Меню

Построить график переменного тока с частотой 50 гц



Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. На горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

image-1712

Рис. 1. Графическое изображение постоянного и переменного тока

На рис. 1 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 1 графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС. На рис. 2 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Рис. 2. Построение графика переменной ЭДС

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными. Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т (рис. 3) и измеряется в секундах.

Рисунок 3. Кривая синусоидального тока.

Все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em
и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Как видно из графика, кроме амплитудного значения, существует бесчисленное множество промежуточных значений, меньших амплитудного.

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Единицей измерения частоты переменного тока является 1 Герц.

Величина действующего значения переменного синусоидального тока I = 0,707 Im

Источник

Раздел 4. Однофазные электрические цепи синусоидального тока

Раздел 4. ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Задача 4.1.

Определить угловую частоту вращения ΩР, ротора генератора переменного тока при частоте питающего напряжения f = 50 Гц и угловую частоту ω ЭДС, если ротор вращается с частотой n1 = 1000 об/мин.

1. Число пар полюсов генератора: = 3

2. Угловая частота вращения ротора:

3. Угловая частота переменного тока:

Ответ: ΩР= 104,5 с-1; ω=314 с-1

Задача 4.2.

Определить среднее значение синусоидального тока Iср по мгновенному его значению i=31,4sin(ωt+π/2)

Среднее значение синусоидального тока:

Ответ: Iср = 20 A

Задача 4.3.

Для синусоидального напряжения и тока (рис. 4.4) запи­сать выражения для мгновенных их значений. Определить период Т и время t0, соответствующее начальной фазе тока Yi, а также мгновенные значения напряжений u1 и u2 для моментов времени t1 = 0,00167 с и t2 = 0,005 с, если частота тока f = 50 Гц.

1. Мгновенные значения напряжения и тока име­ют вид:

и= Umsinωt = 100sin314f В,

i= Imsin(ωt+π/2) = 15sin(314t + π/2),

где Um, lm — амплитудные значения напряжения и тока.

2. Начальная фаза тока (в радианах):

3. Период переменного напряжения и тока:

T = 1/f= 1/50 = 0,02 с.

4. Время начала отсчета, т. е. время, соответствующее начальной фазе тока:

5. Мгновенное значение напряжения в момент времени t1:

α1 = ωt1= 2πft1 = 2π×50×0,00167= π×0,167= π× = 30°;

и1= Umsinωt1 = 100sin30° = 50 В.

6. Мгновенное значение напряжения в момент времени t2:

α1 = ωt1= 2πft1 = 2π×50×0,005= 0,5π = π× = 90°;

и2= Umsinωt1 = 100sin90° = 100 В.

Ответ: T = 0,02 с; = и= 50 В; и2= 100 В

Задача 4.4.

Определить максимальное Ет и действующее Е значе­ния ЭДС, наводимой в прямоугольной катушке с числом витков w = 200, вращающейся в однородном магнитном поле с постоян­ной частотой вращения п = 1500 об/мин. Размеры витка ка­тушки 3×3 (площадь витка SB = 3×3 = 9 см2). Индукция маг­нитного поля В= 0,8 Тл.

Построить кривые изменения магнитного потока и ЭДС во времени е, Ф(t), а также векторную диаграмму цепи.

1. Частота индуцированной в катушке ЭДС:

f = n/60 = 1500/60 = 25 Гц.

2. Максимальное значение магнитно­го потока:

Фт = SBB= 3×3×10-4×0,8 = 0,00072 Вб.

3. Амплитуд­ное значение ЭДС, наводимой в катушке, находят исходя из мгновенного ее значения:

= w2πfФmsin(ωtπ/2) = Emsin(ωt/2) = 200 × 2 × 3,14 × 25 × 0,00072sin(ωt — π/2) =

откуда Em = 22,5 В.

4. Действующее значение ЭДС катушки :

Е = Ет/ = 22.5/ = 16 В.

5. Изменение потока и ЭДС во времени и векторная диаграмма приведены на, рис. 4.4, а, б.

Ответ: Em = 22,5 В; Е = 16 В.

Задача 4.5.

Читайте также:  Как найти время зная силу тока количество электронов

Переменный электрический ток задан уравнением

i = 100sin (628t — 60°).

Определить период, частоту этого тока и мгновенные значения его при t0 = 0; t1=0,152 с. Построить график тока.

1. Уравнение синусоидального тока в общем случае имеет вид:

i = Imsin (ωt ± Y).

Сопоставляя это уравнение с заданным частным уравнением тока, устанавли­ваем, что амплитуда Im = 100 А, угловая частота w = 628 рад/с, начальная фаза

Y = -6О°.

3. Частота f =

4. Мгновенные значения тока найдем, подставив в уравнение тока заданные значения времени:

при t0 = 0: i0 = 100sin(wt0 — 60°)= 100sin(628×0 — 60°)= 100sin(-60°)= -86,5 А;

при t1 = 0,152 с: (значение ωt преобразуем в градусы, умножив на )

i1 = 100 sin(628×0,152 — 60° = 100 sin (15,2× 360°-60°),

Значения синусоидальной величины через 360° повторяются, поэтому мгновен­ное значение тока при угле ωt1= 15,2×360° будет таким же, как и при угле 0,2×360° = 72°;

i1= 100sin(72° — 60°) = I00sin12°=20,8 A.

5. Для построения графика i(ωt) нужно определить ряд значений тока, соответ­ствующих различным моментам времени (табл. 4.1 и рис. 4.8).

ωt, °

Рис. 4.5. Построение графика i(ωt) к задаче 4.5.

Ответ: ; f = ; i0 = -86,5 А; i1= 20,8 A.

Задача 4.6.

Синусоидальный ток имеет амплитуду Im = 10 А, угловую частоту ω = 314 рад/с и начальную фазу Y = 30°.

По этим данным составить уравнение тока, начертbть график тока it), соот­ветствующий этому уравнению, и определить по графику и расчетом:

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

а) период Т;

б) мгновенное значение тока при ωt = 0, ωt = 30°, ωt = 60°.

1. Составим уравнение мгновенного значения

i= 10sin(314t + 30°)

2. Рассчитаем полный период тока

3. Определим мгновенные значения тока:

а) при ωt = 0

i1= 10sin(0 + 30°) = 10sin(30°) = 10×0,5 = 5 A

б) при ωt = 30°

i2 = 10sin(30° + 30°) = 10sin(60°) = 10×0,865 = 8,65 A

в) при ωt = 60°

i3= 10sin(60° + 30°) = 10sin(90°) = 10×1 = 10 A

Ответ: ; i1= 5 A; i2 = 8,65 A ; i3= 10 A

Задача 4.7.

На рис. 4.7 изображены графики двух э. д.с. Написать уравнения кривых и определить угол сдвига фаз между ними. Определить из графиков мгновен­ные значения э. д.с. для момента времени t1 = 0,007 с и сравнить с результатами, полученными из уравнений.

Рис. 4.7. К задаче 4.7.

1. Составим уравнение мгновенного значения e1 и e2:

e1= 40sin(ωtα)

e2= 50sinωt

2. Вычислим угловую скорость:

3. Из графика e1 опережает e2 на ¼ периода, т. е.:

α = 2π/4 = π/2

4. Рассчитаем e1 и e2 для момента времени t1 = 0,007 с:

e1= 40sin(ωtα) = 40sin(314×0,007 — π/2) = 40sin(0,628) = 40×0,59 = 23,5 В

e2= 50sin(ωt) =50sin(314×0,007) = 50×0,81= 40,5 В

5. Определим по графику значения e1 и e2 для момента времени t1 = 0,007 с:

e1 23 В

Вывод: Значения ЭДС рассчитанные по формулам приблизительно равны значениям определенным по графику функций.

Ответ: e1 = 23,5 В; e2 = 40,5 В

Задача 4.8.

Э. д.с. электромашинного генератора выражается уравнением:

e = Emsin(314t+90°)

Определить число пар полюсов этого генератора, если известна скорость вращения ротора n = 75 об/мин.

На какой угол в пространстве поворачивается ротор генератора за ¼ периода?

Период э. д.с., наводимой в обмотке генератора, имеющего одну пару полюсов, равен времени одного полного оборота ротора. Угловая скорость вращения ротора может быть определена отношением полного угла, со­ответствующего одному обороту ротора, к периоду:

Однако генератор может иметь не одну пару, а p пар полюсов. Полный цикл изменения э. д.с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с р = 1), по­этому при одинаковой скорости вращения ротора период э. д.с. будет в р раз короче а частота в р раз больше.

Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая скорость вращения ротора.

Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в се­кунду, а при р > 1

где п частота вращения ротора, об/мин.

Из уравнения э. д.с. известна угловая частота ω = 314 рад/с;

При частоте вращения ротора n = 75 об/мин

При р= 1 за ¼ периода ротор повернется на ¼ окружности, т. е. в угловой мере на 90°. При р = 40 угол поворота ротора за ¼ периода будет в 40 раз меньше:

Задача 4.9. (доработать)

Написать уравнение э. д.с. генератора по следующим данным: за время, равное половине периода, ротор поворачивается в пространстве на угол φ0 = 45° при частоте вращения n = 750 об/мин.

Э. д.с. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, а при t = 0 она равна 7000 В.

1. Определим число пар полюсов:

за ½Т угол поворота Y = 45°;

следовательно, за Т угол поворота Y = 90°.

Отсюда число пар полюсов

р = 360/90 = 4

2. Вычислим частоту тока

f = = 50 Гц

3. Рассчитаем угловую частоту

ω = 2πf = 3×3,14×50 = 314 рад/c.

4. Вычислим период

5. Найдем начальную фазу Э. Д.С.

а) Э. Д.С. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, т. е. время начальной фазы: .

tY = T t = 0,01 — 0,00834= 0,00166

б) Угол начальной фазы определим через отношение T/ tY

Y = 60°

6. Найдем значение Э. Д.С.

7. Запишем общее уравнение

Задача 4.10.

Определить амплитудные Um и действующие U значения синусоидального напряжения, если его среднее значение Ucp = 198 В. Ответ округлить до целого.

1. Из формулы среднего значения найдем максимальное значение напряжения:

2. Вычислим действующее значение:

Ответ: Um =310 В; U = 220 В.

Задача 4.11.

Определить амплитудное Um значение напряжения в электрической цепи синусоидального тока, частоту f, период Т переменного тока и начальный фазовый угол Yu, если мгновенное напряжение в сети и = 310sin(628 + π/3) В.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

1. Из формулы мгновенного значения напряжения найдем:

Um = 310 В

2. Из формулы угловой частоты вычислим частоту тока f:

3. Вычислим период

4. Начальный фазовый угол напряжения:

Ответ: Um = 310 В; f = 100 Гц; T = 0,01 с; Yu = π/3= 60°.

Задача 4.12.

1. Для синусоиды Ка:

2. Для синусоиды Кф:

Ответ: Ka= 1,41; Kф = 1,11

Задача 4.16.

В сеть переменного тока при напряжении U = 120 В и частоте f = 50 Гц включена катушка с индуктивностью L = 0,009 Г (RK = 0). Определить реактивную мощность Q ка­тушки и энергию WLm, запасаемую в магнитном поле катушки, записать выражения для мгновенных значений напряжения и, тока i, ЭДС самоиндукции eL за период, если начальная фаза напряжения Yu= π/2. Построить векторную и временную диаграммы.

Решение

1. Индуктивное сопротивление катушки:

XL = ωL = 2rifL = 2×3,14×50×0,009 = 3 Ом.

2. Действующее значение тока:

I = U/XL = 120/3 = 40 А.

3.Реактивная мощность цепи:

Q= UI = 120-40 = 4800 ВАр = 4,8 кВАр

4. Максимальная энер­гия, запасаемая в магнитном поле катушки:

WLm = LIm2/2

Im = I = 40×141= 56,4 A

WLm = 0,009×56,42 = 14 Дж

5. Амплитудное значение напряжения и тока:

Um =U = 120×1,41 =169 В

6. Амплитудные значения:

i = Imsinωt = Imsin(2πft) = 56,4sin(314t) A;

и = uL = U/msin(ωt + π/2) = 169sin(314t+ π/2) B;

ЭДС самоиндукции катушки:

eL = uL = 169,2sin(314 t — π/2) В;

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения опережает ток на π/2;

— вектор ЭДС самоиндукции находится в противофазе напряжению и отстает от тока на π/2.

Задача 4.17.

К сети переменного тока при напряжении U = 220 В и частоте f = 50 Гц подключен конденсатор с емкостью С = 20 мкФ.

Определить его реактивное сопротивление Хс, ток I, реактивную мощность Qc, максимальную энергию WCm, запасаемую в электрическом поле конденсатора.

Построить векторную диаграмму для данной цепи.

1. Реактивное сопротивление конденсатора:

2. Ток в цепи конденсатора:

I= U/Xc = 220/160 = 1,37 А.

3. Реактивная мощность цепи:

Qc= UI= 220×1,37 = 302 ВАр.

4. Максимальная энергия, запасаемая в электрическом поле конденсатора:

WCm = CU/2 = 20×10-6×2202/2 = 484×10-3 Дж.

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения отстает от вектора тока на π/2;

Источник

Построить график переменного тока с частотой 50 гц

§ 54. Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L — индуктивность катушки;
— скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL, (58)

где XL — индуктивное сопротивление, ом;
ω — угловая частота переменного тока, рад/сек;
L — индуктивность катушки, гн.
Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

Читайте также:  Рабочий ток светодиодов ma 117

XL = 2πf L, (59)

где f — частота переменного тока, гц.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение . Индуктивное сопротивление переменному току при f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.
Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.
На графике (рис. 57, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.
Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.
Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе (рис. 57, б.)
Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.
Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.
Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.
В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.
Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.
Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии.
Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Источник

ООО Свой Мастер & PoliStyle

Маршруты Москвы

  • Услуги
  • Цены
  • СНиПы/ГОСТы
  • Галерея
  • Статьи

Статьи:

  • Мебель и сборка
  • Ремонт и интерьер
  • ПУЭ и электрика
  • Стиль и дизайн
  • Сантехника
  • Материалы
  • Экспертиза
  • Документация
  • ГОСТы и СНиПы
  • Двери и окна
  • Фен-шуй в доме

Переменный и постоянный токи.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая.вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Ток

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

Читайте также:  Пуск двигателя постоянного тока в работу

На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Ток

Построение графика переменной ЭДС

Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой. Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.

Ток

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Период, амплитуда и частота — параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем.

Если мы имеем переменный ток, частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.

Круговая частота обозначается буквой ω и связана с частотой f соотношением ω = 2πf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f.

Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π=3,14. Таким образом, окончательно получим ω = 2πf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

Источник информации: «Школа для электрика: электротехника и электроника»

Источник