Меню

Постоянный ток резисторы соединены смешано



Смешанное соединение сопротивлений

Эквивалентное сопротивление цепи.

R12 = R1 + R2 R = R1 + R23
U = U3 = I·R = I3·R3 U = I· R; U1 = I1·R1
U2 = U3 = I2·R2 = I3·R3
U1 = I1·R1 U2 = I2·R2

Пример 1.1. Цепь постоянного тока со смешанным соединением состоит из четырёх резисторов. Мощность электрической цепи Р = 750 Вт. Определить эквивалентное сопротивление цепи, токи и напряжения на всех резисторах и для всей цепи. Решение проверить, используя баланс мощностей.

(Указание: номера токов, напряжений и мощностей должны совпадать номерами сопротивлений.)

Дано: R1=10 Ом; R2 = 50 Ом; R3 = 40 Ом; R4= 6 Ом; Р = 750 Вт.

Определим эквивалентное сопротивление цепи методом свёртывания.

Если между сопротивлениями нет узла, то они соединены последовательно, а между двумя узлами имеется параллельное соединение сопротивлений.

R1 и R2 соединены последовательно, R12 и R3 параллельно, а R123 и R4 последовательно.

R = R123 + R4 = 24 + 6 = 30 Ом.

Определим токи и напряжения на всех резисторах.

Ток и напряжение для всей цепи:

Рис. 1.9. получается свёртыванием рис. 1.8. На рисунке 1.10 покажем токи и напряжения на резисторах R123 и R4:

Решение проверим, используя 2-ой закон Кирхгофа.

U = U3 + U4 = 120 + 30 = 150 В.

Резистор R123 получается от параллельного соединения резисторов R12 и R3.

Из рис. 1.11. имеем:

Решение проверим, используя 1-ый закон Кирхгофа.

Резистор R12 получается от последовательного соединения резисторов

Решение проверим, используя 2 — ой закон Кирхгофа.

150 · 5 =20 · 2 + 100 · 2 + 120 · 3 + 30 · 5 = 40 + 200 + 360 + 150 = 750;

Ответ представим в виде таблицы:

R1 R2 R3 R4 вся цепь
R (Ом)
U (В)
I (А)
Р (Вт)

Задача 1.1. Цепь постоянного тока со смешанным соединением состоит из четырёх резисторов. Дана одна из величин U,I или Р. Определить эквивалент- ное сопротивление цепи, токи и напряжения на всех резисторах и для всей цепи. Решение проверить, используя баланс мощностей.

(Указание: номера токов, напряжений и мощностей должны совпадать номерами сопротивлений.) Данные выбрать из таблицы 1.1.

№ варианта № рис. R1 Ом R2 Ом R3 Ом R4 Ом U, I, P
1.13 1.14 1.15 U =120 В I = 5 A P = 1152 Вт
1.16 1.17 1.18 U =160 В I = 10 A P = 576 Вт
1.19 1.20 1.21 U =12 В I = 6 A P = 450 Вт
1.22 1.13 1.14 U =96 В I = 15 A P = 250 Вт
1.15 1.16 1.17 U =48 В I = 15 A P = 375 Вт
1.18 1.19 1.20 U =60 В I = 6 A P = 720 Вт
1.21 1.22 1.13 U =60 В I = 3 A P = 937,5 Вт
1.14 1.15 1.16 U =60 В I = 12 A P = 1440 Вт
1.17 1.18 1.19 U =90 В I = 24A P = 1440 Вт
1.20 1.21 1.22 U =100 В I = 5 A P = 320 Вт
1.13 1.14 1.15 U = 48 В I = 9 A P = 172 Вт
1.16 1.17 1.18 U = 120B I = 10A U = 96 B
1.19 1.20 1.21 U = 90 B I = 9 A U = 90 B
1.22 1.13 1.14 U = 78 B Р = 720 Вт U = 144 Вт
1.15 1.16 1.17 U = 72 Вт I = 12 А U = 90 B
1.18 1.19 1.20 I = 48 A I = 9 A U = 117В
1.21 1.22 I = 15A I = 9A

Пример 1.2.Дана электрическая цепь со смешанным соединением резисторов. Номера токов, напряжений и мощностей совпадают с номером резистора.

1.эквивалентное сопротивление электрической цепи;

2.используя известную величину тока, напряжения или мощности вычис-

лить токи и напряжения, по закону Ома для участка цепи, на всех резис-

торах и для всей цепи; законы Кирхгофа использовать для проверки;

3.проверить решение методом баланса мощностей.

Рис. R1 Ом R2 Ом R3 Ом R4 Ом R5 Ом R6 Ом Дополнительный параметр
1.23 Р = 250 Вт

Для определения эквивалентного сопротивления используем метод свёртывания.

R5 и R6 cоединены параллельно, а R4 и R56 последовательно.

R3 и R456 cоединены параллельно, R1 и R2 c R3456 последовательно.

Определим ток и напряжение всей цепи:

Из рис. 1.26 видим, что резисторы R1, R3456, R2 соединены последовательно,

определим напряжения и токи на R1, R3456, R2. На рис.1.27 покажем токи и напряжения.

Проверим используя 2-ой закон Кирхгофа.

U = U1 + U3 + U2 ; 50 = 5 + 30 + 15 = 50

Рассмотрим резистор R3456. Выделим из рис. 1.25. часть с резисторами R3 и R456, получим рис.1.28. Ток I456 равен I4 т.е. I456 = I4. Определим токи I4 и I1. Из рис. 1.28 видно: напряжение U456 = U3 т.к. R3 и R456 соединены параллельно. Токи в ветвях:

Проверим, используя 1-ый закон Кирхгофа.

Отделим из рис.1.24 резисторы R4 и R56. Эти резисторы соединены последовательно. На рис. 1.29 покажем напряжения U4 и U56 = U5 = U6.

Проверим используя 2-ой закон Кирхгофа.

Из рис.1.23 видим, что резисторы R5 = R6 соединены параллельно. На рис.1.30 покажем токи I5 и I6. Определим токи на резисторах R5 и R6 .

Проверим используя 1-ый закон Кирхгофа: I4= I5 + I6; 3 = 2 + 1.

Из рис.1.30 определим напряжения на R1 и R2: I = I1 = I2 = I3456 = 5 А.

Решение проверим используя баланс мощностей:

50·5 = 5·5 + 15·5 + 30·2 + 18·3 + 12·2 + 12·2 = 250.

R1 Ом R2 Ом R3 Ом R4 Ом R5 Ом R6 Ом Вся Цепь
R Ом
U В
I А
P Вт

Задача 1.2.Дана электрическая цепь со смешанным соединением резисто- ров. Номера токов, напряжений и мощностей совпадают с номером резистора. Данные выбрать из таблицы 1.2.

Определить используя заданную величину U,I, или Р:

1.Эквивалентное сопротивление электрической цепи.

2.Используя известную величину тока, напряжения или мощности вычислить токи и напряжения, по закону Ома для участка цепи, на всех резисторах и для всей цепи. Законы Кирхгофа использовать для проверки.

3. Решение проверить методом баланса мощностей.

Источник

Параллельное соединение резисторов, а также последовательное

Ни одна электрическая схема не обходится без резисторов. Что это такое, для чего он нужен и какими способами их подключают в электрическую цепь рассмотрим подробно.

Читайте также:  Факторы поражения электрическим током презентация

Что такое резистор и для чего он нужен

Резистор – пассивный элемент электрической цепи, который поглощает энергию тока и преобразовывает её в тепло за счет сопротивления потоку электронов в цепи.

Зависимость тока от сопротивления описывается законом Ома и рассчитывается по формуле I = U/R.

Свойство резисторов ограничивать ток и снижать напряжение используется во многих электронных устройствах и бытовых приборах.

Справка: Резисторы бывают двух видов – постоянные и переменные, во втором случае сопротивление проводника изменяется механическим путем (вручную).

Последовательное и параллельное соединение резисторов – основные способы соединения резистивных элементов.

Внимание! Резистор не имеет полярности, длина выводов с обоих концов одинакова, поэтому для лучшего понимания сути соединения предлагается называть выводы:

  1. С правого края – правый.
  2. С левого края – левый.

Понятие параллельного подключения резисторов

При параллельном подключении правые выводы всех резисторов соединяются в один узел, левые – во второй узел.

паралельное-соединение-резисторов

При параллельном включении резисторов ток в цепь разветвляется по отдельным ветвям, протекая через каждый элемент – по закону Ома величина тока обратно пропорциональна сопротивлению, напряжение на всех элементах одинаковое.

соединение-резисторов

Справка: Ветвь – фрагмент электрической цепи, содержащий один или несколько последовательно соединенных компонентов от узла до узла.

Последовательное подключение

При последовательном соединении резисторы нужно подключить в цепь друг за другом – правый вывод одного резистора к левому второго, правый второго – к левому третьего и так далее в зависимости от количества соединяемых элементов.

Последовательное подключение резисторов

При последовательном соединении ток, не изменяя своей величины, течет через все резистивные элементы.

Последовательное-подключение-резисторов

Смешанное подключение

При смешанном подключении в одной схеме сочетаются несколько видов соединений – последовательное, параллельное соединение резисторов и их комбинации. Самую сложную электрическую схему, состоящую из источников питания, диодов, транзисторов, конденсаторов и других радиоэлектронных элементов можно заменить резисторами и источниками напряжения, параметры которых изменяются в каждый момент времени. О параллельном соединении резистора и конденсатора читайте тут.

Смешанное подключение-резисторов

Смешанная схема делится на фрагменты, ток и напряжение рассчитывается для каждого отдельно в зависимости от того, как они соединены на выбранном сегменте электрической схемы.

Важно! Для расчета сопротивления резистора в схеме применяют отдельные формулы для каждого конкретного элемента в зависимости от вида соединения.

Что ещё нужно учитывать при подключении резисторов

Важный показатель в работе резистивного элемента мощность рассеивания – переход электрической энергии в тепловую, вызывающую нагрев элемента.

При превышении допустимой мощности рассеивания резисторы будут сильно греться и могут сгореть, поэтому при расчете схем соединения надо учитывать этот параметр – важно знать насколько изменится мощность резистивных элементов при включении в электрическую цепь.

Какая мощность тока при последовательном и параллельном соединении

Определение мощности отдельного резистивного элемента производится по формуле

P = U²/R или P = I²R , которую можно вывести из формулы расчета мощности электрической цепи P = UI по закону Ома.

Мощность при параллельном соединении

Рассчитав сопротивление каждого элемента в отдельности, считаем мощность каждого по формуле P = I²R, где

  • R – не номинальное сопротивление резистивного элемента, а рассчитанное для данной цепи;
  • I – сила тока в цепи.

При параллельном соединении через меньший резистор протекает больший ток – мощность рассеивания на этом резистивном элементе будет больше, чем на остальных.

Важно! При расчете параллельной цепи следует учитывать мощность сопротивления с самым маленьким номиналом.

Мощность при последовательном соединении

Вычислив сопротивление каждого резистивного элемента по отдельности, рассчитываем мощность каждого по формуле P = U²/R, где

  • R – рассчитанное нами сопротивление для определенной схемы;
  • U – падение напряжения на данном резистивном элементе.

Справка: Полную мощность цепи при последовательном и параллельном соединении можно найти, сложив вычисленные мощности отдельных элементов, входящих в цепь Pобщ = P1+P2+P3+…+Pn.

Как правильно рассчитать сопротивление

Применяется закон Ома для участка цепи – расчет сопротивления делается по формуле R = U/I, где

  • U – падение напряжение на конкретном резистивном элементе;
  • I – ток, протекающий через него.

При последовательном соединении

Для двух элементов считаем Rобщ = R1+R2.

Для нескольких сопротивлений разного номинала Rобщ = R1+R2+R3+…+Rn.

При параллельном соединении

Расчет для двух резисторов делаем по формуле Rобщ = (R1×R2)/(R1+R2).

Сопротивление параллельных резисторов с разным номиналом рассчитываем по формуле

Для элементов, соединенных в параллель, суммарное сопротивление всегда ниже наименьшего номинального.

Как рассчитать сложные схемы соединения резисторов

Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.

Смешанное подключение-резисторов

Перед нами сложная схема – задача рассчитать общее сопротивление:

  1. R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
  2. R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
  3. R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.

Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.

Читайте также:  Устройства контактной сети при переменном токе

Преобразование «звезда-треугольник»

Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:

  • «звезда» – соединение трех ветвей с одним общим узлом;
  • «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.

Справка: Узел – точка, в которой соединяются три и более проводника электрической цепи.

Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».

Сопротивление резистора луча «звезды»

Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».

Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.

формулы рассчета звезды резисторов

О разнице подключения звезда и треугольник читайте здесь.

Чему равна сила тока в цепи при параллельном соединении резисторов

Согласно правилу Кирхгофа ток, поступающий в узел, равен току, выходящему из узла, – величина тока до группы параллельных резисторов и после нее должна быть неизменной.

Ток в группе параллельных резисторов распределяется по цепи в зависимости от их номинала, после прохождения через сопротивления суммируется в узле и выходит из него неизменным I = I1+I2+I3+…+In.

Как определить величину эквивалентного сопротивления при последовательном соединении резисторов

Справка: Эквивалентом сопротивления называется замена части схемы, состоящей из нескольких резистивных элементов, одним элементом.

Для последовательного соединения эквивалентное сопротивление равно сумме сопротивлений резисторов, включенных в группу, для расчета применяется формула Rэкв = R1+R2+…+Rn.

Например: Нужно посчитать эквивалентное сопротивление данной схемы.

Смешанное подключение-резисторов

Решение задачи производится путем разделения резистивных элементов на системные группы.

Выделяем первую группу из последовательно соединенных элементов – R2, R3, R4.

сложная-схема-подключения-резисторов

Выделяем вторую группу из последовательных элементов R1, R5, R6.

сложная_схема_подключения_резисторов

Получаем величину двух эквивалентных сопротивлений Rобщ1 и Rобщ2, соединенных параллельно.

Делаем расчет всей схемы Rэкв= Rобщ1× Rобш2/ (Rобщ1+ Rобщ2).

Зная способы соединения и формулы расчета можно рассчитать любую сложную схему соединения резистивных элементов, однако существует множество онлайн калькуляторов, которые сделают это быстрей человека, достаточно только ввести нужные параметры компонентов схемы.

Источник

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.
Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.
Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Соединение резисторов

Рисунок 1. Соединение резисторов.

Последовательное соединение резисторов

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее (рисунок 2).

Последовательное соединение резисторов

Рисунок 2. Последовательное соединение резисторов.

То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток.
Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.
Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает.
Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле:

Rобщ = R1 + R2 + R3+. + Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку (Б) (см. рисунок 3).

Параллельное соединение резисторов

Рисунок 3. Параллельное соединение резисторов.

При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей.
Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)
Общее сопротивление параллельно соединенных резисторов определяется следующим отношением:

1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn

Следует отметить, что здесь действует правило «меньше — меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле:

Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением.
На рисунке 4 показан простейший пример смешанного соединения резисторов.

Смешанное соединение резисторов

Рисунок 4. Смешанное соединение резисторов.

На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.
Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:
1. Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
2. Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
3. После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
4. Рассчитывают сопротивления полученной схемы.

Читайте также:  Измерение сопротивления кабеля при постоянном токе

Пример расчета участка цепи со смешанным соединением резисторов приведен на рисунке 5.

Расчет смешанного соединения резисторов

Рисунок 5. Расчет сопротивления участка цепи при смешанном соединении резисторов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Смешанное соединение резисторов

Резистор представляет собой устройство, обладающее устойчивым, стабильным значением сопротивления. Это позволяет выполнять регулировку параметров на любых участках электрической цепи. Существуют различные виды соединений, в том числе и смешанное соединение резисторов. От использования того или иного способа в конкретной схеме, напрямую зависит падение напряжений и распределение токов в цепи. Вариант смешанного соединения состоит из последовательного и параллельного подключения активных сопротивлений. Поэтому в первую очередь нужно рассматривать эти два вида соединений, чтобы понять, как работают другие схемы.

Последовательное соединение

Последовательная схема подключения предполагает расположение резисторов в схеме таким образом, что конец первого элемента соединяется с началом второго, а конец второго – с началом третьего и т.д. То есть все резисторы поочередно следуют друг за другом. Сила тока при последовательном соединении будет одинаковой в каждом элементе. В виде формулы это выглядит следующим образом: Iобщ = I1 = I2, где Iобщ является общим током цепи, I1 и I2 – соответствуют токам 1-го и 2-го резистора.

Смешанное соединение резисторов

В соответствии с законом Ома, напряжение источника питания будет равно сумме падений напряжения на каждом резисторе: Uобщ = U1 + U2 = I1r1 + I2r2, в которой Uобщ – напряжение источника электроэнергии или самой сети; U1 и U2 – значение падений напряжения на 1-м и 2-м резисторах; r1 и r2 – сопротивления 1-го и 2-го резисторов. Поскольку токи на любом участке цепи имеют одинаковое значение, формула приобретает вид: Uобщ = I(r1 + r2).

Таким образом, можно сделать вывод, что при последовательной схеме включения резисторов, электрический ток, протекающий через каждый из них равен общему значению тока во всей цепи. Напряжение на каждом резисторе будет разное, однако их общая сумма составит значение, равное общему напряжению всей электрической цепи. Общее сопротивление цепи также будет равно сумме сопротивлений каждого резистора, включенного в эту цепь.

Параметры цепи при параллельном соединении

Параллельное соединение представляет собой включение начальных выходов двух и более резисторов в единой точке, и концов этих же элементов в другой общей точке. Таким образом, фактически происходит соединение каждого резистора непосредственно с источником электроэнергии.

В результате, напряжение каждого резистора будет одинаковым с общим напряжением цепи: Uобщ = U1 = U2. В свою очередь, значение токов будет разным на каждом резисторе, их распределение становится прямо пропорциональным сопротивлению этих резисторов. То есть, при увеличении сопротивления, сила тока уменьшается, а общий ток становится равен сумме токов, проходящих через каждый элемент. Формула для данного положения выглядит следующим образом: Iобщ= I1 + I2.

Для расчетов общего сопротивления используется формула: . Она используется при наличии в цепи только двух сопротивлений. В тех случаях, когда сопротивлений в цепи подключено три и более, применяется другая формула:

Таким образом, значение общего сопротивления электрической цепи будет меньше, чем самое минимальное сопротивление одного из резисторов, подключенных параллельно в эту цепь. На каждый элемент поступает напряжение, одинаковое с напряжением источника электроэнергии. Распределение тока будет прямо пропорциональным сопротивлению резисторов. Значение общего сопротивления резисторов, соединенных параллельно, не должно превышать минимального сопротивления какого-либо элемента.

Схема смешанного соединения резисторов

Схема смешанного соединения обладает свойствами схем последовательного и параллельного соединения резисторов. В этом случае элементы частично подключаются последовательно, а другая часть соединяется параллельно. На представленной схеме резисторы R1 и R2 включены последовательно, а резистор R3 соединен параллельно с ними. В свою очередь резистор R4 включается последовательно с предыдущей группой резисторов R1, R2 и R3.

Расчет сопротивления для такой цепи сопряжен с определенными трудностями. Для того чтобы правильно выполнить расчеты используется метод преобразования. Он заключается в последовательном преобразовании сложной цепи в простейшую цепь за несколько этапов.

Если для примера вновь использовать представленную схему, то в самом начале определяется сопротивление R12 резисторов R1 и R2, включенных последовательно: R12 = R1 + R2. Далее, нужно определить сопротивление резисторов R123, включенных параллельно, по следующей формуле: R123=R12R3/(R12+R3) = (R1+R2)R3/(R1+R2+R3). На последнем этапе выполняется расчет эквивалентного сопротивления всей цепи, путем суммирования полученных данных R123 и сопротивления R4, включенного последовательно с ним: Rэк = R123 + R4 = (R1 + R2) R3 / (R1 + R2 + R3) + R4.

В заключение следует отметить, что смешанное соединение резисторов обладает положительными и отрицательными качествами последовательного и параллельного соединения. Это свойство успешно используется на практике в электрических схемах.

Параллельное соединение резисторов

Напряжение при последовательном и параллельном соединении резисторов

Сопротивление при последовательном и параллельном соединении резисторов

Последовательное и параллельное соединение резисторов

Источник