для данной установки. При нарушении электрической плотности изоляции проводов или оборудования в электрической сети внезапно возникает аварийный режим короткого замыкания, вызывающий резкое увеличение токов, достигающих огромных значений, которые представляют большую опасность для элементов электрической сети и оборудования, так как они вызывают чрезмерный нагрев токоведущих частей и создают большие механические усилия.

Значения токов короткого замыкания (КЗ) необходимы для выбора оборудования, расчета и проверки релейной защиты, выбора устройств грозозащиты и заземления подстанции.

Расчет токов короткого замыкания начинается с составления схемы замещения (рис. 3.2, б), на которой указываются марки и сечения проводов, длины участков, мощности трансформаторов.

Принято, что в сетях 0,38 кВ, питаемых от системы электроснабжения, напряжение на высшей стороне понижающего трансформатора 10/0,4 кВ неизменно и равно номинальному значению. Таким образом, при определении результирующего сопротивления до точки КЗ учитывают активные и индуктивные сопротивления лишь трансформаторов и проводов линий 0,38 кВ.

Расчеты сводятся, как правило, к определению максимального тока трехфазного КЗ на шинах 10 и 0,4 кВ трансформатора и тока однофазного КЗ в наиболее удаленной точке линии. Значение тока трехфазного КЗ на шинах 10 кВ необходимо для проверки устойчивости аппаратуры, а также согласования действия защит трансформатора и линий 0,38 кВ; трехфазного тока КЗ на шинах 0,4 кВ — для выбора и проверки автоматических выключателей отходящихлиний 0,38 кВ; а однофазного тока КЗ в концелинии для проверки эффективности системы зануления.

Рисунок 3.2 – Схемы однофазного короткого замыкания в сети напряжением 0,38 кВ: а) – принципиальная; б) – замещения.

Расчет токов КЗ в сетях 0,38 кВ, как правило, проводят в именованных единицах.

Ток трехфазногокороткого замыкания на шинах 0,4 кВ равен (точка KЗ1 на рис. 3.2, а, б):

где UК – напряжение короткого замыкания трансформатора 10/0,4 кВ, % [1, с.634, таблица 19.2].

Ток трехфазногоКЗ (шин 0,4 кВ), приведенный к напряжению 10 кВ:

Значение ударного тока КЗ используемое для проверки аппаратуры на динамическую стойкость:

где ky – ударный коэффициент, при КЗ в сети 10 кВ и 0,38 кВ ky = 1.

Токи двухфазного и однофазного КЗ в сетях 0,38 кВ, необходимые дляоценки чувствительности защиты, рассчитывают по формулам:

где Uф – фазное напряжение сети, кВ; – полное сопротивление короткого замыкания трансформатора, Ом [1, с.167, таблица 4.13]; Zп – полное сопротивление петли «фазный — нулевой провод линии», Ом.

Полное сопротивление петли «фазный — нулевой провод линии»:

где l – длина линии 0,38 кВ от шин ТП до места однофазного КЗ, км; – удельные активные сопротивления токопроводящих и нулевой несущей жил, Ом/км, (таблица 3.5); – удельные внутренние индуктивные сопротивления токопроводящих и нулевой несущей жил,Ом/км, (таблицы 3.5 и 3.7); – удельное внешнее индуктивное сопротивление петли «фазный — нулевой провод линии», принимаемое для проводов из цветных материалов равным = 0,6 Ом/км [1].

Когда площади поперечного сечения проводов вдоль линии различны, нужно найти полное сопротивление каждого участка и результаты сложить.

Если ток КЗ недостаточен для срабатывания защиты, увеличивают площадь поперечного сечения проводов, либо берут трансформатор большей мощности.

3.9 Выбор электрооборудования ТП 10/0,4 кВ

Электрооборудование комплектных трансформаторных подстанций 10/0,4 кВ в условиях работы сельских электрических сетей с малыми токами КЗ (по сравнению с промышленными подстанциями) как правило, отвечает всем требованиям. Однако в целях приобретения профессиональных навыков в курсовом проекте необходимо выбрать: разъединитель (QS1), предохранитель (F), рубильник (QS2), счетчики активной электроэнергии (Wh) и автоматические выключатели, защищающие отходящие от ТП линии 0,38 кВ (QF1-QF3) (рис. 3.3).

Согласно источнику [2] электрические аппараты выбирают по роду тока, номинальному току и напряжению и проверяют на динамическую и термическую устойчивости.

Рисунок 3.3 – Принципиальная однолинейная схема ТП 10/0,4 кВ

Для коммутаций отходящих линий 0,38 кВ и защиты их от КЗ, на подстанции со стороны напряжения 0,4 кВ устанавливаются автоматические выключатели типов А3700, АВ, АП и др.

Номинальное напряжение UН.А и ток IН.А автоматов должны соответствовать условиям нормального режима:

где – номинальное напряжение сети, В; – максимальный расчетный ток защищаемой линии, А.

Предельно допустимый ток отключения автомата должен соответствовать условию:

Номинальный ток теплового расцепителя должен соответствовать следующему условию:

Ток срабатывания электромагнитного расцепителя (отсечки) определяется следующим образом:

— для линийбез двигательной нагрузки:

— для линий с двигательной нагрузкой:

где – пусковой ток электродвигателя максимальной мощности.

Коэффициенты чувствительности определяют для каждого расцепителя в отдельности:

где , – минимальные значения тока однофазного КЗ в наиболее удаленной точке линии и тока двухфазного КЗ в месте установки автомата, соответственно.

Важно согласовать выбранный автоматический выключатель отходящей линии 0,38 кВ с предохранителем серии ПКТ, установленном на трансформаторной подстанции 10/0,4 кВ со стороны 10 кВ.

Необходимо, чтобы при КЗ в точке КЗ1 (рис. 3.4) сработал и отключил аварийный режим автоматический выключатель отходящей линии (в данном случае выключатель А3700), а в случае несрабатывания выключателя, через ступень выдержки времени (не менее 0,6÷0,7 с) сработал кварцевый предохранитель ПКТ-10.

Читайте также:  Электропоезд переменного тока эр9п

Рисунок 3.4 – Согласование работы автоматического выключателя и плавкого предохранителя

Таким образом выбор номинального тока плавкой вставки предохранителя зависит от результата согласования времени его срабатывания со временем действия автоматов в линиях 0,38 кВ.

Согласование защит по времени обычно выполняется по карте селективности. Для этого в координатах время — ток наносят характеристику срабатывания выбранного автоматического выключателя для наиболее нагруженной отходящей линий затем на ампер — секундной характеристике автомата, например, А3700 [1, с.343, рис. 10.10] фиксируют ток трёхфазного КЗ на шинах 0,4 кВ ТП 10/0,4 кВ.

От характеристики срабатывания автомата при токе откладывают ступень выдержки времени 0,6÷1 с и наносят контрольную точку, ниже которой не должна проходить характеристика ПКТ-10. Из всего множества характеристик ПКТ-10 следует выбрать ту, которая ближе всего к контрольной точке, но не ниже ее. Номинальный ток, соответствующий этой характеристике, и является искомой величиной.

При согласовании ампер — секундную характеристику ПКТ-10 [1, с.352, рис. 10.18] приходится переносить на карту селективности. При этом токи характеристики предохранителя следует пересчитать с напряжения 10 кВ на напряжение 0,38 кВ по формуле:

Время срабатывания выбранного плавкого предохранителя проверяется при минимальном токе короткого замыкания.

Источник

Проверка аппаратуры по токам кз

Ответ. Распространяется на

методы проверки электрических аппаратов и проводников электроустановок переменного тока частотой 50 Гц напряжением до и выше 1 кВ по условиям КЗ и содержит расчетные условия КЗ, виды проверок аппаратов и проводников в зависимости от их назначения, конструкции, места установки и способа прокладки, а также порядок выполнения проверок (1.4.1).

Общие требования‌

Вопрос. Какие виды проверок по условиям КЗ применяются в

электроустановках напряжением выше 1 кВ?

Ответ. В электроустановках напряжением выше 1 кВ по условиям КЗ проверяются:

на электродинамическую стойкость – электрические аппараты, токопроводы, жесткие шины, гибкие провода ВЛ, гибкие шины ОРУ и ЗРУ, вводы, герметичные кабельные проходки, кабельные муфты, а также опорные и несущие конструкции для проводников. Проверка гибких проводов ВЛ и гибких шин РУ на электродинамическую стойкость заключается в определении дополнительных тяжений в

проводниках при КЗ, а при ударном токе КЗ 50 кА и более – дополнительно в проверке проводов разных фаз на невозможность схлестывания или опасного (с точки зрения пробоя) сближения;

на термическую стойкость – электрические аппараты, вводы, герметичные кабельные проходки, кабельные муфты, кабели (как жилы, так и экраны – при их наличии), токопроводы, защищенные провода, шины, а также провода ВЛ, оборудованных устройствами

автоматического повторного включения (АПВ);

на коммутационную способность – электрические

аппараты, предназначенные для отключения и включения электрических цепей;

на невозгораемость – кабели и изолированные проводники (1.4.4).

Вопрос. Какие виды проверок по условиям КЗ применяются в электроустановках напряжением до 1 кВ?

Ответ. В электроустановках напряжением до 1 кВ по условиям КЗ проверяются:

на электродинамическую стойкость – токопроводы, ошиновка РУ и щитов, сборок и распределительных пунктов, а также коммутационные аппараты, установленные в распределительных

щитах, силовых сборках и силовых шкафах;

на термическую стойкость – автоматические выключатели, СИП и кабели с бумажной и пластмассовой изоляцией, за исключением кабелей, защищенных автоматическими выключателями, если последние выбраны по условию обеспечения работы токовой отсечки при повреждении в конце защищаемой КЛ;

на коммутационную способность – предохранители и автоматические выключатели. Автоматические выключатели, которые по условиям своей работы могут включать короткозамкнутую

цепь, должны обладать способностью производить эти операции при всех возможных токах КЗ;

на невозгораемость – кабели и изолированные проводники (1.4.5).

Вопрос. Какие аппараты и проводники не проверяются по условиям КЗ в электроустановках напряжением выше 1 кВ?

Ответ. По условиям КЗ не проверяются:

на электродинамическую стойкость – кабели, а также электрические аппараты и проводники, защищенные предохранителями с плавкими вставками на номинальный ток до 60

на термическую стойкость –

электрические аппараты и проводники, защищенные предохранителями, независимо от номинального тока и типа предохранителей, если их отключающая способность выбрана в соответствии с требованиями настоящих Правил и они способны отключать наименьший возможный аварийный ток в данной цепи, а также провода ВЛ, не оборудованных устройствами АПВ;

на электродинамическую и термическую стойкость:

а) проводники в цепях, подключенных к индивидуальным

электроприемникам, а также к трансформаторам промышленных предприятий суммарной мощностью до 2,5 МВ·А и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

в электрической или технологической части предусмотрена необходимая степень резервирования, причем последнее выполнено так, что отключение указанных электроприемников не вызывает нарушения технологического процесса;

повреждение проводника при КЗ не может вызвать взрыва или пожара; возможна замена проводника

без значительных затруднений;

б) проводники в цепях, присоединенных к отдельным распределительным пунктам (с общей установленной мощностью потребителей до 0,5 МВт);

в) трансформаторы тока (ТТ), установленные в цепях напряжением до 20 кВ силовых трансформаторов, электродвигателей или реактированных линий, если по условиям КЗ требуется такое завышение их коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности; при этом на стороне высшего напряжения силовых трансформаторов рекомендуется

избегать применения ТТ, не отвечающих требованиям стойкости к току КЗ.

г) аппараты и шины цепей ТН при расположении их в отдельной камере (1.4.6).

Вопрос. Какие аппараты и проводники не проверяются по условиям КЗ в электроустановках напряжением до 1 кВ?

Ответ. Не проверяются по условиям КЗ ТТ, а также аппараты и проводники вторичных цепей (1.4.7). Вопрос. Что принимается в качестве расчетного вида КЗ в

трехфазное КЗ – при проверке

на электродинамическую стойкость электрических аппаратов и жестких шин с относящимися к ним поддерживающими и опорными конструкциями;

трехфазное КЗ, а на генераторном напряжении электростанций – трехфазное или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию тока КЗ, – при проверке на термическую стойкость электрических аппаратов и проводников;

трехфазное или однофазное КЗ (в сетях с глухо или эффективно заземленной нейтралью), в

зависимости от того, какое из них приводит к большему току КЗ в расчетный момент времени – при проверке электрических аппаратов на коммутационную способность;

двухфазное КЗ – при проверке гибких проводников ВЛ и гибких шин РУ на возможность сближения проводников разных фаз, опасного в отношении пробоя (1.4.9).

Вопрос. Какая точка на расчетной схеме электроустановки выбирается в качестве расчетной?

Ответ. Выбирается такая точка, при КЗ в которой электрические аппараты и проводники соответствующей цепи находятся в наиболее тяжелых условиях. Случаи

одновременного замыкания на землю различных фаз в двух разных точках электроустановки допускается не учитывать (1.4.10).

Вопрос. Какое время принимается в качестве расчетной продолжительности КЗ при проверке электрических аппаратов и проводников на термическую стойкость при КЗ?

Ответ. Принимается минимально возможное время воздействия тока КЗ, определяемое путем сложения времени действия основной защиты присоединения (с учетом действия АПВ), установленной у ближайшего к месту КЗ выключателя, и полного времени

отключения этого выключателя.

При наличии зоны нечувствительности у основной защиты (по току, напряжению, сопротивлению и т. д.) термическую стойкость электрических аппаратов и проводников дополнительно проверяют, определяя расчетную продолжительность КЗ путем сложения времени действия защиты, реагирующей на повреждение в этой зоне, и полного времени отключения выключателя. При этом в качестве расчетного тока КЗ принимается его максимальное значение, соответствующее этому месту повреждения.

При проверке выключателей

напряжением выше 1 кВ на отключающую способность в качестве расчетной продолжительности КЗ принимается собственное время выключателя с добавлением 0,01 с.

При проверке кабелей и других изолированных проводников на невозгораемость при КЗ расчетная продолжительность КЗ определяется путем сложения времени действия резервной защиты, установленной у ближайшего к месту КЗ выключателя, и полного времени отключения выключателя (1.4.12).

Читайте также:  С чем сонаправлен ток

Расчет токов короткого

замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания

Вопрос. Какие условия принимаются при составлении расчетной схемы электроустановок напряжением до и выше 1 кВ и расчете токов КЗ с целью проверки электрических аппаратов и проводников по условиям КЗ и определения степени воздействия электродинамических сил на несущие конструкции?

Ответ. Принимаются следующие условия:

учету подлежат все источники, влияющие на ток КЗ – синхронные генераторы и компенсаторы, синхронные и асинхронные электродвигатели. Влияние асинхронных электродвигателей допустимо не учитывать при мощности электродвигателей до 100 кВт в единице, если они отделены от расчетной точки КЗ токоограничивающим реактором или силовым трансформатором, а также при любой мощности электродвигателей, если они отделены от расчетной точки КЗ двумя плечами сдвоенного реактора

или двумя и более ступенями трансформации;

все источники, введенные в расчетную схему, работают одновременно, а к моменту возникновения КЗ имеют номинальную нагрузку и номинальное напряжение на выводах;

все синхронные машины имеют автоматическое регулирование напряжения и устройства для форсировки возбуждения;

электродвижущие силы всех источников во время КЗ совпадают по фазе;

расчетное напряжение каждой ступени трансформации выбирается

из следующего ряда: 0,23; 0,4; 0,525;

0,69; 1,0; 3,15; 6,3; 10,5; 13,8; 15,75;

18; 20; 24; 27; 37; 115; 154; 230; 340;

515; 770; 1175 кВ;

КЗ происходит в такой момент времени, при котором ударный ток КЗ оказывается наибольшим;

если вблии расчетной точки КЗ имеются конденсаторные батареи, то они должны быть учтены при определении ударного тока КЗ (1.4.13).

Вопрос. Какие сопротивления принимаются в качестве расчетных при расчете периодической составляющей тока КЗ для любого момента времени в электроустановках напряжением

индуктивные сопротивления электрических машин, силовых трансформаторов и

автотрансформаторов, токоограничивающих реакторов, воздушных и кабельных линий, а также токопроводов. В тех случаях, когда в расчетную схему входят ВЛ с проводами малых сечений или стальными проводами, а также протяженные КЛ с кабелями малых сечений, учитываются и их активные сопротивления, если при этом суммарное эквивалентное активное сопротивление расчетной схемы относительно точки КЗ составляет

больше 30 % суммарного эквивалентного индуктивного сопротивления (1.4.14).

Вопрос. Какие сопротивления учитываются при расчете токов КЗ в электроустановках напряжением до 1 кВ?

Ответ. Учитываются как индуктивные, так и активные сопротивления всех элементов цепи, а также переходные сопротивления контактных соединений. Допустимо пренебрегать сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10 %. В необходимых случаях учитывается

влияние на ток КЗ увеличения активного сопротивления кабелей вследствие их нагрева током КЗ (1.4.15).

Вопрос. Из какого условия при расчете токов КЗ допускается исходить при питании электрической сети напряжением до 1 кВ через понижающий трансформатор?

Ответ. Допускается исходить из условия, что напряжение, подведенное к обмотке высшего напряжения трансформатора, неизменно и равно номинальному напряжению питающей сети (1.4.16).

Проверка электрических

аппаратов, изоляторов, проводников и несущих конструкций на электродинамическую стойкость при коротких замыканиях

Вопрос. Как проверяются на действие тока КЗ элементы цепи, защищенные плавкими предохранителями или автоматическими выключателями с токоограничивающим действием?

Ответ. Проверяются на электродинамическую стойкость по наибольшему мгновенному значению

тока КЗ (исключение – кабели, а также электрические аппараты и проводники, защищенные предохранителями с плавкими вставками на номинальный ток до 60 А) (1.4.17).

Вопрос. Какая величина определяется при проверке электрических аппаратов и проводников на

электродинамическую стойкость при КЗ?

Ответ. Определяется значение величины, характеризующей их электродинамическую стойкость, и обеспечивается условие, при котором электродинамические силы при КЗ и вызываемые ими механические

нагрузки на электрические аппараты и проводники не превышают нормированных значений. Для электрических аппаратов нормируется предельный сквозной ток (наибольший пик и начальное действующее значение периодической составляющей) или ток электродинамической стойкости либо электродинамические усилия на головки изоляторов, а для электрических проводников – допустимые механические напряжения, зависящие от материала проводников (1.4.18).

Вопрос. Какие величины являются расчетными при проверке гибких проводников ВЛ и гибких

шин РУ на электродинамическую стойкость при КЗ?

Ответ. Расчетными являются максимальное тяжение в проводниках и максимальное отклонение (смещение) проводников. Последнее не должно превышать значений, при которых сближение проводников разных фаз опасно в отношении пробоя (1.4.18).

Вопрос. Как определяются механические напряжения при применении шин составных профилей (многополосные, из двух швеллеров и т. д.)?

Ответ. Определяются как арифметическая сумма напряжений от сил взаимодействия, возникающих

между проводниками разных фаз и между составными элементами проводников каждой фазы. Наибольше механические напряжения в материале жестких шин любого профиля и любой конструкции принимаются не более 0,7 временного сопротивления разрыву, нормируемого для материала шин (1.4.19).

Проверка электрических аппаратов и проводников на термическую стойкость при коротких замыканиях‌

Вопрос. Как производится проверка коммутационных электрических аппаратов на термическую стойкость при КЗ?

Ответ. Производится путем сравнения значения интеграла Джоуля, найденного при расчетных условиях КЗ, с его допустимым значением, которое зависит от указанного в технической документации изготовителя нормируемого тока термической стойкости и от соотношения между расчетной продолжительностью КЗ и предельно допустимым (нормируемым) временем воздействия нормированного тока термической стойкости (1.4.20).

Вопрос. При каких условиях обеспечивается термическая стойкость кабелей и проводников при КЗ?

Ответ. Обеспечивается, если температура их нагрева к моменту отключения КЗ не превышает следующих предельных по условию термической стойкости значений,

image

Вопрос. Как производится проверка кабелей на термическую стойкость в тех случаях, когда для этих кабелей известны значения односекундного тока термической стойкости (допустимого односекундного тока КЗ) I тер.доп1 ?

Ответ. Производится путем сравнения интеграла Джоуля В к с квадратом односекундного тока термической стойкости. Термическая стойкость кабеля обеспечивается, если выполняется условие:

image

Значения односекундного тока термической стойкости приведены в таблицах настоящей главы Правил (1.4.22).

Вопрос. Как рассматриваются расщепленные провода ВЛ при проверке на термическую стойкость

Ответ. Рассматриваются как провод суммарного сечения (1.4.24).

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях‌

Вопрос. Исходя из каких нормированных показателей проверяются коммутационные электрические аппараты для отключения цепей при КЗ?

Ответ. Проверяются исходя из

нормированных значений тока отключения, процентного содержания его апериодической составляющей, параметров восстановления напряжения, тока включения (начального действующего значения его периодической составляющей и его наибольшего пика), а также допустимых циклов коммутационных операций (1.4.25).

Вопрос. Как проверяются выключатели напряжением выше 1 кВ?

Ответ. Проверяются на коммутационную способность при КЗ:

на отключающую способность

при КЗ с учетом процентного содержания апериодической составляющей и параметров восстанавливающегося напряжения (для выключателей напряжением 110 кВ и выше);

на включающую способность при КЗ. При этом выключатели, установленные на стороне генераторного напряжения, необходимо проверять также на несинхронное включение в условиях противофазы (1.4.26).

Вопрос. Проверяются ли предохранители на отключающую способность при КЗ?

Ответ . Проверяются. При этом в качестве расчетного тока

принимается ожидаемое начальное действующее значение периодической составляющей тока КЗ, то есть ее значение без учета токоограничивающего действия предохранителей (1.4.27).

Вопрос. Как проверяются на коммутационную способность при КЗ выключатели нагрузки и короткозамыкатели?

Ответ. Проверяются по предельно допустимому току при включении на КЗ (1.4.28).

Вопрос. Требуют ли проверки на коммутационную способность при КЗ отделители и разъединители?

Ответ. Эти коммутационные аппараты проверки не требуют

Вопрос. Как проверяются на коммутационную способность при КЗ коммутационные электрические аппараты напряжением до 1 кВ (автоматические выключатели, предохранители и др.)?

Ответ. Проверяются в соответствии с расчетными условиями КЗ на отключающую и включающую способность (1.4.30).

Проверка кабелей на невозгораемость при коротких замыканиях‌

Вопрос. Какая точка в качестве

расчетной принимается при проверке кабелей на невозгораемость при КЗ?

Ответ. Принимается точка, находящаяся:

для одиночных кабелей, имеющих одинаковое сечение по длине, – в начале кабеля;

для одиночных кабелей со ступенчатым сечением по длине – в начале каждого участка нового сечения;

для двух и более параллельно включенных кабелей одной кабельной линии – в начале каждого кабеля (1.4.31).

Источник