Меню

Применение сети постоянного тока



Умные сети постоянного тока для производственных установок

Большинство производственных предприятий и сегодня работают на переменном токе. Тем не менее, в долгосрочной перспективе исследовательские группы из Фраунгоферского института инжиниринга и автоматизации IPA и Института интегрированных систем и технологий устройств (IISB) хотели бы, чтобы промышленное производство переключилось на работу на постоянном токе.

Умные сети постоянного тока для производственных установок

В рамках совместного исследовательского проекта DC-INDUSTRIE 2 эти команды объединили усилия с более чем 30 партнерами для разработки новых систем электроснабжения для промышленности. Идея заключается в том, чтобы соединить все заводские электрические системы с интеллектуальной сетью постоянного тока (Direct Current), чтобы сделать электроснабжение более энергоэффективным, стабильным и гибким.

Энергосберегающие альтернативы для снабжения производственного оборудования

С конца 19 века переменный ток является стандартным средством передачи и распределения электроэнергии. В Германии, например, переменный ток — это то, что выходит из электрической розетки. Однако, что касается промышленности, исследователи из Университета Фраунгофера хотели бы изменить это обстоятельство: «Есть много веских причин, по которым промышленность должна перейти с переменного на постоянный ток», — говорит Тимм Кульманн, научный сотрудник в IPA Фраунгофера в Штутгарте. Кульманн и его партнеры по проекту хотели бы добиться изменения парадигмы в промышленном энергоснабжении и, в долгосрочной перспективе, перевести целые заводские цеха от переменного тока к постоянному.

«Мы уже окружены устройствами постоянного тока», — объясняет он. «Компьютеры, смартфоны и светодиоды работают с постоянным током и поэтому нуждаются в адаптере для преобразования переменного тока из сети». Однако что касается источников питания, то ситуация также меняется. В то время как обычные электростанции, такие как угольные и атомные, вырабатывают переменный ток, локально установленные и возобновляемые источники энергии, такие как фотоэлектрические установки, или, если уж на то пошло, электрохимические системы хранения энергии — всегда подают только постоянный ток.

Умные сети постоянного тока для производственных установок

В рамках проекта DC-INDUSTRIE 2 исследователи из IPA Фраунгофера и IISB Фраунгофера совместно с более чем 30 партнерами разработали и опробовали концепцию интеллектуальной, экономичной и эффективной системы подачи постоянного тока в производственный цех. Проект финансируется Федеральным министерством экономики и энергетики Германии (BMWi) и рассчитан до конца 2022 года.

Предшествующий проект DC-INDUSTRIE уже дал основания для оптимизма. Здесь партнеры смогли продемонстрировать целесообразность местного регулирования энергопотока для сети постоянного тока на заводе. Кроме того, был продемонстрирован переход от напряжения переменного тока к напряжению постоянного тока для повышения эффективности в диапазоне от 5 до 10%, так как при использовании сети постоянного тока намного проще использовать рекуперативное торможение, рекуперативную энергию от частотно-регулируемых приводов. В общей сложности четыре испытательные системы, оснащенные компонентами постоянного тока различных производителей, прошли испытания.

Теперь, когда эта концепция показала свою работу для группы машин, задача состоит в том, чтобы реализовать ее для всего производственного цеха. «В последующем проекте DC-INDUSTRIE 2 мы надеемся еще больше повысить энергоэффективность и сократить выбросы CO2», — объясняет Кульман. «В то же время мы хотим сделать систему более гибкой, чтобы она могла все больше использовать климатически нейтральную технологию. Наличие локальной сети постоянного тока на заводе облегчает балансировку любых колебаний электроснабжения, вызванных погодными изменениями объема электроэнергии, вырабатываемой возобновляемыми источниками энергии, и, следовательно, все более частыми колебаниями сети».

Кроме того, большинство приводов в производственном оборудовании — это электродвигатели с регулируемой скоростью. Все они оснащены частотными преобразователями, которые работают на постоянном токе. Поэтому для питания электродвигателя переменным напряжением и частотой необходимо сначала исправить напряжение питания переменного тока. При непосредственном питании преобразователя частоты постоянным током эта ступень преобразования исключается, что позволяет избежать потерь при преобразовании энергии, а также упрощает рекуперацию энергии торможения. Аналогичным образом, процесс выпрямления подвергает сеть переменного тока высокой гармонической нагрузке, что, в свою очередь, требует применения продуманных и дорогостоящих мер фильтрации для обеспечения нормативного качества напряжения. При использовании сети постоянного тока такие меры больше не требуются.

Умные сети постоянного тока для производственных установок

Еще одним преимуществом является то, что распределение нагрузки между накопителями энергии, питанием от сети и возобновляемыми источниками энергии управляется локально на основе напряжения сети в качестве индикатора. Большое преимущество использования постоянного тока в производстве заключается в том, что вы можете подключить все электрические системы завода к одной «умной» сети постоянного тока», — говорит Кульман. «Это означает, что вы можете улучшить качество и доступность электроснабжения на вашем собственном заводе и тем самым повысить надежность производства».

В проекте DC-INDUSTRIE 2 Кульман и его команда отвечают за анализ требований компании, процесс конверсии и управление сетью. Научные сотрудники Fraunhofer IISB отвечают за оборудование, необходимое для преобразования в постоянный ток. Сюда входит поставка преобразователей постоянного тока и защитного оборудования, проверка сети на устойчивость малого/большого сигнала, а также локальное управление взаимосвязанными трансформаторными системами. «Мы создаем микросетевые топологии — т.е. кластеры управления — которые позволяют нам балансировать и координировать накопление, производство и потребление энергии на местном заводском уровне», — говорит Кульман. «Они также могут работать в автоматическом режиме».

Новая сетевая структура имеет один или несколько интерфейсов к распределительной сети переменного тока. Это обеспечивает производственное оборудование постоянным напряжением через активные или пассивные выпрямители. Каждый элемент электрооборудования — например, частотно-регулируемые приводы, осветительные и технологические приборы — напрямую питаются постоянным током и подключаются к общей сети постоянного напряжения, работающей в диапазоне напряжений ±10% от номинального номинального значения 650 вольт. Это позволяет осуществлять прямой обмен энергией между различными приводами, которые служат, например, для ускорения или замедления работы машин и шпинделей станков.

Такие компоненты, как тормозные резисторы, сжигающие избыточную энергию, больше не требуются. Именно дальнейшее развитие силовых полупроводниковых устройств позволило создать эти новые сетевые структуры. Это связано с тем, что наличие этих новых силовых устройств позволило существенно снизить высокую стоимость, которая в противном случае требовалась бы для покрытия компонентов коммутации постоянного тока. «Мы также достигаем экономии энергии от 5 до 10%, просто используя постоянный ток», — объясняет Кульман.

Читайте также:  Мультиметр как замерить ток аккумулятора

Дальнейшие испытания уже проводятся в тестовых залах и на заводе №56, производственном предприятии, управляемом партнером по проекту Daimler в Зиндельфингене (Штутгарт). Завод Daimler оснащен активными входными преобразователями (активными двунаправленными выпрямителями), которые подключаются непосредственно к электросети и подают постоянный ток на некоторые узлы оборудования завода. «Двунаправленный» означает, что вы также можете снабжать электроэнергией внешнюю сеть переменного тока, в качестве услуги, всякий раз, когда у вас есть избыточная генерирующая мощность, поэтому это не улица с односторонним движением», — говорит Кульман. «А это, в свою очередь, означает, что обычные потребители также выигрывают от перехода к новой энергетической экономике в области Industrie 4.0». опубликовано econet.ru по материалам techxplore.com

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Источник

Где и почему используется постоянный ток

Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно постоянный ток, представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Где и почему используется постоянный ток

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. Двигатели постоянного тока изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, — так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс — возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает аккумулятор.

Эскаватор

Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом — используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.

Квадроткоптер

Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.

Электролизная установка

Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым при осуществлении электролиза.

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути — постоянному току, существуют целые отрасли металлургии и химической промышленности.

Гальваническое покрытие

Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.

Сварка на постоянном токе

Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные сварочные инверторы выдают на электрод постоянное напряжение.

Мощная дуговая лампа

Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).

Аккумулятор автомобиля

Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.

Бесперебойный источник питания

А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров — тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и аварийное освещение — почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.

Подводная лодка

Подводная лодка — и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.

Мобильный телефон

И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

Читайте также:  Получение тока в электрофорной машине

Источник

Применение сети постоянного тока

Общеизвестным фактом является то, что сеть постоянного тока имеет ряд преимуществ перед сетью переменного тока, основные из которых:

— уменьшение потерь при передаче энергии;

— повышение уровня электробезопасности, так как минимальный порог напряжения при переменном токе равен 2В, при постоянном токе 8В;

— по ЛЭП сети постоянного тока, при отсутствии трансформаторов, можно передавать некоторые виды сигналов (таких как кабельное телевидение, телефонная связь и др.).

Но основным недостатком сети постоянного тока является невозможность трансформации напряжения, т.е. для того чтобы повысить или понизить многократное напряжение нужно сначала превратить его в переменную, а после трансформации вновь в постоянное. Этот недостаток, по мнению многих, пока преобладает над преимуществами.

Цель исследования

В последние 10-15 лет в связи с ростом количества нелинейных потребителей переменного тока напряжением до 1000 В и особенно однофазной нагрузки резко возросли потери электроэнергии при ее транспорте от источника генерации до потребителя. Существенный рост потерь происходит из-за сильного искажения формы тока, ассиметричного протекания рабочих токов в кабельных и воздушных линиях, в трансформаторах, во внутридомовых электрических сетях. Передача избыточной реактивной мощности также существенно снижает пропускную способность электрических линий и силовых трансформаторов.

Трехфазный ток по происхождению предназначен для промышленности и тяжелой индустрии, для передачи электроэнергии на дальние расстояния. Он, собственно, для этого и был изобретен. Применение постоянного тока для электроснабжения электроустановок зданий предлагается как один из альтернативных вариантов для электроснабжения сектора экономики с однофазной нагрузкой с целью существенного снижения потерь электроэнергии (по предварительным оценкам до 20%).

В основе данного предложения лежат следующие положения:

1. Схема электроснабжения на постоянном токе симметрирует однофазную нагрузку в трехфазной сети и силовых трансформаторах в результате применения в ней двенадцатипульсного выпрямителя. Наработка на отказ современной силовой электроники достаточно высокая, имеется опыт эксплуатации данного оборудования в электрофицированном транспорте и специальных объектах.

2. Постоянный ток по самой своей природе не имеет гармонических токов и реактивной составляющей электроэнергии. Это также снижает потери электроэнергии при ее передаче по линиям электропередачи, в трансформаторах, в сетях потребителя в целом до 20% .

3. Большинство техники, использующейся в быту и офисах, может работать на постоянном токе, так как в основе их работы лежит принцип выпрямления переменного тока и преобразование его в частотных преобразователях по структурам техники для применения или выполнения разных функций, например для регулирования скорости вращения двигателей, изменения звука, цвета и т.п. Кроме того, промышленностью выпускается оборудование, непосредственно работающее от постоянного тока.

4. Учет электроэнергии постоянного тока не имеет привнесенных погрешностей в отличие от переменного тока с искаженной формой.

5. Постоянный ток практически не создает в окружающей среде переменное электромагнитное поле, влияющие на физиологию человека, т.е. в электроустановках с постоянным током электромагнитная обстановка чистая и безопасная.

6. В качестве источника постоянного тока для электроснабжения жилых домов, кроме основного источника, можно использовать аккумуляторы и альтернативные источники электроэнергии. При этом нетрадиционные источники электроэнергии можно использовать напрямую без преобразования и синхронизации, что существенно упрощает и удешевляет их применение [1].

В настоящее время постоянный ток можно применять во внутренних и уличных сетях освещения [4].

Результаты исследования

Потери электроэнергии сегодня подсчитываются экономическим путем и не соотносятся с техническими причинами, порождающими эти потери. Повышение эффективности расходования энергоресурсов в основном связано с дальнейшим использованием энергосберегающей техники. В основе данного подхода вновь лежит экономический подход, когда счетчик электроэнергии показывает меньшую величину. Причина увеличения потерь в линиях, во внутридомовых сетях и трансформаторах остается неизменной, и, следовательно, использование энергоэффективной техники не решает проблему сокращения потерь, а наоборот приводит к их росту и искажению показаний приборов учета электроэнергии и измерительных трансформаторов.

На сегодняшний день нет исследований по потерям в силовых трансформаторах, связанных с асимметричным режимом их работы и протекании в них несинусоидальных токов. Также неизвестно, как растут потери электроэнергии при протекании в линиях электропередачи искаженного и ассимметричного тока нагрузки. Очевидным остается тот факт, что потери при таких режимах растут, количество генерируемой энергии лишь частично доходит до потребителя.

Переход энергетической системы сразу на постоянный ток экономически невозможен, так как для этого потребуется переоборудовать уже существующую систему с сетью переменного тока. Есть замену генераторов переменного тока на генераторы постоянного тока. Пока возможен вариант использования сети постоянного тока при автономном энергоснабжении.

При автономном бытовом электроснабжении с помощью систем генерации из возобновляемых источников энергии таких, как солнце, ветер и вода экономически эффективнее будет использовать сеть постоянного тока [5]. Основные ее преимущества в некоторых системах генерации возобновляемыми источниками энергии:

— при применении солнечной электрической системы, генерируется постоянный ток, не требуется использование инверторов, что уже уменьшает потери почти на 20%;

— применяя ветровые электрические системы, генерируется переменный ток, но возможен вариант генерации постоянного тока. При отсутствии ветра сеть питают аккумуляторы, это тот же постоянный ток, стоимость батарей занимает почти половину стоимости всей системы, то есть мы избавимся инвертора, чем уменьшим потери и тем самым количество аккумуляторных батарей для системы;

— при использовании мини-гидроэлектростанции система может генерировать как переменный, так и постоянный ток.

Главным преимуществом сети постоянного тока является возможность изготовления и использования бытовых приборов постоянного тока. При этом потребление электроэнергии можно снизить, так как сейчас во многих бытовых приборах, которые питаются от сети переменного тока, напряжение понижают и выпрямляют для импульсного трансформатора. Поэтому за счет использования низкого напряжения постоянного тока, 24, 42, 126, 220 можно уменьшить расход материалов и потери на преобразование за счет исключения необходимости использования некоторых деталей. Примером является телевизор, компьютер, освещение светодиодами (это самый экономный, безопасный и надежный вид освещения), телефоны и др. Почти все бытовые приборы могут работать в сети постоянного тока:

Читайте также:  При помощи реостата равномерно увеличивают силу тока в катушке со скоростью 100

— холодильник — термоэлектрические холодильники (при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте их соединения выделяется или поглощается некоторое количество теплоты, пропорциональна силе тока), они имеют высокую надежность за счет отсутствия движущихся частей;

— обогреватели — резистивные, инфракрасные (обогрев инфракрасными лучами);

— отопление — использовать гелиосистемы или тепловые насосы во время монтажа систем отопления (что уменьшит потребление электроэнергии по сравнению с другими видами энергии);

— вентиляция — уже сейчас некоторые производители устанавливают преобразователи для двигателей вентилятора;

— стиральные машины — некоторые производители применяют только коллекторные двигатели, которые могут работать при постоянном токе и имеют большой пусковой момент, не требует предварительного слива воды.

Для уменьшения затрат установки системы при наличии более одного дома вблизи друг от друга, целесообразнее будет использовать одну общую систему генерации.

Выводы

Приведены преимущества только трех систем генерации с возобновляемыми источниками энергии, которые экономически эффективно использовать в сети постоянного тока, а подобных систем генерации много. Эти системы потребляют меньшее количество энергии, некоторые из них только за счет уменьшения величины потерь. Таким образом, если строить энергосистему с сетью постоянного тока в масштабе страны, то, кроме вышеперечисленной экономии, будет еще и уменьшения потерь при передаче электроэнергии, повысит целесообразность внедрения таких сетей.

Постоянный ток, поступающий от солнечных батарей и аккумуляторов, должен быть приведен к напряжению нужной, а затем преобразован в переменный. Преобразование в переменный ток выполняется, так называемыми, инверторами. В отличие от бытовых инверторов, дающих лишь приближение к синусоидальному напряжению, профессиональные модели, обслуживающие целое здание или даже комплекс строений, должны давать «чистую» синусоиду, иначе возникнут проблемы с электромагнитной совместимостью оборудования и много других проблем. Соответственно, профессиональные инверторы — дорогостоящие агрегаты, исключение которых из схемы энергоснабжения при использовании постоянного тока позволит снизить общую стоимость системы, а заодно и повысить энергоэффективность за счет удаления как минимум одной ступени преобразования. Например, профессиональный инвертор, способный длительное время выдерживать нагрузку до 12 кВт стоит порядка 100 000 руб. (здесь и далее цены приводятся по состоянию на сентябрь 2015 г.) На самом деле, при переходе на постоянный ток удаляется и другая ступень преобразования, а, именно, выпрямитель в светодиодном светильнике. В том случае, если светодиодный светильник работает в помещении, где постоянно находятся люди, тем более, где они выполняют работу, требующую сколь-нибудь значительного зрительного напряжения, надо не только выпрямить переменный ток, но и сгладить пульсации. Для этого используются электролитические конденсаторы большой емкости — дорогостоящие и при этом весьма капризные устройства. Как правило, основной причиной выхода из строя светильников является преждевременный отказ драйвера, который происходит, когда светодиоды еще не полностью выработали свой ресурс. Зачастую этот отказ связан со сглаживающими конденсаторами. Причем электролитические конденсаторы имеют неприятную особенность деградировать от времени, даже если светильник не работает, а лежит на складе.

Разница между дешевыми и дорогими светильниками заключается главным образом в уровне пульсации и надежности драйвера. При питании от постоянного тока конструкция драйвера становится более простой и надежной, в ней не присутствуют сглаживающие конденсаторы. Поэтому светильник за 1200 руб. будет работать практически так же хорошо, как и за 2200 руб. (столько стоит светильник с надежным драйвером без пульсации от известного российского бренда) Мало того, за счет уменьшения числа деталей вполне реально дополнительно снизить цену на качественный светильник.

В итоге, переход на постоянный ток позволит снизить цены на светодиодные светильники примерно в 2 раза и добиться срока службы всего светильника, равного сроку службы установленных в нем светодиодов, то есть 50 000 ч.

Источник

Что такое постоянный ток

Постоянный ток, в отличие от переменного тока не изменяется со временем ни по силе, ни по направлению движения. Он возникает в результате воздействия постоянного напряжения и существует исключительно в замкнутой цепи. Во всех участках не разветвленной цепи имеет одинаковую силу. Самый простой его источник – гальванический элемент. Полярность такого химического источника не может самопроизвольно изменяться. К простым источникам относятся также и аккумуляторы.

Применение постоянного тока

Широкое распространение постоянный ток получил в различных областях техники. Практически, все электронные схемы, используют в- своей работе для питания постоянный электрический ток. Переменный, при его практическом использовании, используется, в основном, на этапе передачи от генератора до потребителя. В электронном оборудовании, работающем от сети переменного тока, для его преобразования в постоянный применяют выпрямитель.

С целью уменьшения колебаний напряжения используют сглаживающие фильтры (например, для питания компьютерной техники). С этой же целью используют для защиты аппаратуры стабилизаторы напряжения или стабилизаторы тока. В- некоторых случаях, наоборот, он преобразуют в переменный специальными преобразователями – инверторами.

Таким образом, мы видим, что своевременная стабилизация напряжения напрямую влияет на качество работы и надежность электронной аппаратуры, особенно цифровой. Вся электронная аппаратура, использующая питание сети 220В, имеет внутренние блоки питания. Эти блоки служат для преобразования тока, получаемого из сети, в постоянный питания внутренних схем. Одновременно происходит понижение напряжения, так как во внутренних схемах используется напряжение 3 – 12В постоянного.

Что такое постоянный ток

Устройства, работающие от обычных батареек или аккумуляторов, могут быть без блока питания и, при необходимости, работают от внешних выпрямителей

Сети постоянного тока

В современных энергетических системах наряду с сетями переменного тока имеются и сети постоянного. Эти сети действуют в следующих областях:

  • Тяговые электродвигатели, применяемые на различном транспорте, на флоте. На железнодорожном транспорте и в настоящее время сети делятся на постоянного и переменного тока;
  • Локальные электросети, не дающие постоянный ток в общую энергетическую систему: электролитическое рафинирование металлов – производство алюминия, меди, никеля, гальванопластика, низковольтная аппаратура – микропроцессоры, связь, сигнализация, игрушки;
  • Высоковольтные линии: применяются при передаче больших мощностей на значительные расстояния, в основном, по подводным кабелям.
  • Вставки постоянного тока, связывающие между собой не синхронизированные сети

Источник