Построение векторных диаграмм однофазной цепи переменного тока

Векторная диаграмма токов и напряжений

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Диаграмма, поясняющая процесс короткого замыкания в трехфазной цепи счетчика электроэнергии

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Векторные диаграммы и комплексное представление

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Примеры применения

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Читайте также:  Координация токов короткого замыкания

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Построение векторной диаграммы напряжений и токов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Видео

Источник

Построение векторных диаграмм

Достаточно сложным и чаще всего не изучаемым аспектом темы переменный ток является метод построения векторных диаграмм. Анализируя вынужденные электромагнитные колебания, мы уже обсудили сдвиг тока и напряжения на реактивных сопротивлениях (катушка индуктивности и конденсатор) по сравнению с активным сопротивлением (резистор). Тогда одним из задаваемых вопросов задачи является вопрос о направлении суммарного тока или напряжения в данный конкретный момент времени. Для ответа на этот вопрос и используется метод построения векторных диаграмм.

Векторная диаграмма — это изображение гармонически изменяющихся величин (текущего тока и напряжения) в виде векторов на плоскости.

Векторная диаграмма

Рис. 1. Векторная диаграмма

Построение векторных диаграмм происходит в прямоугольной декартовой системе координат. Построение начинается с проведения вектора, численно равного амплитудному значению тока в цепи. Данный вектор сонаправим в осью ОХ (рис. 1.1).

Т.к. напряжение на активном сопротивлении находится в одной фазе с током, то вектор амплитуды напряжения сонаправлен с вектором тока (рис. 1.2. красный).

На катушке напряжение опережает ток, поэтому отложим вектор амплитуды напряжения на катушке (\displaystyle <<U data-lazy-src=

На конденсаторе напряжение отстаёт от тока, поэтому отложим вектор амплитуды напряжения на конденсаторе (\displaystyle <<U data-lazy-src=

Угол \displaystyle <<90 data-lazy-src=

Проще всего сначала найти вектор-сумму \displaystyle <<\vec<U data-lazy-src=

И последнее, осталось сложить получившийся вектор с вектором \displaystyle <<U data-lazy-src=

  • где
    • \displaystyle <<U data-lazy-src=
    • \displaystyle <<U data-lazy-src=

Угол \displaystyle \varphi — угол между вектором силы тока и полного напряжения называется сдвигом фаз между колебаниями силы тока и напряжения. Данный параметр можно найти и исходя из параметров системы:

\displaystyle \cos \varphi =\frac<R data-lazy-src=

  • \displaystyle Z— полное сопротивление цепи.
  • Вывод: задачи на данную тематику касаются поиска сдвига фаз между колебаниями силы тока и напряжения через график (рис. 1.4) или через соотношение (3), а также поиска полного напряжения в цепи также через график (рис. 1.4) или через соотношение (2).

    Источник

    Однофазные цепи переменного тока. Векторные диаграммы

    Последовательная цепь с резистивным, индуктивным и емкостным элементом:

    Треугольник напряжений при последовательном соединении R, L и С:

    Треугольники напряжений и сопротивлений при последовательном соединении R, L и С:

    Треугольники напряжений, сопротивлений и мощностей при последовательном соединении R, L и С:

    Треугольники напряжений, сопротивлений и мощностей:

    Цепь с параллельным соединением R , L и С:

    Треугольники токов при параллельном соединением R , L и С:

    Треугольники токов и проводимостей при параллельном соединением R , L и С:

    Треугольники токов, проводимостей и мощностей при параллельном соединением R , L и С:

    Треугольники токов и проводимостей:

    График мгновенных значений u, i и p при резонансе напряжений:

    Диаграмма для параллельной цепи R , L и С при резонансе токов:

    Электрическая цепь при последовательном соединении элементов R и L:

    Электрическая цепь при последовательном соединении элементов R и C:

    Источник

    Построение векторных диаграмм

    Наверняка при решении задач по электротехнике многие сталкивались с некоторыми сложностями в построении векторных диаграмм. Начнем с определения векторной диаграммы.

    Векторная диаграмма — это изображение синусоидально изменяющихся величин в виде векторов на плоскости.

    Векторные диаграммы применяют потому, что сложение и вычитание синусоидальных величин, неизбежные при расчете цепей переменного тока, наиболее просто выполняются в векторной форме. Кроме того векторные диаграммы отличаются простотой и наглядностью.

    Построение векторной диаграммы выполняется в прямоугольной плоскости. Чтобы построить диаграмму нужно провести вектор длиною равный амплитудному значению искомой величины, под углом сдвига относительно другой величины. Возможно, вы не сразу поймете смысл сказанного, для этого нужно изучить пример.

    В качестве примера рассмотрим построение векторной диаграммы для цепи, состоящей из последовательно подключенных конденсатора, резистора и катушки. Напряжение на катушке UL=15 В, напряжение на конденсаторе UC=20 В, напряжение на резисторе UR=10 В, ток в цепи I=3 А. Требуется найти общее напряжение.

    Катушка носит индуктивный характер, а значит, в ней напряжение опережает ток по фазе на 90°.

    Конденсатор носит емкостной характер, значит, ток в нем опережает по фазе напряжение на 90°.

    Резистор обладает только активным сопротивлением, и напряжение в нем совпадает по фазе с током.

    Итак, для начала отложим вектор тока в масштабе. Масштаб для тока у нас будет 1 А/см.

    Теперь отложим вектор напряжения на катушке, масштаб для напряжения возьмем 5 В/см, получается, что нужно отложить шесть клеток вверх, так как напряжение в катушке опережает ток. Для наглядности обозначим синим цветом.

    Далее мы будем откладывать вектор активного сопротивления, так как напряжение в одной фазе с током, то мы его откладываем из конца вектора UL параллельно вектору тока I. Обозначим его красным цветом.

    Следующим шагом отложим вектор напряжения на конденсаторе, так как оно запаздывает на 90°, мы его отложим вертикально вниз, из конца вектора U R . Обозначим желтым цветом.

    И последним этапом мы отложим вектор общего напряжения, из начала координат в конец вектора UC и обозначим его зеленым цветом.

    Общее напряжение получилось равным 2,23 В, причем характер цепи емкостной, так как напряжение отстает от тока.

    Аналогичным образом выполняется построение векторной диаграммы токов.

    Источник

    Однофазные цепи переменного тока

    Министерство образования и науки Российской Федерации

    Федеральное агентство по образованию

    Саратовский государственный технический университет

    ОДНОФАЗНЫЕ ЦЕПИ

    ПЕРЕМЕННОГО ТОКА

    Методические указания к лабораторным работам 6,7 по курсу «Электротехника и электроника»

    для студентов химико-технологических

    и технологических специальностей

    редакционно-издательским советом

    Саратовского государственного

    технического университета

    Лабораторная работа 6

    ИССЛЕДОВАНИЕ ОДНОФАЗНОЙ ЦЕПИ

    ПЕРЕМЕННОГО ТОКА С ПОСЛЕДОВАТЕЛЬНЫМ

    СОЕДИНЕНИЕМ РЕЗИСТОРА, ИНДУКТИВНОЙ

    КАТУШКИ И КОНДЕНСАТОРА

    Цель работы: экспериментальное изучение линейной цепи синусоидального тока, состоящей из последовательно соединенных резистора, индуктивной катушки и конденсатора; изучение основных закономерностей в такой цепи; получение резонанса напряжений и изучение свойств цепи в этом режиме.

    ОСНОВНЫЕ ПОНЯТИЯ

    Рассмотрим цепь, состоящую из последовательно соединенных резистора (R), индуктивной катушки (L, Rк) и конденсатора С. Схема цепи показана на рис.1.

    Рис.1. Последовательное соединение элементов R, L и С

    Пусть цепь включена на синусоидальное напряжение , начальная фаза которого равна нулю. Тогда по цепи потечет ток, амплитуда которого будет определяться амплитудой напряжения Um и полным сопротивлением цепи Z, а начальная фаза тока будет зависеть от соотношений реактивных сопротивлений индуктивности XL и емкости XC. Возможны три случая: если XL >XC, то ток отстает от напряжения на угол j; если XL XC векторная диаграмма показана на рис.2.

    Рис. 2. Векторная диаграмма

    При построении вектор напряжения в масштабе mU откладывают по направлению тока I, затем к концу вектора прибавляют вектор напряжения на активном сопротивлении катушки , затем к концу вектора прибавляют вектор напряжения на индуктивности . Этот вектор опережает ток на 90°. Вектор напряжения на емкости прибавляют к концу вектора , отстающим от тока на 90°. Вектор напряжения сети проводят из качала вектора в конец вектора . При правильном построении длина вектора , умноженная на масштаб mU, должна быть равна напряжению на зажимах цепи. Вектор напряжения на катушке равен геометрической сумме векторов и . Величина этого напряжения равна

    Векторные диаграммы для последовательной цепи при XL , то в режиме резонанса напряжения на катушке и конденсаторе будут больше напряжения сети, что приводит к опасности пробоя изоляции в катушке или конденсаторе, поэтому в силовых цепях такой режим недопустим.

    Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

    В радиотехнике, где абсолютные величины напряжений не велики, резонанс напряжений может использоваться для усиления сигнала. При

    XL >>R; UL>>U сети.

    Для цепи (рис.1) справедливы следующие соотношения для мощностей:

    — активная мощность (Вт, кВт);

    — реактивная мощность (В×Ар; кВ×Ар);

    — полная мощность (В×А кВ×А); или ; ; ; ; .

    МЕТОДИКА ЭКСПЕРИМЕНТА

    Описание экспериментальной установки

    Исследование последовательной цепи проводится на лабораторном стенде под названием «Однофазный ток». На стенде имеется схема опыта, необходимые приборы, изображены схемы замещения резистора, индуктивной катушки и конденсатора. От каждого из элементов выведены два зажима, необходимые для сборки цепи. Схема опыта представлена на рис.5.

    Для изменения величины емкости в цепи батарея конденсаторов имеет несколько тумблеров и два щеточных переключателя, позволяющих включать десятки или единицы микрофарад емкости. Суммарная емкость батареи конденсаторов — 110 мкФ.

    Напряжение источника питания стенда 24 и 36 вольт.

    Приборы и методика измерений

    Амперметры и вольтметры, постоянно установленные на стенде, имеют электромагнитную систему измерительного механизма. Приборы измеряют действующие значения переменных величин. Класс точности приборов 1,5. Переносной многопредельный лабораторный ваттметр класса точности 0,5 ферродинамической системы. Он имеет три переключателя: переключатель тока, переключатель напряжения, переключатель рода работы (измерение тока, или измерение напряжения, или измерение мощности). Предел измерения ваттметра определяется положением его переключателей

    где I — ток, на который установлен переключатель тока;

    U — напряжение, на которое установлен переключатель напряжения.

    Цена деления ваттметра определяется по формуле

    где n — число делений шкалы прибора.

    Мощность, измеряемая ваттметром, будет равна Р = С× n’, где n’ — число делений шкалы, показываемое стрелкой прибора.

    В данной лабораторной работе при измерениях используется метод непосредственного отсчета с прямыми однократными измерениями.

    Точность прямых измерений оценивается определением абсолютной максимальной погрешности по формуле

    где Am – верхний предел измерения прибора;

    К — класс точности прибора.

    Результат измерения записывается в виде

    А±DА,

    где А — показание прибора.

    ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

    1. Перед сборкой схемы убедитесь в том, что стенд отключен от сети. Ручка пакетного выключателя при этом находится в положении “откл”, а сигнальная лампа не горит.

    2. Стенд включается только преподавателем или лаборантом после проверки схемы.

    3. При измерениях не касайтесь оголенных токоведущих частей. Провода, подключенные к переносным приборам, держите за изолированные части.

    4. Не прикасайтесь к зажимам отключенных конденсаторов, так как заряд на них может сохраняться длительное время.

    5. По окончании измерений выключите стенд.

    ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    1. Ознакомиться со стендом и схемой опыта.

    Рис. 5. Схема опыта

    2. Собрать схему опыта (рис. 5).

    3. Записать технические характеристики применяемых приборов, указав: наименование прибора, его марку, тип измерительного механизма, предел измерения, класс точности, заводской номер,

    4. Собранную схему показать преподавателю для проверки. После проверки включить стенд в работу, при этом загорится сигнальная лампочка.

    5. Изменяя величину емкости конденсаторов, добиться в цепи максимального тока; при этом должно выполняться условие Uк >UC. При этом условии в цепи наступит резонанс напряжений.

    Записать показания всех приборов в табл.1, в четвертой строке.

    U, B

    C, мкФ

    I, A

    UR, B

    UК, В

    UC, B

    P, Вт

    R, Ом

    RК, Ом

    ХC, Ом

    ХL, Ом

    ZК, Ом

    jК,

    S, B×A

    cosj

    6. Произвести измерения тока, мощности и напряжений на элементах цепи при трех значениях емкости батареи конденсаторов меньших, чем при резонансе. Данные занести в табл.1, строки 1¸3. При этом необходимо следить, чтобы при записи данных в табл.1 от первой строки (для С= О) к последней (С= 110 мкФ) емкость монотонно увеличивалась.

    7. Произвести измерения тока, мощности и напряжения на элементах для трех значений емкости больших, чем при резонансе. Данные занести в табл.1,строки 5, 6, 7.

    ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ

    1. По данным наблюдений вычислить величины:

    R (Ом); RК (Ом); L (Гн); ХL (Ом); ХС (Ом); ZК (Ом);jК ; Z (Ом); cosj.

    Вычисления провести для всех строк табл.1, имея в виду, что величины R; RК; L; XL; ZК; jК — постоянные, поэтому их достаточно вычислить один раз для режима резонанса напряжений. Остальные величины — переменные, и их вычисления следует проводить для каждой строки табл.1. Вычисления проводить по формулам:

    Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

    где Р – мощность, измеряемая ваттметром Вт; IРЕЗ — ток в цепи в режиме резонанса.

    R= UR/IРЕЗ,

    где UR — падение напряжения на резисторе в режиме резонанса.

    RК=RS R, Ом,

    где f=50 Гц; СРЕЗ – в мкФ.

    где С – текущее значение емкости в мкФ.

    Z= U/I, где U – напряжение в начале цепи.

    cosj = RS/z.

    2. По результатам наблюдений в одной и той же системе координат построить следующие кривые: I = f(C); Uк= f(C); UC = f(C).

    3. По данным измерений и вычислений построить векторные диаграммы для трех случаев: а) XL > XC, б) XL = XC, в) XL XC, б) XL = XC, в) XL I3. Это и будет резонанс токов. Записать показания всех приборов в табл.2, в четвертой строке.

    Источник

    Поделиться с друзьями
    Блог электрика
    Adblock
    detector