Меню

Построение переходной характеристики двигателя постоянного тока



Характеристики двигателей постоянного тока

Классификация и основные уравнения двигателей постоянного тока

Двигатели постоянного тока находят широкое применение в тех случаях, когда по условиям работы исполнительного механизма требуется широкое изменение частоты вращения, и при этом часто имеют преимущества по сравнению с двигателями переменного тока. Используются они в металлургической промышленности, стан­костроении, системах автоматического регулирования, широко применяются на электрическом транспорте, в авиации и автомо­билестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт.

Как и генераторы, двигатели постоянного тока классифициру­ют по способу включения обмотки возбуждения. Различают дви­гатели независимого, параллельного, последовательного и сме­шанного возбуждения. Электрические схемы этих двигателей ана­логичны схемам соответствующих генераторов. Отличие заключается в том, что ток якоря Iа в двигателях незави­симого и последовательного возбуждения равен сетевому току I, а в двигателях параллельного и смешанного возбуждения из сети потребляется и ток возбуждения Iв.

Рассмотрим основные уравнения двигателей постоянного тока.

1. Уравнение равновесия напряжений для цепи якоря в режиме двигателя:

Упрощение уравнения производится так же, как для ге­нераторов:

2. Уравнение баланса токов для двигателей параллельного и смешанного возбуждения:

3. Уравнение движения:

где J — момент инерции якоря двигателя и вращающихся частей приводного механизма; М— электромагнитный момент, развива­емый двигателем, Мс — момент сопротивления, равный сумме моментов приводимого механизма М2 и тормозного мо­мента Mo, обусловленного потерями внутри самого двигателя.

Уравнение частоты вращения двигателя можно получить если в(24.2) подставить вместо ЭДС его значение

Разрешив полученное уравнение относительно n получим

Характеристики двигателей постоянного тока

Основными характеристиками, по которым оценивают рабо­чие свойства двигателей, являются:

скоростная — зависимость частоты вращения от тока якоря,

моментная — зависимость электромагнитного момента от тока якоря,

механическая— зависимость частоты вращения от электромаг­нитного момента, п =f(M).

Двигатели независимого и параллельного возбуждения.Все ха­рактеристики этих двигателей получают при постоянных значе­ниях напряжения сети и тока возбуждения, обычно соответству­ющих своим номинальным значениям: U= U ном; IB = Iв.ном.

1. Скоростная характеристика n=f(Ia). Выражением, определя­ющим эту характеристику, является уравнение (24.5). Как следует из этого уравнения, если магнитная цепь двигателя ненасыщена и магнитный поток Ф = const, то зависимость п(Iа) линейная и с ростом тока якоря частота вращения уменьшается. Этому случаю соответствует сплошная линия на рис. 24.1.

Поток якоря вызывает умень­шение потока возбуждения ( ), то выражение для часто­ты вращения будет иметь вид

Рис.24.1. Скоростная(механическая)характеристика двигателя независимого возбуждения

где Ф — магнитный поток, соответствующий номинальному току возбуждения 1В ном при холостом ходе двигателя; — уменьшение маг­нитного потока из-за размагничива­ющего действия реакции якоря.

Как следует из формулы (24.5), при возрастании тока якоря в резуль­тате падения напряжения ча­стота вращения п снижается, а при уменьшении потока Ф — увеличи­вается. Это показано на рис. 24.1 штриховой линией.

Если относительное значение суммарного сопротивления цепи якоря больше относительного значения уменьшения потока , то частота вращения с ростом тока якоря будет уменьшаться. Если же

Двигатели последовательного и смешанного возбуждения.Осо­бенностью двигателя последовательного возбуждения является то, что его ток возбуждения равен току якоря (IВ = Iа), и поэтому для вывода выражений, определяющих вид его характеристик, пред­варительно необходимо определить связь между магнитным пото­ком Ф и током якоря Iа = Iв. Зависимость Ф =f(Ia) называется маг­нитной характеристикой. Идеальная магнитная характеристика (без учета размагничивающего действия реакции якоря) показана рис. 24.3 сплошной линией, а реаль­ная (с учетом реакции якоря) — штри­ховой.

Рис. 24.3. Магнитная характеристика двигателя последовательного вобуждения

Все характеристики двигателя по­следовательного возбуждения получа­ют при постоянном напряжении пи­тания (обычно при U= UHM).

1. Скоростная характеристика п = f(Ia). Подставив в уравнение (24.5) выражение для потока в зависимости от тока якоря в соответствии с маг­нитной характеристикой, получим формулу скоростной характеристики двигателя. Для упрощения анализа пренебрежем насыщением магнитной цепи и будем считать магнитную ха­рактеристику линейной:

Рис.24,4. Скоростная характеристика двигателя последовательного возбуждения

Рис.24.5. Моментная характеристика двигателя последовательного возбуждения

Тогда, подставив выражение (24.9) в уравнение (24.5), полу­чим

Из уравнения (24.10) следует, что скоростная характеристика имеет гиперболический вид; на рис.24.4 она изображена сплош­ной линией. Особенностью скоростной характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из уравнения (24.10)следу­ет также, что ось ординат (ось п) является для этой характеристи­ки асимптотой.

Реальная скоростная характеристика с учетом размагничиваю­щего действия реакции якоря будет отклоняться от гиперболи­ческой кривой вверх, как показано штриховой линией на рис. 24.4.

2. Моментная характеристика M-f(Ia). Подставив в уравнение для момента выражение (24.9), получим формулу для электромагнит­ного момента двигателя с последовательным возбуждением:

Из выражения следует, что электромагнитный момент двигателя последовательного возбуждения пропорционален квад­рату тока якоря, т.е. моментная характеристика имеет параболи­ческий вид; на рис.24.5 она изображена сплошной линией. С учетом размагничивающего действия реакции якоря момент в области боль­ших токов будет меньше момента, получаемого по выражению (24.11) (штриховая линия на рис. 24.5).

3.Механическая характеристика п =f(М). Из выражения (24.11) ток якоря

Тогда, подставив (24.12) в (24.10), получим аналитическое вы­ражение для механической характеристики:

Из выражения (24.13) следует, что механическая характерис­тика двигателя последовательного возбуждения при U= const так же, как и его скоростная характеристика, имеет практически ги­перболический вид (рис.24.6).

Рис. 24.6. Механическая характеристика двигателя последовательного возбуждения

Особенностью механической харак­теристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Из урав­нения (24.13) следует также, что ось ординат (ось п) является асимптотой для этой характеристики.

При частота вращения двигателя стремится к бесконеч­ности. В этом случае говорят, что двигатель идет вразнос. Чрезмер­ное повышение частоты вращения опасно для механической проч­ности якоря, так как из-за больших значений центробежных сил, возникающих в этом случае, может нарушиться целость банда­жей, удерживающих обмотку якоря, и произойти разрушение коллектора. Следовательно, нельзя допускать работу двигателя последовательного возбуждения при холостом ходе и малых на­грузках, т. е. нагрузка не должна быть меньше 25. 31 % номиналь­ной. Лишь для двигателей малой мощности (десятки ватт) допус­тима работа при холостом ходе, так как их собственный момент потерь М достаточно велик.

Вследствие сильной зависимости частоты вращения от нагруз­ки механические и скоростные характеристики двигателей после­довательного возбуждения называют мягкими.

Характеристики двигателей сме­шанного возбуждения занимают про­межуточное положение между соот­ветствующими характеристиками двигателей параллельного и последо­вательного возбуждения. При слабой последовательной обмотке они будут приближаться к характеристикам дви­гателя параллельного возбуждения, а при сильной — к характеристикам двигателя последовательного возбуж­дения.

Сравнение характеристик двигате­лей.Двигатели параллельного (неза­висимого) возбуждения имеют жест­кую механическую характеристику и поэтому применяются в установках, где необходимо поддерживать постоянную частоту вращения при изменении момента нагрузки, на­пример, в станках, прокатных станах, вентиляторах и т.д. Они также широко применяются при необходимости регулирования частоты вращения в широком диапазоне. В этом случае подводи­мое к якорю двигателя напряжение изменяется в широких пре­делах, в то время как напряжение возбуждения остается неиз­менным.

В двигателях последовательного возбуждения электромагнитный момент имеет квадратичную зависимость от тока якоря, поэтому их применение предпочтительно, когда требуются большие пус­ковые моменты и наблюдаются частые перегрузки по моменту. Связано это с тем, что при одних и тех же колебаниях момента сопротивления ток и потребляемая мощность у двигателей после­довательного возбуждения изменяются существенно меньше, чем у двигателей параллельного возбуждения. Двигатели последова­тельного возбуждения находят широкое применение на электриче­ском транспорте и в подъемных устройствах.

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Читайте также:  Как рассчитать сопротивление резистора для понижения тока

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.
Читайте также:  Расчет симметричных составляющих тока

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

Построение статических характеристик двигателей постоянного тока

date image2014-02-17
views image1356

facebook icon vkontakte icon twitter icon odnoklasniki icon

1. Естественные характеристики ДПТ НВ (см. рисунок 3.10).

Для построения используются паспортные данные.

Требуется: построить естественные характеристики.

Характеристика – прямая линия. Строятся по двум точкам:

1. Номинальная угловая скорость, рад/с

2. Номинальный момент, Н·м

3. Коэффициент, В·с

4. Угловая скорость идеального холостого хода, рад/с

— Скорость стабильная при колебательных нагрузках.

— Является рабочим участком характеристики.

— Характеристика Iк.з.>Iн и ωн>ω>0 используется кратковременно при пуске.

— Можно по характеристике определить скорость для любого нагрузки.

2. Характеристики ДПТ НВ в относительных единицах.

Часто в ЭП используется относительные единицы. За базу принимают номинальные значение величины. Исключения составляет ω ДПТ НВ.

– для ДПТ НВ (исключение)

– номинальное сопротивление якоря цепи.

– сопротивление, которое при неподвижном якоре и номинальном напряжении сети обеспечивает номинальный ток якоря.

– уравнение электромеханической характеристики в относительных единицах.

– уравнение механической характеристики в относительных единицах.

Для Iн= Iн (М=Мн) – уравнения примут вид . Это уравнение позволяет строить характеристики по заданному сопротивлению якорной цепи (решать обратную задачу)

R=Rя+Rдоб – сопротивление якорной цепи.

Если сопротивление якоря Rя не указано с справочнике, то используют приближенную формулу.

В цепь якоря введем сопротивление: R3>R2>R1 (см. рисунок 3.12)

3. Естественные характеристики ДПТ ПВ.

Строятся по универсальным характеристикам. Для Р≤10 кВт:

Таблица 3.1 Соотношение параметров ДПТ ПВ в относительных единицах.

Источник

Электроника для всех

Блог о электронике

Двигатель постоянного тока. Характеристики и регулирование

После предыдущего поста о мотор-редукторе мне пришло несколько вопросов по регулированию двигателя постоянного тока. Так что пора написать очередной пост 🙂

Двигатель постоянного тока (ДПТ) это один из самых привычных и понятных электродвигателей, он изучается даже в школе, на физике. Он используется практически везде, где нужен малогабаритный моторчик, а также не спешит сдавать своих позиций и там, где мощность измеряется десятками киловатт. О нем и поговорим.

Конструктив и базовый принцип
Не буду тут особо распинаться, покажу картинку из википедии и укажу ряд основных узлов. Все остальное вы и так знаете и трогали своими руками.

1. Статор состоит из источника магнитного поля. Далеко не всегда это постоянный магнит, более того, постоянный магнит это скорей исключение, чем правило. Обычно все же это обмотка возбуждения. По крайней мере на всем, что больше кулака по размерам.

Работает все очень и очень просто. Обмотка якоря отталкивается от магнитного поля статора силой Ампера и совершает пол оборота, стремясь вывести эту силу на ноль и таки вывела бы если бы не коллектор, который ловко всех обламывает переключает полярность катушки и сила вновь становится максимальной. И так по кругу. Т.е. коллектор служит механическим инвертором напряжения в якоре. Запомните этот момент, он нам еще пригодится 🙂

Обычно в мелких моторчиках всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол

Происходящие в двигателе процессы
Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

Немного формул
Не буду грузить никого выводами, их найдете сами если захотите. Чтобы было поменьше матана рекомендую найти учебник по электроприводу для средних учебных заведений и годом выпуска подревней. От 50х-60х годов самое то 🙂 Там и картинки винтажные и расписано для вчерашнего выпускника сельской семилетки. Много букв и никакого грузилова, все четко и по делу.

Самая главная формула коллекторного двигателя постоянного тока:

  • U — напряжение подаваемое на якорь
  • Rя — сопротивление якорной цепи. Обычно за этот символ считают только сопротивление обмотки, хотя можно снаружи навесить резистор какой и он к ней приплюсуется. Тогда пишут как (Rя+Rд)
  • Iя — ток в якорной цепи. Тот самый который замеряется амперметром при попытке измерять потребление движка 🙂
  • Е — это противоэдс или ЭДС генератора, в генераторном режиме. Она зависит от конструкции двигателя, оборотов и описывается вот такой вот простой формулой
  • Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет 🙂
  • Ф — поток возбуждения. Т.е. сила магнитного поля статора. В мелких моторчиках, где оно задается постоянным магнитом это тоже константа. Но бывает под возбуждение выведена отдельная обмотка и тогда мы можем ее менять.
  • n — обороты якоря.

Ну и зависимость момента от тока и потока:

См — конструктивная констатнта.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента. Это может быть важно, например, чтобы не сломать привод, когда двигло может развить такое усилие, что легко поломает то, что оно там вращает. Особенно с редуктором.

Ну и из этого же следует, что момент у машины постоянного тока зависит только от способности источника снабжать его током. Так что идеальный нерушимый сверхпроводящий движок вам на раз лом в узел завяжет, пусть даже он сам с ноготок будет. Только энергию подавай.

А теперь смешаем все это в кучу и получим зависимость оборотов от момента — механическую характеристику двигателя.

Если ее построить, то будет нечто следующее:

n — это обороты идеального холостого хода сферического двигателя в вакууме. Т.е. когда наш движок ну ваще халявит, момент равен нулю. Ток потребления тоже, естественно, ноль. Т.к. противоэдс равна напряжению. Чисто теоретический вариант. А вторая точка строится уже с каким-либо моментом на валу. Получается прямая зависимость оборотов от момента. А наклон характеристики определяется сопротивлением якорной цепи. Если никаких добавочных резисторов там нет, то это зовут естественной характеристикой.

Обороты идеального холостого хода зависят от напряжения и потока. Больше ни от чего. А если поток константа (постоянный магнит), то только от напряжения. Снижая напряжение вся наша характеристика параллельно смещается вниз. Уменьшили напряжение в два раза — скорость упала в два раза.

Если есть возможность менять поток возбуждения, то можно поднимать скорость выше номинальной. Тут зависимость обратная. Ослабляем поток — двигатель разгоняется, но либо падает момент, либо ему надо жрать больше тока.

Иной двигатель со снятием возбуждения может и в разнос пойти. Помнится сдавал я затянувшийся курсач по электроприводу, уже хрен знает спустя сколько времени после сессии. Вломы мне его делать было, ага 🙂 Ну и сидел в лаборатории, ждал препода. А там какие то балбесы, на курс ниже, лабу делали. Крутили движок вхолостую, а возбуждение к стенду приверчено было на соплях и слетело с клеммы. Движок в разнос пошел. У нас в лаборатории ЭПА ЮУРГУ все серьезно было, машины стояли нешуточные, по десятку киловатт и под сотню другую кг каждый. Все на суровом напряжении в 380 вольт.
В общем, когда эта дура взревела как монстр и стала рваться с креплений, я только и успел крикнуть, что все нахер от машины, вырубай к черту. Не успели, двигло сорвало с креплений, обмотка повылетала с пазов и движку пришел кирдык. Ладно никого не покалечило.
Впрочем, лабы привода это то еще развлечение было. У нас там и горело и взрывалось. Там я приобрел замечательные навыки чинить что угодно, чем угодно в сжатые сроки. В среднем, каждый успел по разу убить стенд наглухо, а лаба часто начиналась с починки паяльника, которым чинили осциллограф с помощью которого реанимировали убитый стенд.

Читайте также:  Батарея аккумуляторов с эдс 24в дает ток 10а

Добавляя резисторы в якорную цепь мы можем увеличить наклон, т.е. чем больше грузим тем больше падает скорость.

Метод плох тем, что резисторы в цепи якоря должны быть расчитаны на ток двигателя, т.е. быть мощными и будут греться зря. Ну и момент резко падает, что плохо.

Есть еще двигатели не независимого, а последовательного возбуждения. Это когда обмотка статора включена последовательно якорю. Не каждый двигатель так можно включить, обмотка возбуждения должна выдерживать ток якоря. Но у них возникает одно интересное свойство. При пуске возникает большой пусковой ток и этот пусковой ток является же током возбуждения, обеспечивая огромный пусковой момент. Механическая характеристика напоминает гиперболу с максимумом в районе нулевых оборотов.

А дальше, по мере разгона, момент падает, а обороты наоборот растут. И если нагрузку убрать с вала, то движок сразу же уходит в разнос. Такие движки ставят на тягловый привод в основном. По крайней мере ставили раньше, до развития силовой электроники. С места эта хрень рвет так, что все стритсракеры нервно закуривают.

Режимы работы двигателя постоянного тока
Направление вращения движка зависит от направления тока якоря или направления потока возбуждения. Так что если взять коллекторный двигатель и подключить обмотку возбуждения параллельно якорю, то он будет прекрасно вращаться и на переменном токе (универсальные двигатели, их в кухонную технику часто ставят). Т.к. ток будет одновременно меняться и в якоре и в возбуждении. Момент правда будет пульсирующим, но это мелочи. А для реверса там надо будет поменять полярность включения якоря или возбуждения.

Если нарисовать механическую характеристику в четырех квадрантах, то у нас будет нечто похожее на это:

Вот, например, характеристика 1 на I участке у нас машина работает как двигатель. Нагрузка растет и в определенный момент двигатель останавливается и начинает вращаться в обратную сторону, т.е. нагрузка обращает его вспять. Это тормозной режим, противовключение. Режим очень тяжелый, двигло греется просто зверски, но для торможения очень эффективный. Если же момент на валу сменит направление и пойдет вращать навстречу движку, то мотор сразу же выйдет на генерацию (IV участок).

Характеристика 2 это то же самое, только с обратной полярностью питающего напряжения двигателя.

А характеристика 3 это динамическое торможение. Оно же реостатное. Т.е. когда мы берем и просто коротим наш двигатель на резистор или сам на себя. Можете сами проверить, возьмите любой моторчик и покрутите его, а потом закоротите ему якорь и покрутите снова. На валу будет ощутимое усилие, тем больше, чем качественнее движок.

Кстати, драйвера двигателей вроде L293 или L297 имеют возможность включить реостатное торможение, подачей обоих ключей вверх или вниз. При этом якорь коротится через драйвер на шину земли или питания.

Бесколлекторные двигатели постоянного тока
Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка говна во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история.

106 thoughts on “Двигатель постоянного тока. Характеристики и регулирование”

Я очень ждал статей про двигатели. Специалист по электроприводу научил нас как работать с AVR, а про моторчики нифига не написал. Еще будут статьи на эту тему?

Мне порвала шаблон обратная зависимость между магнитным потоком возбуждения и скоростью вращения. По формуле я вижу, что это так, но понять не могу. Особенно удивил уход вразнос при отключении обмотки возбуждения. Если нет магнитного потока статора, то от чего «отталкивается» ротор? Как двигатель может вообще работать в таком режиме?

Отталкивается от остаточного возбуждения. Намагниченности полюсов. Но ты обрати внимание, что момент там тоже уходит в ноль. Так что либо отталкиваться бешеным током, либо снижать момент до нуля.

Да, про момент я заметил. Понятно, что разгон будет происходить только без нагрузки и только, если источник питания способен выдать нужный ток.

Статьи может быть будут еще, не скажу. Я, на самом деле, за 7 лет изрядно эту тему подзабыл за неиспользованием. Особенно касаемо всякого продвинутого регулирования и динамики привода. Так что не такой я уж специалист по приводу 🙂

Можно и без продвинутого регулирования для начала. Меня совсем базовые вещи интересуют. Типа, какие бывают способы управления и, соответственно, какие драйверы их реализуют, чем отличаются, плюсы, минусы, подводные камни. Для коллекторных и бесколлекторных двигателей постоянного тока. На что следует обратить внимание при разработке схем с электродвигателями, чтобы не сжечь все нафиг. В общем, такая статья в раздел «Начинающим». Но и более емкие статьи я бы с удовольствием прочитал.

Ну базовые вещи я уже описал 🙂 А дальше додумываешь сам. Напряжение можно рулить ШИМом. Можно обратную связь по току-моменту замутить. Обращаться с ними также как с любой индуктивностью, о чем я тоже уже писал. Не расписывал только H-мосты самодельные. Но тут тема такая, на всех не угодишь, слишком они разные бывают.

Он используется практически везде, где нужен малогабаритный моторчик

То-то все авиамодели, квадкоптеры и прочая летучая нечисть — на бесколлекторниках, кроме совсем позорного Китая за $100.

Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ.

Модели — не игрушки. Совсем другие требования, и другие цены.
А в дешевых игрушках, — как правило, дешевые коллекторные движки с проволочными щетками. Да и в самых дешевых моделях вертолета с соосными винтами (по сути, те же игрушки) — тоже коллекторные.

Имеется двигатель постоянного тока мощностью 60Вт, напряжение питания 48В. Как его можно переделать чтобы питать от 12В не потеряв в мощности?

Источник