Меню

Принципиальная схема для измерения тока в лампе



Ламповый тестер — измерительный стенд


Измерительный стенд с ламповыми панельками и гнёздами,
включающий 3 источника питания и измерительные приборы плюс шнуры со штеккерами

Содержание / Contents

  • 1 Идея
  • 2 Что внутри?
  • 3 Попытка номер раз, со свистом и техническим перерывом
  • 4 Попытка номер два, победная
  • 5 Практическая реализация лампового тестера
  • 6 Идея контроля эмиссии лампы
  • 7 Налаживание и использование
  • 8 Литература:

Идея заиметь приличный ламповый тестер появилась у меня сравнительно давно, но двигался я в этом направлении медленно и печально, спотыкаясь по пути о собственную лень. Дополнительно замедляли меня препятствия в виде анализа попавшихся под горячую руку схем, часто противоречивых, размещённых на безбрежных просторах интернета и в книгах.

Последней каплей, переполнившей чашу моего терпения стал eBay, продемонстрировавший просто космические цены за такие приборы. Так, понравившийся мне, но бывший в употреблении Hickok TV-2C/U TV-2 TV2 Mutual Conductance Tube Tester стоит сегодня порядка 850 американских рублей плюс 250 за пересылку. А к нему ещё надо добавить сетевой транс на 110 Вольт , ватт эдак на 200, как не больше.

Рядышком, в том же eBay’e, я радостно заметил наш родной, 21-килограммовый и очень убедительный Kalibr L3-3 Russian, новый, который вышлют прямо из Украины, но ценник у него составил весомые 850 плюс пересылка 280, итого 1130 тех же зелёных, американских.

При анализе схемных решений заводских и любительских конструкций у меня часто не было большой уверенности в объективности показаний их красивых цветных «показометров» с результатом «хорошая» или «плохая».

Мне же хотелось лишь измерить анодные токи позволяющие объективно оценить эмиссию ламп, в границах погрешности моих измерительных приборов.

↑ Что внутри?

При ближайшем рассмотрении я обнаружил, что вожделенный агрегат есть ни что иное, как некоторое количество ламповых панелек под измеряемые лампы, 3 регулируемых источника питания, вольтметры-миллиамперметры для контроля токов-напряжений и замысловатая коммутация всего вышеперечисленного хозяйства.

Накальный и сеточный источники питания вопросов не вызывали, тем более, что в хозяйстве у меня уже были готовые заводские конструкции, но определённую заботу вызывал источник анодного напряжения на +250V. С него я и начал движение к заветной цели.

В начале, применив метод последовательного приближения, в бой двинулся разделительный транс для электробритв, 220/220V, 15W, встраиваемый под штукатурку, для ванной. Не долго думая я подпаял к его вторичке диодный мост с электролитом, позаимствованных из какого-то бывшего монитора. Потом включил в сеть.

И что мы поимели с гуся? Ясное дело, +310V: no: А мне надо 250.
Отматывать вторичку мне как-то не хотелось, и следующим шагом я извлёк из закромов старенький, но вполне рабочий тиристорный регулятор мощности. Скрутил ручку вниз и – вуаля +250 анодного есть.

↑ Попытка номер раз, со свистом и техническим перерывом

Для начала, конечно, неплохо, и решение в целом работоспособное, но для EL 34 мне надо хороших 100 анодных миллиампер (не считая 15 мА для второй сетки), а они получились как-то с трудом, я уже молчу о помехах от тиристорника на стоящий неподалёку на полке, и случайно включённый радиоприёмник.

Зато при тестировании схемы вылез новый косяк: как только 34-ка прогрелась, она вдруг возбудилась, и мирно певший приёмник вдруг засвистел и захрипел как простуженный соловей-разбойник. Анодный ток задрался вдвое, и напряжение конкретно просело под такой нагрузкой.

Бегом всё выключаю и думаю: что за бардак в моём хозяйстве? Ну да, мощи у анодного не хватает, что в данном случае как раз хорошо. И что очень хорошо — EL-ка моя отделалась лёгким испугом, в отличии от меня. А за что мне такое счастье? А потому что много проводов и куча паразитных ёмкостей монтажа.

Так как мне переменка моей лампы временно «до лампочки», я волевым решением закоротил 1-ю сетку через конденсатор на землю. Возбуд на меня, вероятно, обиделся, но тут же пропал.

Конечно, можно было бы смастерить высоковольтный анодный блок питания на биполярных или полевых транзисторах, но он тоже склонен к самовозбуждению, горит моментом, если коротнуть, да и стабилитронов на 250 Вольт у меня в закромах не оказалось.

После некоторых раздумий надумал я для установки анодного использовать ЛАТР, но вся беда в том, что я его так до сих пор не купил.

Не понравилась цена в 170 вечно-зелёных, да и размеры как-то излишне крупноватые. Плюс гальваническая связь с сетью. Тут у меня снова возник долгосрочный технический перерыв…

В конце концов всё вышло иначе, и значительно лучше. Как-то раз я удачно купил древний трансформатор с кучей отводов на вторичке. Он честно когда-то питал телевизор, а теперь, хоть и с родным переключателем, но остался не только бездомным, но и совершенно без корпуса. А вот и он, собственной персоной.

↑ Попытка номер два, победная

Вот таким-то образом (или подобием) и созрела у меня классическая анодная трансформаторная конструкция — простая и неубиваемая.

И вот каков общий итог: измерительный стенд с ламповыми панельками и гнёздами, включающий 3 источника питания и измерительные приборы плюс шнуры со штеккерами.

Для измерения возможных межэлектродных замыканий я дополнительно сваял пробник на неоновой лампочке (рисунок 1).

Им предполагается поочерёдное тестирование всех выводов лампы относительно катода, к которому подсоединяем массу. Потом тестируем относительно сетки и так далее, пока все электроды не закончатся: wink:
Этот тест делают на холодной, потом на прогретой лампе. Хотя тех же результатов можно достичь измерением межэлектродных сопротивлений обычным омметром.

В ходе испытаний мне показалось целесообразным подавать анодное напряжение последним, а отключать первым, хотя одновременная подача всех напряжений была мною протестирована и нареканий не вызвала.

Я не претендую на особую оригинальность решения поставленной задачи, но померять анодный ток, и, таким образом, определить разброс и остаточный ресурс ламп, которые я буду использовать в усилителе, для моих нужд оказалось вполне достаточным. При минимальных изменениях, таким тестером можно произвести измерения самых разнообразных ламп.

На рисунке 2 представлена блок-схема измерения тока анода в зависимости от напряжения сетки триода с дополнительной функцией контроля вакуума лампы.

В случае тетрода/пентода схема дополняется цепью 2-й сетки (рисунок 3).

Я приношу свои извинения за отсутствие цепи накала — sPlan 7 мне в пентодах накала не даёт: ireful:

Помимо контроля исправности, тестер позволяет снять анодно-сеточную характеристику ламп. Для этого необходимо подать на первую сетку ряд напряжений, получить соответствующие анодные токи и по точкам построить график. Тут желательно обходиться без излишнего фанатизма и учитывать максимально допустимую рассеивающую мощность анода (и второй сетки для тетродов-пентодов). Ориентир — график из справочника — на него и равняемся. А можно, например, замерить 3-4 анодных тока в рабочем диапазоне конкретной схемы и подобрать пары — квартеты с близкими параметрами.

Читайте также:  Аккумулятор постоянный оперативный ток

↑ Практическая реализация лампового тестера

Ламповые панельки распаяны на гнёзда, а к ним соединительными шнурами подсоединены блоки питания и измерительные приборы.

В качестве измерительных приборов я использовал имеющиеся у меня в наличии мультиметры, а накал контролируют встроенные в лабораторный блок питания цифровые вольтметр и амперметр.

Анод и 2-я сетка запитаны от трансформатора с переключаемой вторичной обмоткой, мостом и 2-мя электролитами. Грубая установка анодного напряжения осуществляется переключением его вторичной обмотки, а для точной установки служит потенциометр R5.

С2 в цепи первой сетки устраняет возможные возбуды лампы, размыканием кнопки SW1 контролируется вакуум — сеточная цепь становится высокоомной и при плохом вакууме в лампе анодный ток будет заметно расти. Кнопка SW2 служит для контроля отсутствия внутрилампового замыкания катода и подогревателя — в норме при её нажатии ток анода должен резко обнулиться.

↑ Идея контроля эмиссии лампы

Идея контроля эмиссии лампы незамысловата: в справочном листке на каждую лампу указан ток анода при заданных напряжениях анода и сетки. Эти напряжения (включая накальное) я выставляю, жду прогрева лампы и контролирую анодный ток. Ток анода по справочнику и есть 100% эмиссии лампы. Если измерение показало меньший ток — лампа поношена, а при значениях менее 40-50% лампа подлежит замене.

Приятной особенностью тестера я считаю ограничение броска тока через нить накала при включении из-за применения лабораторного блока питания с ограничением тока.

↑ Налаживание и использование

Особого налаживания тестер не потребовал, но я настоятельно рекомендую быть осторожными с анодным напряжением, визуализация которого решена на неонке HL2. Также необходима хорошая изоляция ручки резистора R5.

Учитывая, что меня пока интересовали только лампы ECC81 и EL 34, привожу их данные взятые на просторах интернета .

Тестер даёт дополнительную возможность судить об износе ламп по падению анодного тока при снижении напряжения накала. У хорошей лампы 10% снижение напряжения накала должно вызывать меньшее (в процентнтах) снижение тока анода при всех прочих равных условиях.

При этом известно, что 5% или даже 10% снижение напряжения накала способно значительно продлить ресурс ламп.
Позже, когда эмиссия лампы ослабнет, можно будет вернуть накал на исходную. Правда изготовители не рекомендуют комбинировать предельный ток анода и минимальное напряжение накала. Ну так я этого и не советовал.

А что скажет уважаемое сообщество по-этому поводу: будем снижать накальное напряжение или не будем?

↑ Литература:

Л.А. Дудник «Испытания электронных ламп»
И.Г. Бергельсон, Н.К. Дадерко, Н.В. Пароль, В.М. Петухов «Приёмно-усилительные лампы повyшенной надёжности»
Э.Л. Чефи «Теория электронных ламп»
А.Л. Булычёв, В.И. Галкин, В.А. Прохоренко «Справочник по электровакуумным приборам»

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Как измерить силу электрического тока в цепи?

В процессе эксплуатации различного оборудования возникает необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:

Пример подключения амперметра

Рис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.
Читайте также:  Если сопротивление элемента зависит от тока или приложенного напряжения

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:

Использование мультиметра для измерения постоянного тока

Рис. 2. Использование мультиметра для измерения постоянного тока

  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.

Использование клещей для измерения переменного тока

Рис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Измерение силы тока в цепи батарейки

Рис. 4. Измерение силы тока в цепи батарейки

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Измерение силы тока в цепи электродвигателя

Рис. 5. Измерение силы тока в цепи электродвигателя

Способы на видео


Источник

Схемы измерения тока

Почти каждый электронщик рано или поздно сталкивается с необходимостью измерять ток, например при проектировании лабораторного блока питания или зарядного устройства.

В этой статье мы рассмотрим наиболее популярные схемы их преимущества и недостатки.

Измерение тока в отрицательном полюсе нагрузки

Схема измерения тока в отрицательном полюсе нагрузки наиболее простая и широко распространенная. Данную схему можно встретить как в лабораторных блока питания, так и в схемах управления двигателями, схемах защит и пр.

Если не требуется высокая точность измерения тока, как правило, используется схема 1а, для более точного измерения тока, как правило, используется схема 1б.

Схема измерения тока

Схема измерения тока

В схеме 1б резистор R4 подключается к сигнальной аналоговой земле, резисторы R3 и R1 подключаются непосредственно к шунту. Сопротивление резисторов R1 и R3, R2 и R4 должно быть одинаковым.

  • простая реализация;
  • низкий уровень синфазного сигнала;
  • низкое выходное сопротивление;
  • широкий диапазон напряжений питания нагрузки;
  • низкая стоимость.

Недостаток у данной схемы один — токоизмерительный резистор (шунт) устанавливается в отрицательном полюсе нагрузки, что накладывает определенные ограничения.

Крутизна выходного сигнала схемы 1а определяется по формуле

(1) \begin<equation* data-lazy-src=

Схема измерения тока

Вариант 2б сложнее, но дает чуть более высокую точность, кроме того он может оказаться более удобным если в устройстве несколько измерительных каналов, в этом случае ОУ U1B формирует единое смещение на все каналы.

В схемах 2а и 2б резистор R5 необходимо подключать к источнику опорного напряжения, если он имеется.

Смещение выходного сигнала схемы 2а определяется по формуле

(3) \begin<equation* data-lazy-src=

Преимущества схемы 3а:

  • измерение тока в положительном полюсе нагрузки;
  • выходной сигнал от 0В.

Недостатки схемы 3а:

  • высокий уровень синфазного сигнала;
  • высокое выходное сопротивление.

Преимущества схемы 3б:

  • измерение тока в положительном полюсе нагрузки;
  • низкое выходное сопротивление.

Недостатки схемы 3б:

  • высокий уровень синфазного сигнала;
  • необходимость точного подбора резисторов;
  • необходимость смещения выходного сигнала при однополярном питании.

В схеме 3б аналогично схеме 1б, резисторы R1 и R3, R2 и R4 должны быть равны.

Крутизна выходного сигнала схемы 3а и 3б определяется по формуле

(5) \begin<equation* data-lazy-src=

Амперметр: назначение, схемы подключения, типы, характеристики

Определение

Васильев Дмитрий Петрович

Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.

Амперметр: назначение, схемы подключения, типы, характеристики

Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Схемы подключения амперметра

Амперметр: назначение, схемы подключения, типы, характеристики

Рисунок — Схема прямого включения амперметра

амперметр 5

Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии.

Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.

Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

  • со стрелочным указателем
  • со световым указателем;
  • с пишущим устройством;
  • электронные устройства.

По принципу действия амперметры разделяются

  1. Электромагнитные– предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.
  2. Магнитоэлектрические— предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.
  3. Термоэлектрическиеприборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара.

Васильев Дмитрий Петрович

Абрамян Евгений Павлович

Рассмотрим несколько амперметров разных производителей и разных типов:

АМ3Амперметры Ам-2 DigiTOP

  1. Количество входов 1
  2. Измеряемый переменный ток 1 …50 А
  3. Погрешность измерения 1%
  4. Дискретность индикации 0,1 А
  5. напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Орлов Анатолий Владимирович

АМ2Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Технические характеристики амперметра Э537

  1. Конечное значение диапазона измерений 0,5 А/1 А
  2. Класс точности 0,5
  3. Область нормальных частот (Гц) 45 — 100 Гц
  4. Область рабочих частот (Гц) 100 — 1500 Гц
  5. Габаритные размеры 140 х 195 х 105 мм

АМ1

Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

  1. Границы замеряемых токов от 0,01 Iн до 1,5 Iн;
  2. Диапазон частот по замеряемым токам от 45 до 850 Герц;
  3. Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;
  4. Напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;
  5. Потребляемая устройством мощность не больше чем 4 ВА;
  6. Размерные габариты 144x72x190 мм;
  7. Масса не больше чем 0,55 кг;
  8. Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.

Источник