Меню

Примеры метод напряжений для токов



Метод узловых (потенциалов) напряжений

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Читайте также:  Адаптер переменного тока toshiba

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник

Метод узловых напряжений

Дата публикации: 12 января 2015 .
Категория: Статьи.

В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения.

Рассмотрим сущность этого метода. В данной статье решение задач методом узлового напряжения рассмотрены на примерах.

На рисунке 1 изображена разветвленная электрическая цепь с двумя узловыми точками А и Б, между которыми включены четыре параллельные ветви. Три первые ветви имеют источники электродвижущих сил (ЭДС) (генераторы) с ЭДС E1, E2 и E3.

Рисунок 1. Метод узлового напряжения

Последовательно с генераторами в этих ветвях включены сопротивления r1, r2 и r3 (к ним могут быть отнесены и внутренние сопротивления самих генераторов). В последней ветви включено сопротивление r4. Положительные направления токов в каждой ветви выбраны от точки Б к точке А. Поскольку в первых трех ветвях направление тока совпадало с направлением ЭДС источников электрической энергии, то последние работают в режиме генераторов. Если напряжение между узловыми точками А и Б обозначить U, то ток в первой ветви:

аналогично для остальных ветвей:

Применяя для узловой точки А первый закон Кирхгофа, будем иметь:

Заменив токи их выражениями, последнее уравнение записываем так:

Мы получили формулу узлового напряжения.

В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей. В знаменателе формулы дана сумма проводимостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на рисунке 1, то она входит в формулу для узлового напряжения со знаком минус. В общем виде формулу для узлового напряжения можно записать так:

Применяя формулу для узлового напряжения, решим следующий пример.

Пример 1. Для цепи, представленной на рисунке 1, даны ЭДС генераторов E1 = 110 В, E2 = 115 В, E3 = 120 В; внутреннее сопротивление генераторов r01 = 0,2 Ом, r02 = 0,1 Ом, r03 = 0,3 Ом. Сопротивление ветвей r1 = 2,3 Ом, r2 = 4,9 Ом, r3 = 4,7 Ом, r4 = 5 Ом. Определить токи в ветвях.

Расчет цепей методом узловых напряжений начнем с определения проводимости каждой ветви:

Находим узловое напряжение:

Определяем токи в ветвях:

Знак минус у тока I4 показывает, что действительное направление тока обратно тому, которое показано на рисунке 1.
Рассмотрим работу двух генераторов параллельного возбуждения с одинаковыми ЭДС (E1 = E2) и одинаковыми внутренними сопротивлениями (r01 = r02). Схема включения генераторов показана на рисунке 1. Пусть E1 = E2 = 110 В, r01 = r02 = 0,2 Ом. Сопротивление потребителя r3 = 1 Ом. Определить мощность, развиваемую генераторами.

Читайте также:  Сколько алюминия выделится при электролизе за 20 мин если сила тока 4 а

Применяя формулу узлового напряжения, будем иметь:

Мощности, создаваемые генераторами:

Приведенный пример показывает, что при одинаковых ЭДС и одинаковых внутренних сопротивлениях генераторов мощности, отдаваемые каждым генератором в сеть, также равны.

Пусть теперь ЭДС второго генератора E2 стала равной 121 В.

Тогда узловое напряжение

Мощности, создаваемые генераторами:

Следовательно, при параллельной работе генераторов постоянного тока с одинаковым внутренним сопротивлением более загруженным окажется тот генератор, ЭДС которого больше.

Рассмотрим, наконец, случай, когда ЭДС параллельно работающих генераторов одинаковы, но внутренние сопротивления различны.

Пример 2. Дано: ЭДС генераторов E1 = E2 = 110 В, внутренние сопротивления генераторов r01 = 0,2 Ом, r02 = 0,25 Ом, сопротивление внешней части цепи r = 1 Ом. Определить токи генераторов.

Вычисляем узловое напряжение:

При параллельной работе генераторов постоянного тока с одинаковыми ЭДС, но с различными внутренними сопротивлениями более загруженным окажется тот генератор, который имеет меньшее внутреннее сопротивление.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник

1.2 Метод наложения

1.2 Метод наложения

Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.

Алгоритм метода наложения:

1) выбирают положительные направления токов в ветвях цепи;

2) находят частичные токи в ветвях, вызванные каждым источником по отдельности (схему рассчитывают столько раз, сколько источников действует в схеме);

3) токи в ветвях по методу наложения находят как алгебраическую сумму частичных токов (знак частичного тока при суммировании определяется по положительному направлению тока ветви).

Решение задач методом наложения

Задача 1.2.1 . В электрической цепи рис. 1.2.1 с тремя источниками энергии определить все токи в ветвях, воспользовавшись методом наложения.

1. Выполним расчет цепи при воздействии источника ЭДС E1, полагая E3 = 0, J = 0. Источники считаем идеальными, поэтому внутренние сопротивления ЭДС равны нулю, а источника тока – бесконечности. С учетом этого изобразим расчетную схему (рис. 1.2.2).

Определение токов в полученной схеме будем вести, пользуясь методом эквивалентных преобразований:

R ′ Э = R 5 + R 2 ⋅ ( R 3 + R 4 ) R 2 + ( R 3 + R 4 ) = 15 + 30 ⋅ ( 10 + 5 ) 30 + ( 10 + 5 ) = 25 О м ; I ′ 1 = E 1 R ′ Э = 150 25 = 6 A ; I ′ 5 = I ′ 1 = 6 A ; I ′ 2 = I ′ 1 ⋅ R 3 + R 4 R 2 + ( R 3 + R 4 ) = 6 ⋅ 10 + 5 30 + ( 10 + 5 ) = 6 A ; I ′ 3 = I ′ 1 ⋅ R 2 R 2 + ( R 3 + R 4 ) = 6 ⋅ 30 30 + ( 10 + 5 ) = 4 A ; I ′ 3 = I ′ 4 = 4 A .

2. Расчет электрической цепи при воздействии ЭДС источника Е3 выполним, полагая Е1 = 0, J = 0 (рис. 1.2.3).

В соответствии с рис. 1.2.3 имеем:

R ″ Э = R 3 + R 4 + R 2 ⋅ R 5 R 2 + R 5 = 10 + 5 + 30 ⋅ 15 30 + 15 = 25 О м ; I ″ 3 = E 3 R ″ Э = 50 25 = 2 A ; I ″ 4 = I ″ 3 = 2 A ; I ″ 2 = I ″ 4 ⋅ R 5 R 2 + R 5 = 2 ⋅ 15 15 + 30 = 0,66 A ; I ″ 5 = I ″ 4 ⋅ R 2 R 2 + R 5 = 2 ⋅ 30 15 + 30 = 1,33 A ; I ″ 1 = I ″ 5 = 1,33 A .

3. Расчет электрической цепи при действии источника тока выполним, полагая E1 = 0, Е2 = 0 (рис. 12.4).

В соответствии с рис. 1.2.4 имеем:

R ? Э = R 4 + R 2 ⋅ R 5 R 2 + R 5 = 5 + 30 ⋅ 15 30 + 15 = 15 О м .

Находим токи в параллельных ветвях:

I ? 3 = J ⋅ R ? Э R ? Э + R 3 = 15 ⋅ 15 15 + 10 = 9 A ; I ? 4 = J ⋅ R 3 R ? Э + R 3 = 15 ⋅ 10 15 + 10 = 6 A ; I ? 2 = I ? 4 ⋅ R 5 R 2 + R 5 = 6 ⋅ 15 15 + 30 = 2 A ; I ? 5 = I ? 4 ⋅ R 2 R 2 + R 5 = 6 ⋅ 30 15 + 30 = 4 A .

Ток I ? рассчитываем по первому закону Кирхгофа:

I ? 1 + I ? 5 − J = 0 ; I ? 1 = J − I ? 5 = 15 − 4 = 11 A .

Читайте также:  Задачи линейные электрические схемы постоянного тока

4. В соответствии с принятыми направлениями токов в исходной схеме определим их значения по методу наложения как алгебраическую сумму частичных токов всех промежуточных расчетных схем:

I 1 = I ′ 1 + I ″ 1 − I ? 1 = 6 + 1,33 − 11 = − 3,67 A ; I 2 = I ′ 2 − I ″ 2 − I ? 2 = 2 − 0,66 − 2 = − 0,66 A ; I 3 = − I ′ 3 − I ″ 3 + I ? 3 = − 4 − 2 + 9 = 3 A ; I 4 = I ′ 4 + I ″ 4 + I ? 4 = 4 + 2 + 6 = 12 A ; I 5 = I ′ 5 + I ″ 5 + I ? 5 = 6 + 1,33 + 4 = 11,33 A .

Правильность решения задачи проверяем по первому закону Кирхгофа:

− J + I 3 + I 4 = 0 ; − 15 + 3 + 12 = 0 ; − I 2 − I 4 + I 5 = 0 ; − ( − 0,66 ) − 12 + 11,33 = 0.

Токи I1 и I2 получились отрицательными, т.е. их истинное направление в схеме противоположно принятому положительному направлению.

Источник

Метод наложения токов. Пример решения

Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения . Этот метод основан на принципе наложения, который применяется только к линейным системам.

Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Порядок расчета

1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.

2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.

3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.

Пример решения методом наложения

1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.

2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами.

Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.

Найдем ток по закону Ома для полной цепи

Найдем напряжение на R 2345

Тогда ток I3 равен

Определим напряжение на R25

3. Составим частную схему со вторым источником ЭДС

Аналогичным образом вычислим все частичные токи от второй ЭДС

4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.

5. Проверим с правильность решения с помощью баланса мощностей.

Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.

Похожие публикации

  • Поиск 🔍
  • ТОЭ
    • Цепи постоянного тока
    • Цепи переменного тока
    • Методы анализа электрических цепей
    • Трехфазные электрические цепи
    • Переходные процессы
  • Электричество и магнетизм
  • Электрические машины
    • Трансформатор
    • Асинхронный двигатель
    • Асинхронные машины специального назначения
    • Двигатель постоянного тока
  • Электроника
    • Выпрямители
  • Электричество в быту
  • Электромагнитные устройства
  • Альтернативная энергетика
  • Заказать решение задачи
  • ТОЭ, электроника и электрические машины | electroandi.ru

Скидка по промокоду fr054-140151 — 8% !

Источник