Меню

Преобразователь тока в напряжение обозначение



Преобразователь тока в напряжение на ОУ

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В радиотехнике часто возникает необходимость в преобразователях. Многие источники сигнала имеют токовый выход. К таким источникам относятся ЦАПы, фоторезисторы, фототранзисторы и др… Для последующих манипуляций с сигналом необходимо преобразовывать его в напряжение. Рассмотрим проверенный временем преобразователь тока в напряжение на ОУ с разными источниками сигнала.

  1. Преобразователь тока в напряжение
  2. Схема преобразователя ток-напряжение на ОУ
  3. Преобразователь для заземленного источника
  4. Преобразователь тока в напряжение для незаземленного источника
  5. Заключение

Преобразователь тока в напряжение

Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.

Так же его называют усилитель — преобразователь сопротивления. Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Вся магия преобразования происходит по закону дедушки Ома. Ток iвх протекая через резистор R вызывает на нем падение напряжение Uвых. Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:

Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.

Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.

В случае же ЦАПа, особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье Резистор для ЦАП с токовым выходом. Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.

Схема преобразователя ток-напряжение на ОУ

Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Ток сигнала iвх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.

Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки RН напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:

Преобразователь для заземленного источника

Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:

Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)

На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.

Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз) резистор желателен из-за неидеальности операционных усилителей.

Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает) ток, под действием внешнего источника света, положительной шины питания.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.

Преобразователь ток-напряжение на ОУ, cхема преобразователя ток-напряжение

В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Заключение

Рассмотренные схемы используются повсеместно. Они прекрасно подходят для токовых источников с плавным изменением сигнала. Для ЦАПов же предпочтительнее использование резистора. О том, чем это лучше, и как правильно согласовать резистор со следующим каскадом читайте в статье Резистор для ЦАП с токовым выходом .

Материал подготовлен исключительно для сайта AudioGeek.ru

AliExpress RU&CIS

Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название — АудиоГик. Материалы этого сайта — личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали 🙂

Здравствуйте, Андрей!
Спасибо за полезную информацию!
Хочу воспользоваться Вашим советом, однако меня гложет одно сомнение. Насколько правильно использовать преобразователь ток-напряжения (ТИ) для трансформатора тока (ТТ)? ТТ требуется обязательно сопротивление нагрузки. В теории ТИ обладает нулевым входным сопротивлением. Или я заблуждаюсь? Не корите строго в схемотехнике я не силен. 🙂

Здравствуйте Владимир!
Честно говоря с трансформаторами тока не работал, но слегка по-гуглил.
Во первых — у Вас переменный или постоянный ток?
Во вторых да, преобразователь ток-напряжение в идеале имеет нулевое входное сопротивление. Для преобразования можете воспользоваться резистором, а уже с него снимать напряжение тем же неинвертирующим усилителем на ОУ, такое было показано в статье Резистор для ЦАП с токовым выходом.
Если у вас переменный ток, то для измерений требуется его сначала выпрямить, для этого можно воспользоваться активным выпрямителем.

Андрей, спасибо за ответ!
Я перечитал, и взял на вооружение все Ваши подходящие мне статьи.
Кроме того просмотрел, И Хоровица с нашим дорогим Хиллом :), и Титце с Шенком тоже, и Достала, который Иржи, а также Пейна. Складывается впечатление, что противоречий нет. Но и уверенности тоже нет. Сказывается отсутствие знаний в теории цепей и практической схемотехнике. Видно надо макетировать и пробовать. Как говорят теоретики — практика критерий истины. 🙂
Ток конечно же переменный.
Изначально я так и хотел, нагрузить вторичку сопротивлением (ТТ требует обязательную нагрузку), но потом наткнулся на статью, где утверждалось, что все современные измерители с ТТ используют преобразователи ток-напряжение, ну и загорелся!
Еще раз спасибо!

Андрей! Доброе время суток! Хочу сказать пару слов по теме — схема с n-p-n фототранзистором (Ik=1…2.ma, Vcc= +/- 12V) вполне работоспособна. Эксперименты по её применению в ИК-датчике показали следующее:
частотный диапазон 0-3,0 кГц ( выше просто не проверял, т.к. не надо)
неравномерность АЧХ в полосе 20 Гц-3,0 кГц — менее 0,5 дБ
коэфф. нелинейных искажений — менее 3% (может и меньше, надо уточнить с генератором тестового сигнала, а я проверял на вибростенде, у которого своих искажений хватает)
амплитуда — 3,0 В и более.
ИМС ОУ проверялись разные — от LM358 до малошумящих
Тема интересная.
Удачи

Читайте также:  Что проводит электрический ток в химии раствор

Здравствуйте! спасибо за столь подробный комментарий!
Рад что у Вас получились интересные результаты. Вообще схемку я позаимствовал У Хоровиц и Хилла. Сам когда-то ее собирал) Правда так глубоко не копал ее характеристики, ибо не требовалось)
Извиняюсь, что так долго отвечал, готовился к защите магистерской диссертации)

Источник

Обозначения в эл. схемах

Обозначения буквенно-цифровые в электрических схемах. ГОСТ 2.710

Обозначения буквенно-цифровые в электрических схемах. ГОСТ 2.710-81 (фрагмент).

Буквенные коды наиболее распространенных видов элементов.

Примеры двухбуквенных кодов

Примеры видов элементов, помеченные * добавлены автором.

Комментарии

1. Если УГО стандартами не установлено, то разработчик выполняет УГО на полях схемы и дает пояснения (ГОСТ 2.702-2011).
То-есть, если в стандартах условное обозначение какого-то электрического устройства отсутствует, можно придумать свое (желательно используя имеющиеся в стандартах элементы условных обозначений). А на свободном поле чертежа, отобразить данное обозначение и дать разъяснения о его назначении, функции.
Например фотоконденсатор:

2. По буквенному обозначению, если уж в стандартах все фотоэлементы: и фоторезистор, и фотодиод, и фототранзистор обозначают одинаково — BL, то наверное будет логичнее и фотоконденсатор у присвоить тот-же буквенный код BL.

3. Фотоэлектрохими ческий суперконденсато р, при беглом ознакомлении, совмещает в себе полупроводников ый солнечный элемент собственно суперконденсато р. Возможно его можно изобразить таким образом:

Буквенный код, тот-же применяйте на Ваше усмотрение (возможно в данном случае, можно применить обозначение как для источника питания — G) и расшифруйте в пояснениях.
Но, это предположительн о. Нужно внимательней изучить конструкцию (у меня на это нет времени)

Доброго времени суток!
Меня очень сильно интересуют 3 вопроса.
1. Как обозначаются фотоконденсатор ы на электрических схемах (по логике должно быть обозначение аналогично фоторезистору: сам элемент (конденсатор в данном случае) взять в кружок и поставить 2 стрелки направленные на него; но проблема в том, что я не нашёл ни одного подтверждения этого как в каталогах, так и вообще в статьях в Интернете).
2. Если обозначения какого-либо элемента пока не существует, то можно ли его обозначать сочетанием букв, либо сочетанием элемента и букв? Например, в данном случае пусть не существует обозначения фотоконденсатор а. Какими из следующих вариантов тогда можно его обозначить: тремя буквами «BLC» или «CBL», взятыми в кружок (кстати, если это правильно, то какой из этих 2-х вариантов верен?), или же нарисовать конденсатор, а рядом поставить буквы «BL»?
3. Как обозначаются подтипы элементов на электрических схемах? Например, существует фотоэлектрохими ческий суперконденсато р (PES-фотоконден сатор, от англ. Photoelectroche mical Supercapacitor) . Как его обозначить на схеме? Конденсатором с рядом расположенными буквами PES? Или опять сочетанием каких-либо букв, например, «PES-С» (кстати, чисто из любопытства вопрос: если такое обозначение верно, то нужно ли ставить дефис?)?
Извините, что задал столько вопросов (наверное, глупых к тому же)! Я не очень в этой сфере разбираюсь. Но мне правда очень нужно это.
Заранее благодарю!

Источник

Преобразователь тока в напряжение обозначение

* Вероятно ошибка оригинала. Следует читать ГОСТ 22782.5-78. — Примечание «КОДЕКС».

6. Ограничение срока действия снято Постановлением Госстандарта от 15.10.92 N 1400

7. ПЕРЕИЗДАНИЕ (октябрь 1994 г.) с Изменением N 1, утвержденным в июне 1987 г. (ИУС 10-87)

Настоящий стандарт распространяется на аналоговые измерительные преобразователи электрических величин постоянного и переменного тока частотой 50, 60, 400 и 1000 Гц (далее — преобразователи), предназначенные для линейного преобразования переменного тока, напряжения переменного тока, постоянного тока, напряжения постоянного тока, частоты переменного тока, мощности постоянного тока, активной и реактивной мощностей переменного тока, сопротивления изоляции сети переменного тока, сопротивления изоляции сети постоянного тока, суммы аналоговых сигналов постоянного тока (суммирующие преобразователи) в унифицированный сигнал постоянного тока или напряжения постоянного тока по ГОСТ 26.011.

1. КЛАССИФИКАЦИЯ

1.1. По защищенности от воздействия окружающей среды и по устойчивости к механическим воздействиям преобразователи подразделяют на исполнения по ГОСТ 12997.

1.2. По числу и виду преобразуемых электрических величин преобразователи подразделяют на:

одноканальные, предназначенные для преобразования одной электрической величины;

многоканальные, содержащие несколько каналов и преобразующие две и более электрических величин одинакового вида;

комбинированные, предназначенные для преобразования двух и более электрических величин разного вида.

1.3. По связи между входными и выходными цепями преобразователи подразделяют на:

преобразователи с гальванической связью;

преобразователи без гальванической связи.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Преобразователи следует изготовлять в соответствии с требованиями настоящего стандарта, ГОСТ 12997 и технических условий на преобразователи конкретного типа по рабочим чертежам, утвержденным в установленном порядке.

Преобразователи, изготовляемые для нужд Министерства обороны, должны соответствовать настоящему стандарту в части требований к нормируемым метрологическим характеристикам и методам их контроля, а в части остальных требований — нормативно-технической документации на преобразователи конкретного типа.

2.2. По устойчивости к воздействию температуры и влажности окружающего воздуха преобразователи должны соответствовать ГОСТ 12997.

Допускается увеличивать верхнее значение рабочей температуры.

(Измененная редакция, Изм. N 1).

2.3. Конечные значения диапазонов измерений или разность между конечными и начальными значениями диапазонов измерений преобразователей следует выбирать из ряда: 1; 1,2; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 7,5; 8 или их десятичных кратных или дольных значений.

Допускается по требованию потребителя в одноканальных преобразователях устанавливать дополнительные диапазоны измерений, значения которых могут отличаться от указанных.

Примечание. Конечные значения диапазонов измерений преобразователей тока и напряжения, предназначенных для работы со вспомогательными частями (шунты, измерительные трансформаторы и т.д.), могут отличаться от приведенных в п.2.3 и должны быть установлены в технических условиях на преобразователи конкретного типа.

2.4. Номинальные значения напряжения преобразователей мощности, частоты и сопротивления изоляции, предназначенных для непосредственного включения, должны соответствовать номинальному значению напряжения сети.

Номинальные значения напряжения преобразователей мощности и частоты, предназначенных для включения через измерительные трансформаторы напряжения, должны соответствовать номинальному значению напряжения вторичных обмоток трансформаторов или шунтов.

2.5. Номинальные значения токов и конечные значения нормальных областей токов в амперах для преобразователей мощности следует выбирать из ряда: 1; 1,2; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 7,5; 8 или их десятичных кратных или дольных значений, — и устанавливать в технических условиях на преобразователи конкретных типов.

Номинальные значения токов преобразователей, предназначенных для включения через измерительные трансформаторы тока, должны соответствовать номинальным значениям токов вторичных обмоток трансформаторов тока.

2.6. Номинальные значения коэффициентов мощности и конечные значения нормальных областей коэффициентов мощности однофазных преобразователей мощности переменного тока следует выбирать из ряда: 0,05; 0,1; 0,2; 0,5; 0,8; 1, — и устанавливать в технических условиях на преобразователи конкретного типа.

Читайте также:  Проводник с током 3 14 а согнут в виде квадрата

2.7. Пределы изменения выходного сигнала постоянного тока, напряжения постоянного тока, сопротивление нагрузки выходного сигнала преобразователей — по ГОСТ 26.011.

Примечание. Допускается увеличивать сопротивление нагрузки для преобразователей с токовыми выходными сигналами и уменьшать сопротивление нагрузки для преобразователей с выходным сигналом напряжения постоянного тока.

2.8. Метрологические характеристики преобразователей выбирают из числа характеристик по ГОСТ 8.009 и ГОСТ 22261 для аналоговых измерительных преобразователей и устанавливают в технических условиях на преобразователи конкретного типа.

Примечание. В технической документации на преобразователи конкретного типа должны быть приведены методики с примерами расчета погрешности преобразователя в реальных условиях его применения по нормированным для него метрологическим характеристикам.

(Измененная редакция, Изм. N 1).

2.9. Основную погрешность преобразователей нормируют без разделения ее на систематическую и случайную составляющие погрешности, если наибольшее значение среднего квадратического отклонения случайной составляющей погрешности не превышает 10% предела допускаемого значения основной погрешности преобразователей данного типа.

2.10. Пределы допускаемых основных погрешностей преобразователей должны быть выражены в виде приведенной погрешности. Нормирующее значение при установлении приведенных погрешностей — по ГОСТ 8.401. Пределы допускаемых основных погрешностей выбирают из ряда: 0,01; 0,02; 0,05; 0,1; 0,15; 0,2; 0,25; 0,5; 1,0; 1,5; 2,5.

Примечание. Для преобразователей сопротивления изоляции, а также для перегрузочных преобразователей допускается по согласованию с потребителем устанавливать предел допускаемых основных погрешностей 4,0.

(Измененная редакция, Изм. N 1).

2.11. Воздействие влияющих величин в рабочих условиях применения нормируют номинальной функцией влияния и пределами допускаемых отклонений от ее действительной функции влияния, если пределы допускаемых отклонений не превышают ±20% номинальной. В противном случае нормируют пределы допускаемых дополнительных погрешностей.

2.12. Пределы допускаемых дополнительных погрешностей (изменение выходного сигнала) преобразователей, вызванных изменением влияющих величин от нормальных до любых значений в пределах рабочих условий применения, должны быть выражены в виде приведенных погрешностей.

Влияющую величину допускается не учитывать, если дополнительная погрешность, вызванная ею, не превышает 0,2 значения предела допускаемой основной погрешности.

2.13. Предел допускаемой дополнительной погрешности преобразователя, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих условий применения на каждые 10 °С, не должен превышать:

предела допускаемой основной погрешности — для преобразователей с пределом допускаемой основной погрешности 0,01-0,025;

0,8 предела допускаемой основной погрешности — для преобразователей с пределом основной погрешности 0,5;

0,5 предела допускаемой основной погрешности — для преобразователей с пределом допускаемой основной погрешности 1,0-4,0.

Допускается устанавливать предел допускаемой дополнительной погрешности преобразователей, вызванной изменением температуры окружающего воздуха в рабочих условиях применения.

2.14. Предел допускаемой дополнительной погрешности преобразователей, вызванной работой в условиях повышенной влажности при нормальном значении температуры, не должен превышать:

предела допускаемой основной погрешности — для преобразователей с пределом допускаемой основной погрешности 0,01-0,5;

0,5 предела допускаемой основной погрешности — для преобразователей с пределом допускаемой основной погрешности 1,0-4,0.

Допускается нормировать предел допускаемой дополнительной погрешности преобразователей, вызванной одновременным воздействием повышенных температуры и влажности; значение ее при этом не должно превышать суммы погрешностей, установленных в пп.2.13 и 2.14 для раздельных влияний.

2.15. Предел допускаемой дополнительной погрешности преобразователей, вызванной влиянием внешнего однородного постоянного или переменного магнитного поля, синусоидально изменяющегося во времени с частотой, одинаковой с частотой тока, протекающего по измерительным цепям преобразователя, с магнитной индукцией 0,5 мТл при самом неблагоприятном направлении и фазе магнитного поля, не должен превышать:

Источник

Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Схема 1

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Читайте также:  Взаимодействие токов вихревые токи

Беперебойник

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Схема 3

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Регулируемый преобразотель

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

инверторный преобразователь

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник