Меню

Производная сопротивления по току



Производная сопротивления по току

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

ohms_law-01.jpg

Путем преобразования основной формулы можно найти и другие две величины:

ohms_law-02.jpg ohms_law-03.jpg

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

ohms_law-04.jpg

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

ohms_law-05.jpg

Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.

ohms_law-06.png

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

ohms_law-07.png

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

ohms_law-08.png

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

ohms_law-09.png

Этот круг также, как и треугольник можно назвать магическим.

Источник

2. Производная в электрическом сопротивлении

Для возникновения постоянного тока в металлических проводниках на свободные электроны должно действовать электрическое поле, способное обеспечить на концах проводника постоянную разность потенциалов. Каждый источник тока характеризуется электродвижущей силой .

R=0,9 Ом k — (nE(R — nr / k)) / (kR + nr / k) 2=0

k, m, Imax -? Imax = nE / (kR+mr) = / (+) = 10A

Делись добром 😉

  • 1. Производная в кинематике
  • 2. Производная в электрическом сопротивлении
  • 3. Производная в термодинамике
  • 4. Производная в электродинамике
  • 5. Производная в геометрической оптике
  • 6. Производная в механических колебаниях
  • 7. Производная в статике
  • 8. Производная в параллельном и последовательном соединениях цепей
  • 9. Производная в законе сохранения энергии
  • Список используемой литературы

Похожие главы из других работ:

2. Движение электрона в однородном электрическом поле

Рассмотрим движение электрона между плоскопараллельными электродами с расстоянием d между ними. Уравнение Лапласа, имеющее вид , после интегрирования сводится к уравнению где U — разность потенциалов между электродами.

2. Движение электрона в однородном электрическом поле

Рассмотрим движение электрона между плоскопараллельными электродами с расстоянием d между ними. Уравнение Лапласа, имеющее вид , после интегрирования сводится к уравнению где U — разность потенциалов между электродами.

6. Плазма в электрическом поле

Плазма, помещенная во внешнее электрическое поле, благодаря перемещению в этом поле заряженных частиц, способна проводить электрический ток. Дрейф электронов и ионов в электрическом поле.

2. Движение электрона в однородном электрическом поле

Рассмотрим движение электрона между плоскопараллельными электродами с расстоянием d между ними. Уравнение Лапласа, имеющее вид , после интегрирования сводится к уравнению где U — разность потенциалов между электродами.

1. Производная в кинематике

Кинематика: если изменение координаты задано уравнением вида x = x(t), то производная первого порядка от координаты по времени есть скорость, то есть (t) = x(t), а производная второго порядка от координаты по времени.

3. Производная в термодинамике

Термодинамические потенциалы — это функции параметров состояния макроскопической системы для описания термодинамического равновесия. Каждому термодинамическому потенциалу соответствует набор параметров состояния.

4. Производная в электродинамике

Электромагнитная индукция: производная от магнитного потока по времени, взятая с противоположным знаком (по правилу Ленца), позволяет определить мгновенное значение ЭДС.

5. Производная в геометрической оптике

Геометрическая оптика: используя принцип Ферма, можно вывести закон преломления света. Принцип Ферма в геометрической оптике — предписывает лучу света двигаться из начальной точки в конечную точку.

6. Производная в механических колебаниях

Механические колебания: энергетический подход (метод производной) позволяет вывести дифференциальные уравнения второго порядка, описывающие процессы в математическом и пружинном маятниках, затем получить формулы для периодов колебаний.

7. Производная в статике

Дано: Решение: Пусть АС = x, тогда СВ = (5 — x) f f Ответ: чтобы затратить на путь из O в B наименьшее время, надо высадиться в 4 км от A.

8. Производная в параллельном и последовательном соединениях цепей

Отдельные участки цепи (резисторы) можно соединять последовательно и параллельно. При последовательном соединении резисторы включаются один за другим, поэтому сила тока на всех участках цепи одинакова.

Читайте также:  Война токов в кино

9. Производная в законе сохранения энергии

Электрическая энергия превращается в другие виды энергии в соответствии с законом сохранения энергии. Мощность равна отношению работы, которую совершает электрический ток за определенное время.

НАКЛОН ЭНЕРГИТИЧЕСКИХ ЗОН В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Движение электрона во внешнем электрическом поле можно показать на картине зон. По горизонтальной оси отложим координату x электрона, а по вертикали — значение энергии электрона Э при движении его в периодическом поле частиц кристалла.

4. Ориентация в электрическом поле

Использование электрического поля часто позволяет произвести ориентацию наночастиц. И именно в случае полупроводниковых материалов метод особенно удобен, поскольку позволяет соединить два электрода полупроводниковой наночастицей.

2. Проводники и изоляторы в электрическом поле

В проводниках, помещенных в поле, наводятся (индуцируются) заряды противоположных знаков. Эти заряды располагаются на поверхности проводника таким образом, что напряженность электростатического поля внутри проводника равна нулю.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/18.8

§18. Переменный электрический ток

18.8 Колебательный контур.

18.8.1 Свободные колебания в контуре.

Img Slob-10-18-262.jpg

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов – конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 262) возможны даже свободные колебания, то есть без внешнего источника ЭДС. Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром.

Img Slob-10-18-263.jpg

Пусть конденсатор зарядили до заряда q и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 263: сначала ключ К замыкают в положении 1, при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2, после чего начинается разрядка конденсатора через катушку.

Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе \(

U_C = \frac\) равно ЭДС самоиндукции, возникающей в катушке \(

\varepsilon_ = -L \frac<\Delta I> <\Delta t>= LI’\) (здесь, «штрих» означает производную по времени). Таким образом, оказывается справедливым уравнение

В этом уравнении содержится две неизвестных функции – зависимости от времени заряда q(t) и силы тока I(t), поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q′(t) = I(t), поэтому производная от силы тока является второй производной от заряда

С учетом этого соотношения, перепишем уравнение (1) в виде

Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности \(x» = -\omega^2_0 x\))! Следовательно, решением этого уравнения будет гармоническая функция

q = A \cos (\omega_0 t + \varphi)\) (4)

с круговой частотой

Эта формула определяет собственную частоту колебательного контура. Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

T = 2 \pi \sqrt\) . (6)

Полученное выражение для периода колебаний называется формулой Дж. Томпсона.

Как обычно, для определения произвольных параметров A, φ в общем решении (4) необходимо задать начальные условия – заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 263, начальные условия имеют вид: при t = 0 q = q, I = 0, поэтому зависимость заряда конденсатора от времени будет описываться функцией

q = q_0 \cos \omega_0 t\) , (7)

а сила тока изменяется со временем по закону

I = — \omega_0 q_0 \sin \omega_0 t\) . (8)

Img Slob-10-18-264.jpg

Следует отметить, что приведенное рассмотрение колебательного контура является приближенным – любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки). Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

Это уравнение нам также знакомо – это уравнение затухающих колебаний \(x» = -\omega^2_0 x — \beta x’\), причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи \(

Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе.

Img Slob-10-18-265.jpg

На рис. 265 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) – угол отклонения маятника φ(t)» и «сила тока I(t) = q′(t) – скорость движения маятника V(t)».

Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог – маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

Читайте также:  Рассчитайте энергию магнитного поля катушки индуктивностью 0 5 гн если сила тока равна 10 а

18.8.2 Вынужденные колебания в контуре.

Как уже было сказано, в реальном колебательном контуре колебания будут затухающими [1] из-за неизбежного выделения теплоты на активном сопротивлении (которым мы пренебрегли). Поэтому для поддержания незатухающих колебаний в контуре необходим внешний источник энергии, иными словами нам необходимо рассмотреть вынужденные колебания. Один из возможных вариантов осуществления таких колебаний мы уже рассмотрели при изучении темы «Резонанс напряжений», где мы фактически изучили колебания в контуре, внутрь которого включен источник переменной ЭДС, который может считаться аналогом внешней вынуждающей силы.

Чтобы явным образом показать, что явление резонанса напряжений можно рассматривать как вынужденные колебания, перепишем использованное уравнение закона Ома

\varepsilon(t) = U_R(t) + U_C(t) + U_L(t)\) .

Для чего подставим в него явные выражения для напряжений на элементах цепи \(

U_L = -\varepsilon_ = LI’ = Lq»\) и ЭДС источника \(\varepsilon = U_0 \cos \omega t\):

Lq» + \frac + Rq’ = U_0 \cos \omega t\)

и перепишем его в виде

q» = -\frac<1> q — \frac q’ + \frac \cos \omega t\) ,

который полностью совпадает с уравнением вынужденных колебаний \(x» = -\omega^2_0 x — \beta x’ + f_0 \cos \omega t\).

Img Slob-10-18-266.jpg

Рассмотрим теперь возможность возникновения вынужденных колебаний в контуре, когда источник переменной ЭДС находится вне контура [2] , как показано на рис. 266. Расчет данной цепи проведем, используя метод векторных диаграмм (которая также представлена на рис. 266). В данном случае нас, прежде всего, будет интересовать сила тока в колебательном контуре.

Так как конденсатор и катушка индуктивности соединены параллельно, то мгновенные напряжения (UC, UL) на этих элементах одинаковы. Обозначим это напряжение U1. Построение диаграммы следует начинать с построения вектора, изображающего колебания этого напряжения. Далее построим векторы, изображающие колебания сил токов через конденсатор IC и катушку индуктивности IL — эти векторы перпендикулярны вектору напряжения U1 и противоположны друг другу. Как обычно, колебания токов через конденсатор и через катушку индуктивности происходят в противофазе. Колебательный контур соединен последовательно с резистором, поэтому сумма токов IC и IL (конечно, их мгновенных значений) равна силе тока через резистор IR. Вектор изображающий напряжение на резисторе UR, сонаправлен с вектором суммарного тока. Наконец сумма векторов напряжения на резисторе UR и напряжения на контуре U1 равна ЭДС источника.

Построенная векторная диаграмма позволяет рассчитать амплитудные значения токов и напряжений на элементах данной цепи. Выразим традиционным образом амплитудные значения сил токов через конденсатор и катушку через амплитуду напряжения на контуре

Амплитуда силы тока через резистор (и через источник) определяется из векторной диаграммы и равна

I_ = (I_ — I_) = U_ <10>\left( \omega C — \frac<1> <\omega L>\right)\) . (2)

Теперь можно записать выражение для амплитуды напряжения на резисторе

U_ = I_R = U_ <10>\left( \omega C — \frac<1> <\omega L>\right) R\) . (3)

Далее, глядя на диаграмму напряжений, запишем теорему Пифагора для вектора ЭДС источника ⎟ ⎟

U^2_0 = U^2_ + U^2_ <10>= U^2_ <10>\left( 1 + \left( \omega C — \frac<1> <\omega L>\right)^2 R^2 \right) = U^2_ <10>R^2 \left( \frac<1> + \left( \omega C — \frac<1> <\omega L>\right)^2 \right)\) , (4)

здесь U — амплитуда ЭДС источника.

Из этого уравнения легко определить напряжение на резисторе

Наконец, с помощью формул (1), (2), (3), запишем выражения для сил токов в рассматриваемой цепи

Проанализируем зависимость этих величин от частоты источника ЭДС. Во всех формулах под корнем имеется два положительных слагаемых, причем только второе зависит от частоты. При частоте

равной собственной частоте колебательного контура второе слагаемое под корнем обращается в ноль, поэтому можно ожидать, что вблизи этой частоты силы токов через конденсатор и катушку достигают максимального значения. Понятно, что максимумы функций IL0(ω) и IC0(ω) несколько смещены от частоты ω, потому, что частота источника ω присутствует и вне корня. Однако, если первое слагаемое под корнем (\(\frac<1>\)), мало, то сдвиг максимума от значения ω = ω будет незначительным. Отметим, также, что при \(

\omega = \omega_0 = \frac<1><\sqrt>\) амплитуды токов через конденсатор и катушку оказываются равными. Действительно, в этом случае

Img Slob-10-18-267.jpg

Но самое неожиданное, что при ω = ω сила тока через резистор обращается в нуль! Соответственно, напряжение на колебательном контуре становится равным ЭДС источника, что также следует и из полученных формул для токов в контуре. Схематические графики зависимостей [3] амплитуд токов от частоты источника показаны на рис.267. Понятно, что при ω → 0 и ω → ∞ сопротивление контура стремится к нуля и в этом случае сила тока через резистор стремится к своему предельному значению \(

Таким образом, мы показали, что в рассмотренной цепи при частоте источника стремящейся к собственной частоте контура амплитуда силы тока в контуре резко возрастает, наблюдается явление резонанса, следовательно, колебательный контур можно использовать для выделения колебаний требуемой частоты. Интересно, отметить, что острота пика возрастает с ростом сопротивления резистора, находящегося вне контура.

Читайте также:  В плоском воздушном конденсаторе не отключая его от источника тока

В заключение данного раздела, обсудим, почему при ω = ω сила тока во внешней для контура цепи обращается в нуль. Колебания токов через конденсатор IC и через катушку индуктивности происходят в противофазе IL, а в случае ω = ω амплитуды этих токов сравниваются, в результате чего формально и получается нулевое значение для суммарного тока. Фактически в этом случае электрический ток циркулирует в колебательном контуре, не выходя из него. Подчеркнем, что наш анализ проведен для установившегося режима колебаний – в переходном режиме ток через резистор (и через источник идет) обеспечивая контур энергией. Когда колебания установятся, подкачка энергии становится излишней, так как мы пренебрегли потерями энергии в контуре. Обратите внимание, что при ω = ω сила тока в контуре не зависит сопротивления внешнего резистора, а полностью определяется параметрами контура.

Вспомните, что вынужденные колебания механических систем обладают тем же свойством – при точном резонансе и при отсутствии сил сопротивления работа внешней силы также обращается в нуль.

Если же рассмотреть реальный контур, обладающий активным сопротивлением, то между током в контуре и напряжением на нем разность фаз будет отлична от нуля, поэтому энергия источника будет поступать в контур, компенсируя потери. В этом случае также будет отличен от нуля и ток во внешней цепи.

Источник

Производная сопротивления по току

Производная – одно из фундаментальных понятий математики, это основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке).

Еще в древности был решен ряд задач дифференциального исчисления. Архимед, например, разработал способ проведения касательной, применимый для кривых. Само понятие производной возникло в XVII веке в связи с необходимостью решения физических, механических, математических задач, в первую очередь, следующих двух: определение скорости прямолинейного неравномерного движения и построение касательной к произвольной плоской кривой. Первой проблемой занимался великий Исаак Ньютон, второй проблемой – не менее великий Го́тфрид Лейбниц. Независимо друг от друга И. Ньютон и Г. Лейбниц разработали аппарат нахождения производной, которым мы и пользуемся в настоящее время. Благодаря дифференциальному исчислению, был решен целый ряд задач теоретической механики, физики и астрономии. Используя методы дифференциального исчисления, ученые предсказали возвращение кометы Галлея, что было большим триумфом науки XVIII в. Основные понятия дифференциального исчисления долгое время не были должным образом обоснованы. Однако в начале XIX в. французский математик О. Коши дал строгое построение дифференциального исчисления на основе понятия предела.

В наши дни производная играет одну из самых главных ролей в науке и технике: с помощью дифференциального исчисления находят решение большинства задач в различных областях научного познания.

В своей работе мы бы хотели подробнее рассмотреть приложение производной в технике: принцип ее работы, значение. В дальнейшем мы рассмотрим применение производной на примере нескольких задач, касающихся и нашей специальности «Электроэнергетика и электротехника». Очень важно знать, что производная показывает скорость изменения функции, или какого-либо процесса, величины как по времени, так и по другим параметрам.

Так как в практических приложениях обычно интересует не только сама функция, но и скорость ее изменения, то производная, будучи характеристикой скорости изменения, функции, имеет самые широкие практические применения в вопросах физики, химии, геометрии и т.д. Так, например: сила тока есть производная Eqn162.wmf, где Δq – положительный электрический заряд, переносимый через сечение проводника за время Δt. Примеры задач, в которых используют производную в различных дисциплинах специальности «Электроэнергетика и электротехника».

Количество электричества, протекающее через проводник, начиная с момента времени t = 0, задается формулой Q = 3t2 – 3t + 4 Определить силу тока в конце 6-й секунды.

Для нахождения силы тока используем известные формулы. Сила тока есть производная количества электричества по времени: следовательно, нужно найти производную функции Q = 3t2 – 3t + 4 и вычислить ее значение при t = 6 c. Имеем I = Q′ = 6t – 3, откуда при t = 6 получим I = 6⋅6 – 3 = 33 (A).

Задача о мгновенной величине тока. Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t.

Пусть Δt – некоторый промежуток времени, Δq = q(t + Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt → 0.

Eqn163.wmf

При изучении механического смысла производной пользуемся механическим истолкованием производной: скорость движения материальной точки в данный момент времени равна производной пути по времени, т.е.

Eqn164.wmf

Ускорение движущегося тела представляет собой скорость изменения его скорости, т.е. Eqn165.wmfТочка движется по окружности радиуса 4 м по закону S = 4,5t3, где S – путь в метрах, t – время в секундах. Найдем модуль ускорения Eqn166.wmfточки в момент времени Т, когда Eqn389.wmfм/с.

Eqn167.wmf

По условию v = 6 м/с, значит, 13,5t2 = 6, t2 = 6/13,5,, t2 = 60/135, t2 = 4/9.

Eqn168.wmf

Eqn169.wmf

при t = T = 2/3 с; at = 27⋅2/3 = 18 м/с2.

Нормальное ускорение Eqn170.wmf

Так как v = 6 м/с, p = r = 4 м то an = 62/4 = 9 м/с2.

Модуль полного ускорения точки:

Eqn171.wmf

Eqn172.wmf

Умение дифференцировать позволяет исследовать различные функции. Используя задачи общетехнических и специальных дисциплин, мы формируем понимание глубокой общности в применении математического аппарата к широкому кругу разнообразных явлений природы

Мощность в переменном сопротивлении r2 определяется формулой P2 = IU – I2⋅r1, где r1 – const, v – const, Eqn173.wmf. Определить, при каком значении тока I получается наибольшее значение мощности P2.

Eqn174.wmf

Eqn175.wmfпри Eqn176.wmf

Eqn177.wmf–2r1

Источник