Меню

Преобразователи напряжения ток 10а



Преобразователь тока в напряжение на ОУ

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В радиотехнике часто возникает необходимость в преобразователях. Многие источники сигнала имеют токовый выход. К таким источникам относятся ЦАПы, фоторезисторы, фототранзисторы и др… Для последующих манипуляций с сигналом необходимо преобразовывать его в напряжение. Рассмотрим проверенный временем преобразователь тока в напряжение на ОУ с разными источниками сигнала.

  1. Преобразователь тока в напряжение
  2. Схема преобразователя ток-напряжение на ОУ
  3. Преобразователь для заземленного источника
  4. Преобразователь тока в напряжение для незаземленного источника
  5. Заключение

Преобразователь тока в напряжение

Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.

Так же его называют усилитель — преобразователь сопротивления. Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Вся магия преобразования происходит по закону дедушки Ома. Ток iвх протекая через резистор R вызывает на нем падение напряжение Uвых. Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:

Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.

Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.

В случае же ЦАПа, особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье Резистор для ЦАП с токовым выходом. Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.

Схема преобразователя ток-напряжение на ОУ

Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Ток сигнала iвх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.

Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки RН напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:

Преобразователь для заземленного источника

Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:

Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)

На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.

Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз) резистор желателен из-за неидеальности операционных усилителей.

Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает) ток, под действием внешнего источника света, положительной шины питания.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Заключение

Рассмотренные схемы используются повсеместно. Они прекрасно подходят для токовых источников с плавным изменением сигнала. Для ЦАПов же предпочтительнее использование резистора. О том, чем это лучше, и как правильно согласовать резистор со следующим каскадом читайте в статье Резистор для ЦАП с токовым выходом .

Материал подготовлен исключительно для сайта AudioGeek.ru

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Здравствуйте, Андрей!
Спасибо за полезную информацию!
Хочу воспользоваться Вашим советом, однако меня гложет одно сомнение. Насколько правильно использовать преобразователь ток-напряжения (ТИ) для трансформатора тока (ТТ)? ТТ требуется обязательно сопротивление нагрузки. В теории ТИ обладает нулевым входным сопротивлением. Или я заблуждаюсь? Не корите строго в схемотехнике я не силен. 🙂

Здравствуйте Владимир!
Честно говоря с трансформаторами тока не работал, но слегка по-гуглил.
Во первых — у Вас переменный или постоянный ток?
Во вторых да, преобразователь ток-напряжение в идеале имеет нулевое входное сопротивление. Для преобразования можете воспользоваться резистором, а уже с него снимать напряжение тем же неинвертирующим усилителем на ОУ, такое было показано в статье Резистор для ЦАП с токовым выходом.
Если у вас переменный ток, то для измерений требуется его сначала выпрямить, для этого можно воспользоваться активным выпрямителем.

Андрей, спасибо за ответ!
Я перечитал, и взял на вооружение все Ваши подходящие мне статьи.
Кроме того просмотрел, И Хоровица с нашим дорогим Хиллом :), и Титце с Шенком тоже, и Достала, который Иржи, а также Пейна. Складывается впечатление, что противоречий нет. Но и уверенности тоже нет. Сказывается отсутствие знаний в теории цепей и практической схемотехнике. Видно надо макетировать и пробовать. Как говорят теоретики — практика критерий истины. 🙂
Ток конечно же переменный.
Изначально я так и хотел, нагрузить вторичку сопротивлением (ТТ требует обязательную нагрузку), но потом наткнулся на статью, где утверждалось, что все современные измерители с ТТ используют преобразователи ток-напряжение, ну и загорелся!
Еще раз спасибо!

Андрей! Доброе время суток! Хочу сказать пару слов по теме — схема с n-p-n фототранзистором (Ik=1…2.ma, Vcc= +/- 12V) вполне работоспособна. Эксперименты по её применению в ИК-датчике показали следующее:
частотный диапазон 0-3,0 кГц ( выше просто не проверял, т.к. не надо)
неравномерность АЧХ в полосе 20 Гц-3,0 кГц — менее 0,5 дБ
коэфф. нелинейных искажений — менее 3% (может и меньше, надо уточнить с генератором тестового сигнала, а я проверял на вибростенде, у которого своих искажений хватает)
амплитуда — 3,0 В и более.
ИМС ОУ проверялись разные — от LM358 до малошумящих
Тема интересная.
Удачи

Здравствуйте! спасибо за столь подробный комментарий!
Рад что у Вас получились интересные результаты. Вообще схемку я позаимствовал У Хоровиц и Хилла. Сам когда-то ее собирал) Правда так глубоко не копал ее характеристики, ибо не требовалось)
Извиняюсь, что так долго отвечал, готовился к защите магистерской диссертации)

Источник

Выбор инвертора (преобразователя напряжения)

Выбор инвертора (преобразователя напряжения)Любительский

Аватар пользователя

Инвертором называют устройство, преобразующее постоянный ток в переменный, меняя при этом величину напряжения.

Инверторы, преобразующие 12 В или 24 В в 220 В, становятся все востребованнее – ведь сфер применения этим приборам много:

  • автопутешествия – в дороге через инвертор к автомобильному аккумулятору можно подключить необходимые приборы – холодильник, насос, электроинструмент;
  • использование в системах альтернативных источников энергии — к примеру, для потребления электричества, выработанного солнечными батареями;
  • организация резервного источника электроснабжения для домашних нужд. Простая связка автомобильный аккумулятор + инвертор при неожиданном отключении электричества как минимум поддержит освещение в доме. Такая схема, кстати, имеет очень большое распространение в соседнем Китае – там аккумуляторы с инверторами нередкие гости в домах;
  • на даче или при строительстве загородного дома, кода линия электричества еще не подведена, или ее в принципе нет, а бензогенератор ставить не хочется.

И это еще не все ситуации, когда инвертор облегчит вам жизнь.

Если вы уже задумались о покупке такого прибора, то следует разобраться – какие виды преобразователей напряжения бывают, и как подобрать оптимальный вариант под ваши нужды, не переплачивая лишних денег.

Первое, с чем нужно определиться – зачем вам нужен инвертор?

Самые простые, миниатюрные и маломощные инверторы, подключаемые в машинах к прикуривателю, организуют «обычную розетку» для подключения прибора небольшой мощности – зарядки телефона или ноутбука, подзарядки фонарика. При этом не нужно будет возить с собой ворох проводов, для питания каждого из устройств от прикуривателя. Вы просто будете подключать родной провод в организованную розетку.

Читайте также:  Корпус для трансформатора тока

Через автомобильный прикуриватель не стоит подключать инвертор с нагрузкой выше 150 Вт – можно вывести из строя всю электропроводку автомобиля и нарваться на дорогостоящий ремонт. Потребителей выше 150 Вт следует подключать только напрямую к аккумулятору, через клеммы.

К таким преобразователям можно подключить уже более мощные приборы. Для уменьшения потерь КПД и надежности, подключение мощных инверторов к клеммам аккумулятора следует проводить не «крокодильчиками», которыми иногда комплектуется прибор, а медными клеммами, под винт. Сечение и длину проводов подключения выбирайте исходя из расчета потерь тока, а не по нагреву.

Следующее, на что стоит обратить внимание – форма тока, которую выдает инвертор. Это важный момент, так как он определяет, какое оборудование вы сможете подключить к инвертору. Есть два вида:

  • чистая синусоида – токовая кривая в виде ровной синусоиды. К такому инвертору можно подключать любые приборы, без опасений за их сохранность. Недостатком этого типа можно назвать только высокую стоимость – для получения чистого синуса требуется сложная электрическая схема.

  • модифицированная синусоида – вид токовой кривой, напоминающей синусоиду, но на деле являющейся ступенчатой характеристикой. К инвертору с модифицированным синусом не стоит подключать: асинхронные двигатели, компрессоры, чувствительные к помехам устройства. Приборы даже если и будут работать при таком питании, но с заметным ухудшением качества – звуковая аппаратура будет «фонить», насосы и двигатели сильно греться и шуметь. Самое меньшее зло в этой ситуации будет – уменьшение КПД, большее (при постоянной эксплуатации) – их скорый выход из строя, из-за тяжелого режима работы.

Но это не значит, что инвертор с модифицированным синусом использовать не рекомендуется. Он не окажет негативного влияния на качество работы ламп освещения, нагревательных приборов, оборудования с импульсными блоками питания (ноутбуки, телефоны), большинство телевизоров, электроинструмент с коллекторными двигателями (лобзики, дрели). Однако для обеспечения работы электроинструмента от инвертора лучше докупить устройство плавного пуска – чтобы пусковые токи не выходили за пределы допустимого.

При выборе инвертора обязательно нужно продумать, что вы хотите к нему подключать, и уже после этого решать – готовы вы платить за устройство с чистым синусом, или оптимальной покупкой для вас будет менее дорогое устройство с модифицированной синусоидой.

Все преобразователи напряжения обладают двумя характеристиками по мощности –постоянная мощность и пиковая мощность прибора. Нужно различать эти два параметра.

Постоянная мощность говорит о том, с какой нагрузкой сможет справляться инвертор в длительном режиме работы. В зависимости от потребностей, можно подобрать устройство как невысокой мощности от 60 до 1000 Вт, так и серьёзный агрегат с мощностью от 1000 Вт и выше, позволяющий организовать мини-электростанцию на выезде.

Постоянную мощность необходимо выбирать таким образом, чтобы оставался запас, хотя бы 20 % – ни одно устройство не будет работать хорошо на пределе своих возможностей, поэтому не экономьте на этом моменте. Также не следует забывать о возможностях аккумулятора, ведь его емкость ограничена.

Пиковая мощность определяет предельную кратковременную нагрузку – от 150 до 10000 Вт. К примеру, пусковой ток холодильника, подключаемого к инвертору, как правило, в несколько раз выше номинальной мощности – это следует учитывать. Если вы не рассчитаете мощность инвертора для покрытия пускового тока, то прибор-потребитель не сможет начать работать.

Если инвертор будет работать от аккумулятора не снятого, а работающего от генератора машины, помните, что ток нагрузки инвертора не должен превышать выдаваемого тока генератора.

На деле подбор подходящей мощности не так уж и сложен, рассмотрим пример.

Подключаемая нагрузка: холодильник (15 Вт), зарядка ноутбука (80 Вт), зарядка телефона (60 Вт). Здесь, конечно, следует учесть пусковой ток холодильника, превышающий номинальный в 3-4 раза. Получится, что в момент включения холодильник потребит (в худшем случае) до 60 Вт. В итоге имеем, что для означенной нагрузки нам хватит инвертора в 300 Вт.

Конечно, не все инверторы работают с высоким КПД, при расчете мощности следует плюсовать к нагрузке еще возможные потери в кабеле, в зажимах и прочее – но вцелом видно, что для обеспечения минимально необходимых нужд сильно мощный инвертор не нужен. В большинстве случаев для комфортного туризма хватит прибора мощностью до 600 – 700 Вт, то есть с суммарным током нагрузки около 50 А, что гораздо меньше тока стандартного генератора на современных машинах.

Другой расклад получается, если вы захотите использовать инвертор для подключения электроинструмента – лобзиков, дрелей и др. Здесь уже целесообразно использование мощных инверторов – от 1 кВт и выше.

Преобразователи напряжения бывают различного уровня входного напряжения. Устройства до 2,5-3 кВт как правило работают от входного напряжения 12 В. Более мощные устройства, рассчитанные на выдачу нескольких киловатт, выпускаются на более высокие уровни напряжения – 24 и 48 В. Поэтому, выбирая инвертор, обратите внимание не только на мощность, но и на параметры входного напряжения:

  • максимальное входное напряжение от 12 до 30 В
  • минимальное входное напряжение от 9,2 до 24 В

Практически все инверторы оборудованы теми или иными видами защит, которые следят за параметрами работы, и помогают избежать критических ситуаций, действуя на отключение или звуковой сигнал:

  • защита от избыточного напряжения на входе
  • защита от короткого замыкания
  • защита от неправильного подключения
  • защита от низкого напряжения на входе (в том числе помогает избежать переразряда аккумулятора, отключая нагрузку при падении напряжения до заданной величины)
  • защита от перегрева
  • защита от перегрузки

Для подключения нагрузки у преобразователей напряжения могут быть предусмотрены различные выходы:

Устройство с необходимыми вам типами и количеством выходов выбирайте исходя из того, какое оборудование нужно подключить. Выходы постоянного тока с уровнем напряжения 12 – 28 В понадобятся для подключения специального автооборудования: магнитол, ТВ-приемников, подогрева сидений, автохолодильников). USB-порты пригодятся для подзарядки мобильных устройств. Выходы в виде розеток потребуются для «универсального» подключения электроприборов. При этом типы розеток могут быть различны:

Также встречаются преобразователи напряжения, не рассчитанные на подключение потребителя 220 В, и преобразующие 24 В в 12 В и 12 В в 24 В – у таких устройств розеток нет.

Длина кабеля инвертора может достигать 100 м. С одной стороны, кабель длиной 10-100 м — это удобно: обеспечивает мобильность устройства, его можно переносить, не трогая аккумулятор. С другой стороны, не стоит забывать, что каждый кабель является слабым звеном электросистемы, так как на нем происходят потери мощности. Поэтому не стоит гнаться за длиной кабеля. Лучше обратите внимание на его качество – чем толще кабель, тем выше его сечение и меньше потерь электричества он будет создавать. Чем гибче кабель – тем качественнее его материалы и меньше вероятность повреждения от загибов.

Инверторы выпускаются в корпусах из различных материалов:

  • алюминий
  • алюминий и пластик
  • металл
  • металл и пластик
  • пластик

С точки зрения пассивного охлаждения лучше всего инверторы в алюминиевом корпусе – он обеспечивает максимальный отвод тепла. Но для инверторов с активным охлаждением (вентилятором в корпусе), где проблема отвода тепла решена, лучшим вариантом будет корпус из стали – как более прочный. Комбинированные корпуса из алюминия+пластик или стали+пластик тоже хороший вариант, а вот корпус из одного пластика допустим только для маломощного прибора.

Устанавливать любой инвертор в машине необходимо так, чтобы обеспечивалось его охлаждение, то есть он не должен быть закрыт. Засунуть работающий инвертор в бардачок или в кейс – не лучший вариант.

В недорогом ценовом сегменте до 1400 рублей вы найдете инверторы небольшой мощности – до 200 Вт, с модифицированной синусоидой, рассчитанные на подключение к прикуривателю и питание мелких приборов.

В среднем ценовом сегменте от 1400 до 5000 рублей уже встретятся приборы помощнее – до 800 Вт, рассчитанные по большей части на подключение к аккумулятору, но все с той же модифицированной синусоидой.

В дорогом ценовом сегменте от 5000 и выше можно найти приборы как с чистым синусом, так и с модифицированным, но высокой мощности – до 5000 Вт.

Можно подвести итог: при выборе инвертора, не гонитесь за высокой мощностью прибора, т.к. все остальное оборудование может не вывезти такую нагрузку. Лучше обратите внимание на качество сборки, комплектующие и материалы. Стоить хороший качественный прибор даже средней мощности не будет дешево. Для некоторых видов оборудования подойдет инвертор только с чистым синусом на выходе. Не поленитесь рассчитать нагрузку перед подключением – и у вас не будет неприятных сюрпризов в последствии.

Источник

Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

Читайте также:  Коэффициент мощности электродвигателя постоянного тока

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Схема 1

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Беперебойник

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Схема 3

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Регулируемый преобразотель

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

инверторный преобразователь

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Читайте также:  Порядок действий при поражении электрическим током дома

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник

Преобразователи напряжения

Каталог преобразователей напряжения

Артикул: 21.3759 (5А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное)
Ток нагрузки: 3 A -номинальный, 5 А — импульсный.
Максимальная выходная мощность — 40 Вт
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 60х145х50 мм, вес 350 гр.

Артикул: 21.3759-02 (15А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное)
Ток нагрузки: 9 A — номинальный, 15 А — импульсный.
Максимальная выходная мощность — 120 Вт.
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 140х145х50 мм, вес 650 гр.

Артикул: 21.3759-01 (10А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное)
Ток нагрузки: 6 A -номинальный, 10 А — импульсный.
Максимальная выходная мощность — 80 Вт
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 100х145х50 мм, вес 650 гр.

Артикул: 21.3759-03 (20А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное)
Ток нагрузки: 12 A — номинальный, 20 А — импульсный.
Максимальная выходная мощность — 160 Вт.
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 180х145х50 мм, вес 1100 гр.

Артикул: 21.3759-05 (30А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное).
Ток нагрузки: 18 A — номинальный, 30 А — импульсный.
Максимальная выходная мощность — 240 Вт.
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 260х145х50 мм, вес 1700 гр.

Артикул: 21.3759-07 (40А)

Преобразователь напряжения 24 12 (линейный конвертер). Выполнен по схеме компенсационного стабилизатора напряжения.

Входное напряжение: 20-28 В. (постоянное).
Выходное напряжение: 13,8 В (постоянное).
Ток нагрузки: 24 A — номинальный, 40 А — импульсный.
Максимальная выходная мощность — 320 Вт.
Встроенная система защиты от превышения напряжения и короткого замыкания.
Габаритные размеры: 340х145х50 мм, вес 2100 гр.

Трехуровневый регулятор напряжения 67.3702-01.
Используется для ручного переключения напряжения зарядки аккумулятора в зависимости от температуры окружающей среды.

Технические характеристики:
Напряжение настройки В.: Три уровня: 13,6-низкое; 14,2-номинальное; 14,7-высокое
Генератор: 26.3701, 37.3701, 371.3701, 372.3701
Номинальный ток, А: 4
Масса, г 80
Габаритные размеры регулятора напряжения, мм: 67х41х23

Применяемость
ВАЗ-2104, -2105, -2106, -2107, -2108, -2109, -2110

1 Установка регулятора напряжения

1.1 Извлечь из генератора штатный щеточный узел с регулятором напряжения.
1.2 Установить щеточный узел комплекта в генератор и надежно закрепить.
1.3 Установить регулятор напряжения в удобном месте отверстием основания на свободную шпильку «массы», очищенную от грязи и ржавчины, и надежно закрепить.
1.4 Переключатель уровня регулируемого напряжения установить в одно из трех положений в зависимости от условий эксплуатации.

2 Регулировка напряжения

2.1 Положение переключателя «min» — для работы при высокой температуре окружающей среды (выше 20ºС), а также при эксплуатации в особо тяжелых условиях (движение в пробках, затяжные подъемы в горах и пр.);
2.2 Среднее положение переключателя – для работы при температуре окружающей среды от 0ºС до 20ºС;
2.3 Положение переключателя «max» — для работы при низкой температуре окружающей среды (ниже 0ºС), а также для подзарядки разряженного аккумулятора.

Трехуровневый регулятор напряжения 67.3702-03.
Используется для ручного переключения напряжения зарядки аккумулятора в зависимости от температуры окружающей среды.

Технические характеристики:
Напряжение настройки В.: Три уровня: 13,6-низкое; 14,2-номинальное; 14,7-высокое
Генератор: 2502.3771
Номинальный ток, А: 4
Масса, г 80
Габаритные размеры регулятора напряжения, мм: 67х41х23

Применяемость
«Волга», «Газель», «Соболь»
1 Установка регулятора напряжения

1.1 Извлечь из генератора штатный щеточный узел с регулятором напряжения.
1.2 Установить щеточный узел комплекта в генератор и надежно закрепить.
1.3 Установить регулятор напряжения в удобном месте отверстием основания на свободную шпильку «массы», очищенную от грязи и ржавчины, и надежно закрепить.
1.4 Переключатель уровня регулируемого напряжения установить в одно из трех положений в зависимости от условий эксплуатации.

2 Регулировка напряжения

2.1 Положение переключателя «min» — для работы при высокой температуре окружающей среды (выше 20ºС), а также при эксплуатации в особо тяжелых условиях (движение в пробках, затяжные подъемы в горах и пр.);
2.2 Среднее положение переключателя – для работы при температуре окружающей среды от 0ºС до 20ºС;
2.3 Положение переключателя «max» — для работы при низкой температуре окружающей среды (ниже 0ºС), а также для подзарядки разряженного аккумулятора.

Трехуровневый регулятор напряжения 67.3702-07.
Используется для ручного переключения напряжения зарядки аккумулятора в зависимости от температуры окружающей среды.

Технические характеристики:
Напряжение настройки В.: Три уровня: 13,6-низкое; 14,2-номинальное; 14,7-высокое
Генератор: 58.3701
Номинальный ток, А: 4
Масса, г 80
Габаритные размеры регулятора напряжения, мм: 67х41х23

Применяемость
Москвич, ИЖ, РАФ, ПАЗ, УАЗ, ЛАЗ

1 Установка регулятора напряжения

1.1 Извлечь из генератора штатный щеточный узел с регулятором напряжения.
1.2 Установить щеточный узел комплекта в генератор и надежно закрепить.
1.3 Установить регулятор напряжения в удобном месте отверстием основания на свободную шпильку «массы», очищенную от грязи и ржавчины, и надежно закрепить.
1.4 Переключатель уровня регулируемого напряжения установить в одно из трех положений в зависимости от условий эксплуатации.

2 Регулировка напряжения

2.1 Положение переключателя «min» — для работы при высокой температуре окружающей среды (выше 20ºС), а также при эксплуатации в особо тяжелых условиях (движение в пробках, затяжные подъемы в горах и пр.);
2.2 Среднее положение переключателя – для работы при температуре окружающей среды от 0ºС до 20ºС;
2.3 Положение переключателя «max» — для работы при низкой температуре окружающей среды (ниже 0ºС), а также для подзарядки разряженного аккумулятора.

Трехуровневый регулятор напряжения 67.3702-09.
Используется для ручного переключения напряжения зарядки аккумулятора в зависимости от температуры окружающей среды.

Технические характеристики:
Напряжение настройки В.: Три уровня: 13,6-низкое; 14,2-номинальное; 14,7-высокое
Генератор: Г222
Номинальный ток, А: 4
Масса, г 80
Габаритные размеры регулятора напряжения, мм: 67х41х23

Применяемость
ВАЗ-2104, -2105, -2107

1 Установка регулятора напряжения

1.1 Извлечь из генератора штатный щеточный узел с регулятором напряжения.
1.2 Установить щеточный узел комплекта в генератор и надежно закрепить.
1.3 Установить регулятор напряжения в удобном месте отверстием основания на свободную шпильку «массы», очищенную от грязи и ржавчины, и надежно закрепить.
1.4 Переключатель уровня регулируемого напряжения установить в одно из трех положений в зависимости от условий эксплуатации.

2 Регулировка напряжения

2.1 Положение переключателя «min» — для работы при высокой температуре окружающей среды (выше 20ºС), а также при эксплуатации в особо тяжелых условиях (движение в пробках, затяжные подъемы в горах и пр.);
2.2 Среднее положение переключателя – для работы при температуре окружающей среды от 0ºС до 20ºС;
2.3 Положение переключателя «max» — для работы при низкой температуре окружающей среды (ниже 0ºС), а также для подзарядки разряженного аккумулятора.

Входное напряжение: 20-30 В. (постоянное).
Выходное напряжение: 13,5 В (постоянное).
Допуск на выходное напряжения: +/- 0,5 В.
Ток нагрузки: 19,1 A — номинальный, 35 А — кратковременный (3-10 секунд).
Номинальная мощность нагрузки: 240 Вт.
Максимальная выходная мощность: 480 Вт (3-10 секунд).
Ток холостого хода, не более: 30 мА.
Номинал предохранителя: 15А.
Коэффициент полезного действия: 92%.
Гальваническая развязка: нет.
Габаритные размеры: 70х160х45 мм, вес 400 грамм.
Диапазон рабочих температур: -40. +40 грд. Цельсия.
Защита от пыли и влаги: IP54.
Защита: тепловая, от короткого замыкания, от перегрузки, аккумулятора от полного разряда, от пробоя.

Преобразователь напряжения с гальванической развязкой корпуса.

Входное напряжение: 20-40 В. (постоянное).
Выходное напряжение: 12,6 В ±1,5% (постоянное).
Ток нагрузки: 9 A — номинальный, 15 А — кратковременный (3-10 секунд).
Коэффициент полезного действия: 85%.
Гальваническая развязка: да.
Габаритные размеры: 190х165х45 мм, вес 1300 грамм.
Диапазон рабочих температур: -25. +55 грд. Цельсия.
Защита от пыли и влаги: IP52.

Источник